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ABSTRACT
Neuroevolution, the optimisation of artificial neural net-
works (ANNs) through evolutionary computation, is a
promising approach to the synthesis of controllers for au-
tonomous agents. Traditional neuroevolution approaches
employ direct encodings, which are limited in their ability
to evolve complex or large-scale controllers because each
ANN parameter is independently optimised. Indirect encod-
ings, on the other hand, facilitate scalability because each
gene can be reused multiple times to construct the ANN,
but are biased towards regularity and can become ineffec-
tive when irregularity is required. To address such limita-
tions, we introduce a novel algorithm called R-HybrID. In
R-HybrID, controllers have both indirectly encoded and di-
rectly encoded structure. Because the portion of structure
following a specific encoding is under evolutionary control,
R-HybrID can automatically find an appropriate encoding
combination for a given task. We assess the performance
of R-HybrID in three tasks: (i) a high-dimensional visual
discrimination task that requires geometric principles to be
evolved, (ii) a challenging benchmark for modular robotics,
and (iii) a memory task that has proven difficult for current
algorithms because it requires effectively accumulating neu-
ral structure for cognitive behaviour to emerge. Our results
show that R-HybrID consistently outperforms three state-
of-the-art neuroevolution algorithms, and effectively evolves
complex controllers and behaviours.
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1. INTRODUCTION
Artificial evolution emerged in the 1990s as a promising

alternative to classic artificial intelligence in the synthesis of
robust control systems for simulated agents and embodied
agents such as robots [9, 15]. In general terms, the artifi-
cial evolution approach maintains a population of genomes,
each encoding a number of parameters of the agents’ con-
trol system. Optimisation of genomes is based on Darwin’s
theory of evolution, namely blind variations and survival of
the fittest, as embodied in the neo-Darwinian synthesis [12].

Early studies on artificial evolution advocated the use of
artificial neural networks (ANNs) as the underlying control
system of autonomous agents [9, 15]. The ANN paradigm
was adopted due to a number of features such as the ANNs’
robustness in dynamic, real-world environments [9], and the
argued tight coupling between perception and action [15]. In
this context, the parameters of the ANN such as the connec-
tion weights and occasionally the topological structure are
optimised by an evolutionary algorithm, a process termed
neuroevolution [10].

As discussed by Husbands et al. [15], a central aspect in
neurovolution of controllers is the genetic encoding. A key
commonality among the majority of past and current studies
is the use of a direct encoding [24], in which each parameter
of the ANN is independently specified and optimised. As
a result, direct encoding methods tend not to perform well
in high-dimensional and in epistatic tasks, and are there-
fore unsuited for the evolution of agent behaviours that re-
quire complex large-scale ANNs [15, 21]. Indirect encodings,
also called generative or developmental encodings, enable
representational efficiency by allowing the same gene to be
reused multiple times to construct different parts of the phe-
notype [38]. That is, indirect encodings allow solutions to be
represented as patterns of parameters, rather than requiring
each parameter to be represented individually [2, 36, 38].

Indirect encodings can facilitate scalability because evo-
lution can search in a low-dimensional space and produce
arbitrarily large phenotypes. One particular indirect encod-
ing neuroevolution algorithm called HyperNEAT [36] has
shown significant potential in the evolution of controllers
for agents because of its ability to automatically find the
geometric aspects of a task [5, 6, 36]. For example, in gait
learning for simulated quadruped robots, HyperNEAT can
exploit multiple symmetric relationships between the robot’s
legs to evolve high-performing controllers [4]. An important
result is that, contrary to other approaches, HyperNEAT
does not need a human experimenter to manually decom-
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pose the task to find the underlying regularities [5, 7, 11,
36]. However, as typical algorithms relying on indirect en-
codings, HyperNEAT’s bias towards controllers with regular
structure makes it difficult to properly account for irregular-
ities such as faults in the joints of quadruped robots [5].

In this paper, we propose R-HybrID, a novel approach
for the evolution of ANN-based controllers for autonomous
agents. R-HybrID automatically combines HyperNEAT with
its direct encoding counterpart NEAT [37]. We compare the
performance of R-HybrID with the performance of three
state-of-the-art algorithms: (i) switch-HybrID [5], a com-
parable algorithm that requires the human experimenter to
decide when to switch from an indirect encoding to a direct
encoding, (ii) HyperNEAT [36], and (iii) NEAT [37].

We assess the performance of the four algorithms in three
tasks. The first task is a visual discrimination task [36] in
which ANNs have to distinguish a large object from a small
object. The task allows us to assess how R-HybrID be-
haves in high-dimensional search spaces, and if R-HybrID
can successfully find the geometric principles required to
solve the task. The second task is the coupled inverted
pendulum task [13], a challenging benchmark for modular
robotics scenarios with multiple local optima, and in which
task complexity can be scaled up by increasing the number
of robots in the environment. The third task is a memory
task [16, 26] that requires successful agents to display cogni-
tive behaviours [16]. Evolving memory behaviours requires
accumulating neurons and connections that enable ANNs to
maintain a persistent representation of some aspects of the
task. However, such scaffolding structure typically does not
provide immediate performance benefits, and current algo-
rithms therefore tend to converge to reactive controllers [16].

Overall, our results show that: (i) R-HybrID effectively
evolves large-scale ANNs and finds the geometric principles
necessary to solve the visual discrimination task, and that
(ii) R-HybrID consistently outperforms switch-HybrID, Hy-
perNEAT, and NEAT in multiple configurations of the cou-
pled inverted pendulum task and in the memory task. The
main conclusion is that R-HybrID is a promising approach to
the evolution of complex agent behaviours due to its ability
to automatically explore multiple indirect and direct encod-
ing combinations simultaneously.

2. BACKGROUND

2.1 NEAT
NeuroEvolution of Augmenting Topologies (NEAT) [37] is

a prominent direct encoding neuroevolution algorithm that
optimises both network topologies and weighting parame-
ters. NEAT has been successfully applied to distinct con-
trol and decision-making tasks, outperforming several fixed-
topology algorithms [34, 37].

NEAT starts with a population of simple networks with no
hidden neurons. Throughout evolution, networks are recom-
bined via crossover, and new neurons and new connections
are progressively added as a result of structural mutations.
Because NEAT speciates the population based on the topo-
logical similarity between networks, the algorithm maintains
a variety of complexifying structures simultaneously over the
course of evolution. In this way, NEAT can search for an
appropriate degree of complexity to the current task while
avoiding a priori specification of the network topology. A
full description of the algorithm is given in [37].
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Figure 1: HyperNEAT connectivity patterns pro-
duction. Neurons in the ANN are assigned coor-
dinates that range from -1 to 1 in all dimensions
of a substrate. The weight of each connection in the
substrate is determined by querying the CPPN. The
dark directed lines in the substrate represent a sam-
ple of connections that are queried. For each query,
the CPPN receives the positions of two neurons, and
outputs the weight of the connection between them.
As a result, CPPNs can produce regular patterns of
connections. From [35]. MIT Press c©.

2.2 HyperNEAT
Hypercube-based NeuroEvolution of Augmenting Topolo-

gies (HyperNEAT) [36] is an approach to neuroevolution
that employs an evolved indirect encoding based on Com-
positional Pattern Producing Networks (CPPNs) [35]. For-
mally, CPPNs are a composition of functions that encode
the weight patterns of an ANN, as shown in Fig. 1. CPPNs
are conceptually similar to ANNs, with the key difference
being that different nodes in a CPPN can have different ac-
tivation functions. Each activation function in CPPNs rep-
resents a specific regularity such as symmetry, repetition, or
repetition with variation [35]. For example, a periodic func-
tion such as sine creates repetition, while a Gaussian func-
tion enables left-right symmetry. Regularities with variation
(e.g. as in the fingers of the human hand) can be evolved by
combining regular functions with irregular ones.

In HyperNEAT, NEAT is altered to evolve CPPNs in-
stead of ANNs. CPPNs produce connectivity patterns by
interpreting spatial patterns generated within a hypercube
as connectivity patterns in a lower-dimensional space (see
Fig. 1). Neurons exist at locations, and the coordinates of
pairs of neurons are input to a CPPN to compute the con-
nection weights for an ANN.

In the evolution of controllers, HyperNEAT yields a num-
ber of advantages over other algorithms. One of the key ad-
vantages of HyperNEAT is that as the connection weights
between neurons are a function of the geometric position of
such neurons, HyperNEAT can exploit the neural topogra-
phy and not just the topology. In this respect, HyperNEAT
has been shown to: (i) correlate the internal geometry of
the ANN with the placement of agent sensors and actua-
tors [36], (ii) evolve high-performing controllers for simu-
lated quadruped robots by exploiting regularities such as
four-way symmetry, wherein all legs of the robots continu-
ously move in unison [4, 5], (iii) generalise the learnt geo-
metric principles to create larger-scale ANNs without fur-
ther evolution [36], and (iv) efficiently represent controllers
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for large groups of agents as a function of the relationship
between the role of the agents and their position in the
group [7]. However, HyperNEAT’s performance is degraded
in tasks that contain irregularities [5]. For example, in the
evolution of gaits for quadruped robots, if robots have faulty
joints then HyperNEAT’s ability to evolve coordinated be-
haviours is limited. As the number of faulty joints increases,
HyperNEAT’s performance continuously decreases and be-
comes statistically indistinguishable from the performance
of NEAT, which is blind to task geometry [5].

2.3 Hybridising Encodings
To address HyperNEAT’s ineffectiveness when irregular-

ity is required, Clune et al. [5] recently proposed the first
hybridisation of indirect and direct encodings, an algorithm
called switch-HybrID. Switch-HybrID first evolves with Hy-
perNEAT, and then switches to its direct encoding counter-
part NEAT [37] after a fixed, predefined number of gener-
ations. When the switch is made, each HyperNEAT ANN
is translated to a NEAT genome. Evolution then continues
with regular NEAT until the end of the experiment.

In a number of different tasks, switch-HybrID has been
shown to significantly outperform HyperNEAT [5]. Because
switch-HybrID is able to make subtle adjustments to other-
wise regular patterns, the algorithm can account for irregu-
larities such as faulty joints in quadruped robots [5].

The success of switch-HybrID suggests that indirect en-
codings may be more effective not as stand-alone algorithms,
but in combination with a refining process that adjusts regu-
lar patterns in irregular ways. However, a key disadvantage
of switch-HybrID is that the switch from HyperNEAT to
NEAT is only made after a number of generations defined by
the experimenter elapse. Similarly to devising optimal stop-
ping criteria for evolutionary algorithms based on, for exam-
ple, search space exploration or objective convergence [1],
defining an appropriate switch point is a non-trivial task
that requires domain-dependent information, and a signifi-
cant amount of experimentation and human knowledge. In
addition, the switch-point criterion limits the applicability of
switch-HybrID in open-ended domains such as when agents
have to learn while they operate in the task environment
and the adaptation process is continuous in time [33].

3. R-HybrID
Conventional evolutionary algorithms are based on either

an indirect encoding or on a direct encoding, and therefore
ANNs are optimised according to one particular scheme at
a given time. Even in switch-HybrID, evolution is limited to
first exploring the solution space according to the properties
of HyperNEAT and then to the properties of NEAT.

The key idea behind the representation-based hybridisa-
tion of indirect and direct encodings (R-HybrID)1 is that
ANNs can be partially indirectly encoded and partially di-
rectly encoded. Which parts of a given ANN are indirectly
encoded or directly encoded is placed under evolutionary
control. In this way, the evolutionary process can explore
multiple encoding pathways simultaneously, and automati-
cally find appropriate levels of indirect encoding and of di-

1An extensive description of R-HybrID, the source code
of the experiments described in Section 4, and a com-
plete list of the experimental parameters is available at:
http://fgsilva.com/?page_id=282.
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Figure 2: R-HybrID connectivity patterns produc-
tion. Samples of directly encoded and of indirectly
encoded connections are represented in the sub-
strate by the green undirected connections and by
the black directed connections, respectively. Firstly,
directly encoded connection weights are decoded.
Secondly, indirectly encoded connection weights are
decoded by querying the CPPN. Besides evolving
the CPPN, R-HybrID can also add new directly en-
coded neurons and connections, represented in the
left part of the substrate by the red undirected con-
nections and corresponding neurons.

rect encoding to solve the current task. Consequently, evo-
lution can explore the continuum of regularity and evolve
solutions that are mainly or completely indirectly encoded
when the regularity of a task is high, or primarily directly
encoded solutions if the regularity of a task is low. Given
that many real-world problems have regularities but typi-
cally also require irregular exceptions to be made [5], an
algorithm that automatically explores indirect and direct
encodings may be an important step towards the evolution
of more complex agent behaviours.

R-HybrID combines HyperNEAT and NEAT in an adapt-
able manner. Genomes are composed of a direct encoding
part, similar to NEAT, and an indirect encoding part, i.e.,
a CPPN. Each genome in the initial population is assigned
a ratio r ∈ [0, 1] of directly encoded connection weights,
which are randomly chosen. The remaining 1 − r connec-
tion weights are indirectly encoded via a CPPN. Throughout
evolution, the set of operators of NEAT and HyperNEAT
(crossover, mutation) is applied to the direct encoding and
to the indirect encoding parts of the genome. In addition,
through mutation, connections that are directly encoded can
become indirectly encoded and vice-versa. When a connec-
tion is changed from directly to indirectly encoded, the cor-
responding weight will afterwards be produced by a CPPN.
In this way, the evolutionary process can search for solutions
across multiple ratios of indirect vs. direct encoding.

The decoding of R-HybrID genomes is shown in Fig. 2.
Firstly, the directly encoded connection weights are decoded,
if any. Secondly, the indirectly encoded connection weights
are decoded by querying a CPPN. One key advantage of
R-HybrID is that, because of the hybrid genomic represen-
tation, the evolutionary process can simultaneously optimise
and complexify the CPPNs and the directly encoded struc-
ture. Because R-HybrID inherits NEAT and HyperNEAT’s
speciation dynamics, the algorithm can effectively maintain
a variety of ANNs with differing complexities and encodings
simultaneously over the course of evolution.
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4. METHODS
In this section, we define our methodology and the ex-

perimental setups used to evaluate R-HybrID. We compare
R-HybrID with switch-HybrID, HyperNEAT, and NEAT in
three tasks with distinct characteristics. The first task is
a visual discrimination task [36] that serves to assess how
R-HybrID behaves in high-dimensional search spaces, and if
R-HybrID can discover the same geometric principles that
HyperNEAT has been shown to successfully exploit [6]. The
second task is the coupled inverted pendulum task [13], a
benchmark for modular robotics scenarios with non-linear
dynamics. Besides being a challenging task with multiple
local optima [13], the coupled inverted pendulum task allows
us to scale up the task complexity by increasing the number
of robots that operate in a fixed-length track. In addition,
the fact that both NEAT and HyperNEAT struggle to evolve
effective solutions when multiple robots are considered [3]
raises the question of whether hybrid algorithms such as
R-HybrID and switch-HybrID can leverage their distinctive
encoding properties to better solve the task. The third task
is a memory task [16, 26] that requires agents to display
cognitive behaviours. In particular, memory behaviours are
challenging to evolve because they require the accumulation
of neurons and connections that serve a memory function,
and building only part of such scaffolding may provide no
immediate performance benefits [16]. When such behaviours
have been successfully evolved, domain-dependent informa-
tion such as task-decomposition approaches and complex
neural models have been typically used [16]. Contrary to
such approaches, our goal is to study if R-HybrID, a poten-
tially more general algorithm because of its encoding prop-
erties, can facilitate the evolution of complex memory capa-
bilities. Each task is described in the following sections.

4.1 Visual Discrimination
Vision tasks are a suitable domain for testing learning al-

gorithms on high-dimensional input and output spaces. The
goal in the visual discrimination task [36] is to evolve an
ANN that distinguishes a large square object from a small
square object in a two-dimensional substrate, as illustrated
in the examples in Fig 3. The ANNs’ input layer is composed
of a two-dimensional array of neurons that are either active
or inactive (black or white in Fig. 3). The output layer is
an equivalent two-dimensional array of neurons whose ac-
tivation levels can vary between zero and one. In a given
trial, the ANN is presented with the large object and the
small object in different locations. The ANN then has to
determine the centre of the large object in the visual field.
The neuron in the output layer with the highest activation
is interpreted as the ANN’s selection.

The input layer and the output layer both have a res-
olution of 11 x 11 neurons, resulting in a total of 14,641
connection weights to be optimised. Solutions to the task
need to detect the relative sizes of the two objects, and dis-
play a connectivity pattern between the input layer and the
output layer that causes the correct neuron to become the
most active regardless of the locations of the objects. Thus,
one important question is whether R-HybrID can leverage
HyperNEAT’s ability to discover the task’s regularity, and
converge to an effective type of solutions. As in [36], the
evaluation of an ANN includes 75 trials. Each trial places
the two objects in different locations. The fitness score f
(to be minimised) is defined as the sum of the squared dis-

Input Output Input Output
Example 1 Example 2

Figure 3: Visual discrimination task. Two examples
of input patterns provided to an ANN and the cor-
responding correct activations in the output layer.
The ”×” in each example denotes the output neuron
with the highest activation, which is the how the
ANN specifies the centre of the large object.

tances between the centre of the large object and the point
of highest activation in the output layer over the 75 trials.

4.2 Coupled Inverted Pendulum
The coupled inverted pendulum task [13] is a benchmark

designed to evaluate controllers in modular robotics scenar-
ios. The task includes interactions between autonomous
robots with decentralised control and non-linear dynamics.
We setup the coupled inverted pendulum task as defined in
its original formulation [13]. Robots (carts) are coupled by
chains and operate in a limited length track. A pendulum is
attached to each robot, and all robots have to balance their
pendulum in the upper equilibrium position (see [13] for de-
tails). Pendulums start in lower positions and therefore a
non-linear upswing phase is needed. In combination with
a limited acceleration of the robot motor, the upswing can
only be achieved by moving back and forth multiple times.
In addition to balancing the pendulum, each robot has to
avoid pulling the chains and colliding with walls and other
robots. Individual robots have a total of 10 sensors [13]:
(i) S0 to S3: four sensors for determining the pendulum an-
gle, (ii) S4 and S5: two proximity sensors that respond to
the walls of the track and other robots, (iii) S6 and S7: two
robot velocity sensors, and (iv) S8 and S9: two pendulum
angular velocity sensors. Each robot has two actuators, A0

and A1, and the acceleration control of the robot is deter-
mined by their difference.

In our experiments, we vary the task complexity by in-
creasing the number of robots that operate in a fixed-length
track from one to five. Robots have a length of 0.1 m. The
chain and track lengths are respectively 0.35 m and 2 m.
The fitness score f is defined as the percentage of time that
all pendulums spend in the upper equilibrium position. If
any constraint of the task is violated (e.g., robots collide
with each other or with walls, robots run into chains), a
trial is aborted and the fitness score is reduced inversely
proportional to the elapsed time.

4.3 Memory Task
Controllers capable of cognitive behaviours, including

those requiring memory, are challenging to evolve [16, 26].
Specifically, neuroevolution of memory behaviours requires
scaffolding structure, i.e., the accumulation of neurons and
connections that enable the ANN to maintain an internal
representation of some aspects of the task, but that typi-
cally provide no immediate performance benefits [16]. Such
controllers are different from reactive controllers, whose be-
haviour is based on responses to current sensory input with-
out any persistent state.
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Figure 4: T-maze environment for the memory task.
A simulated robot is presented with time-delayed
stimuli before it is allowed to navigate in the maze.
The robot must reach the end of the left branch
when the combined AX stimuli is presented, and
the end of the right branch otherwise.

The memory task is conducted in a large T-maze environ-
ment (see Fig. 4) similar to those used in previous evolu-
tionary robotics experiments [16, 26] and animal cognition
studies [27]. The task consists of a first context stimulus
(A or B) followed by a second context stimulus (X or Y).
The agent must reach the end of the left branch when the
combined stimulus AX is presented, and the end of the right
branch otherwise (for AY, BX, BY). In our experiments, the
agent is a simulated robot modelled after the e-puck [22], a
7.5 cm in diameter differential drive robot capable of mov-
ing at up to 13 cm/s. The robot has six infrared distance
sensors with a range of 25 cm and four virtual letter sensors
(one for each letter A, B, X, Y). Each letter sensor receives
1 if the letter is presented, 0 otherwise. The ANN inputs are
the readings of the sensors. The ANN output layer contains
two neurons, one for controlling each wheel of the robot.

The robot is evaluated on each letter sequence six times,
for a total of 24 trials. Both motors are disabled during the
presentation of the stimulus. Each trial lasts 475 time steps
(47.5 seconds) as follows: (i) 1 < t ≤ 25: presentation of the
first stimulus, (ii) 25 < t ≤ 50: delay, all sensors are set to
zero, (iii) 50 < t ≤ 75: presentation of the second stimulus,
and (iv) 75< t ≤ 475: the robot is allowed to move and must
reach the correct end of the maze. To prevent overfitting to
a specific initial configuration, the robot’s initial position in
the start area is randomly chosen in each trial. A trial is
aborted if the robot collides with the walls of the maze.

4.3.1 Guiding Evolution
Recent studies on the evolution of memory have shown

that one of the main challenges in the synthesis of con-
trollers with such abilities is deception [16, 26]. Deception
occurs when the fitness function fails to build a gradient that
leads to a global optimum, and instead drives evolution to-
wards local optima. That is, a fitness function that rewards
the fulfilment of a task requiring cognitive abilities does not
necessarily reward the stepping stones that lead to cogni-
tive controllers. As a result, evolution typically converges
to non-cognitive controllers [16].

To analyse the potential of the algorithms, we define two
experimental configurations, henceforth called fitness setup

and novelty setup. In the fitness setup, we use a fitness
function that rewards candidate solutions reaching the end
of the maze branches [16] and the intermediate progress:

f =

24∑
trial=1


500 if reaches correct end

250 if reaches incorrect end

progress/3 if collides with wall

progress otherwise

(1)

where progress ∈ [0, 100] is the linearly mapped Euclidean
distance between the start position and the end position
travelled by the robot in the trial.

In the novelty setup, we use novelty search [17]. In nov-
elty search, the objective is to maximise the novelty of be-
haviours instead of their fitness, i.e., to search directly for
novel behaviours as a means to circumvent convergence to
local optima. To that end, candidate solutions are scored
based on how behaviourally different they are from previ-
ously evaluated solutions. Novelty search has attained con-
siderable success in the evolution of controllers for a number
of tasks, see [16, 17, 18, 23, 28] for examples.

The application of novelty search requires defining a be-
haviour characterisation. We follow the approach employed
in [16], which consists of a summary of the robot’s behaviour
across the different trials. A robot’s behaviour is charac-
terised by four values: what fraction of trials the robot visits
the left branch, visits the right branch, visits the end of the
correct branch, and visits the end of the incorrect branch.
Novelty search parameters are set as in [17].

4.4 Experimental Setup and Treatments
In the visual discrimination task, as described in Sec-

tion 4.1, all algorithms have to optimise the weights of a
fixed-topology ANN with no hidden layers. As in [36], neu-
rons have no bias values. In the coupled inverted pendulum
and memory tasks, the standard NEAT algorithm is used be-
cause the optimal ANN topology is not known a priori. The
remaining algorithms start with networks that have a hidden
layer with five neurons. For the four algorithms, recurrent
and self-recurrent connections are allowed, and neuron bi-
ases are used. R-HybrID and switch-HybrID can add new
neurons and new connections to the CPPNs and to the di-
rectly encoded structure. CPPNs compute the ANN weights
and bias values as in previous studies [36]. CPPNs use signed
activation, resulting in a node output range of [-1,1]. If the
magnitude of the output for a particular query is less than
or equal to 0.2, the connection weight is set to zero; other-
wise the output is scaled to a magnitude between zero and
three (the sign is preserved). Each R-HybrID genome in the
initial population is equiproportionally assigned: (i) com-
pletely directly encoded structure (r = 1.0), (ii) entirely
indirectly encoded structure (r = 0.0), or (iii) both directly
and indirectly encoded structure, with r randomly chosen
in ]0.0, 1.0[.

For each task and each algorithm, we conduct 30 indepen-
dent runs. Each run lasts 1000 generations with a population
size of 100. Following previous studies by Clune et al. [5],
we set the switch point of switch-HybrID at halfway through
the evolutionary process, that is, at 500 generations.

When reporting the performance across runs, we consider
the best individual of the population: the lowest scoring in
the visual discrimination task; the highest scoring in the cou-
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Figure 5: Distribution of the average distance from
target of the target’s field in the evaluation trials
from evolution. Lower scores are better.

pled inverted pendulum task and in the memory task. Be-
sides performance, we also quantify the complexity of ANNs.
To the best of our knowledge, there is no general metric for
ANN complexity. We use the effective number of parameters
in each network, i.e., the sum of the number of connections
and the number of neurons that have a bias value.

We use the two-tailed Mann-Whitney U test to compute
statistical significance of differences between results because
it is a non-parametric test, and therefore no strong assump-
tions need to be made about the underlying distributions.
Success rates are compared using the two-tailed Fisher’s ex-
act test, a non-parametric test suitable for this purpose [8].

5. RESULTS

5.1 Visual Discrimination
The goal in the visual discrimination task is to evolve

large-scale ANNs that distinguish a large object from a small
object. The task provides an important test for R-HybrID
because only algorithms that can effectively search through
a high-dimensional search space and find the geometric prin-
ciples that distinguish between the two objects regardless of
their location can evolve suitable solutions to the task.

Figure 5 summarises the performance of the algorithms
with respect to the average distance from target of the target
field’s chosen position in the evaluation trials from evolution
(lower scores are better). Note that the width and height
of the substrate are 2.0 because the neurons’ coordinates
range from -1 to 1 (see Fig. 1). Indicative that the space
of 14,641 connections is too high-dimensional for NEAT,
the algorithm yields a median distance from target of 0.73,
and is significantly outperformed by the other algorithms
(ρ < 0.001, Mann-Whitney). R-HybrID, switch-HybrID,
and HyperNEAT, on the other hand, effectively evolve solu-
tions to the task. These algorithms are able to discover the
underlying geometric regularities as shown by the median
distance from target of 0.03, 0.07, and 0.01, respectively.
Both R-HybrID and HyperNEAT significantly outperform
switch-HybrID (ρ < 0.01, Mann-Whitney). Differences be-
tween HyperNEAT and R-HybrID are not statistically sig-
nificant (ρ ≥ 0.01, Mann-Whitney), despite HyperNEAT
yielding better performance on average.

One important aspect of the visual discrimination task is
that the algorithms have to optimise the weights of a fixed-
topology ANN. Because the number of connections and neu-

Table 1: Summary of the coupled inverted pendu-
lum task with one robot. Results are averaged over
30 independent runs for each algorithm.

Fitness score Complexity
NEAT 0.96 ± 0.04 37.20 ± 18.27
HyperNEAT 0.72 ± 0.15 26.57 ± 11.12
Switch-HybrID 0.89 ± 0.11 117.80 ± 35.96
R-HybrID 0.87 ± 0.10 107.47 ± 27.50

rons does not vary, the regularity of solutions evolved can
be isolated and compared in a meaningful manner. Regular
structures require less information to be described, meaning
that regularity can be measured by compression [20]. Be-
cause this minimum description length cannot be computed
exactly [19], we approximate regularity by using the proce-
dure described in [5]: we compress an ANNs’ weights using
the gzip algorithm, write the compressed weights to a plain
text file, and assess by which fraction the file size was re-
duced. Because the order of the weights matters, we repeat
this process for 1,000 different permutations. The ratio be-
tween the size of the original file and the average size of the
compressed files is defined as the regularity ratio.

The gzip algorithm is a conservative test of regularity be-
cause it searches for repeated symbols but is not able to
compress all mathematical regularities (e.g. each connection
weight offset by a constant amount). Nonetheless, the reg-
ularity ratio is informative and shows that R-HybrID (aver-
age ratio of 3.22) evolves solutions of high regularity when
compared with those optimised by NEAT and by switch-
HybrID (lower regularity, average ratio of 2.26 and 2.51 re-
spectively) and by HyperNEAT (higher regularity, average
ratio of 3.91). The high regularity of R-HybrID ANNs is the
result of the algorithm converging to solutions that are com-
pletely indirectly encoded in 21/30 runs. In the remaining 9
runs, less than 8% of the connections are directly encoded.
Overall, these results confirm that R-HybrID can effectively
converge to an encoding combination suitable for solving the
high-dimensional visual discrimination task.

5.2 Coupled Inverted Pendulum
In the coupled inverted pendulum task, it has been shown

that NEAT and HyperNEAT have difficulties in evolving
effective solutions [3], especially as the number of robots in-
creases. This result raises the question of whether R-HybrID
and switch-HybrID can take advantage of their hybrid en-
codings properties to produce more effective controllers.

Table 1 summarises the results of the experiments with
one robot. Contrary to the visual discrimination task, the
algorithms that can make use of a direct encoding compo-
nent are more well-adapted to solve the task. NEAT yields
the highest fitness scores and performs significantly higher
than the other algorithms (ρ < 0.001, Mann-Whitney).
HyperNEAT, on the other hand, performs significantly lower
than the remaining algorithms (ρ < 0.001, Mann-Whitney).
Differences between R-HybrID and switch-HybrID are not
statistically significant.

An analysis of the complexity of solutions evolved shows
that the algorithms considered synthesise controllers with
different characteristics. Overall, HyperNEAT evolves the
least complex ANNs. Throughout evolution, HyperNEAT
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tries to make exceptions to the regular patterns by pro-
gressively decreasing the magnitude of several connection
weights because it has a limited ability to make single-
connection exceptions. As a result, the final ANNs on aver-
age use only 36% of the 74 parameters that are possible to
express (remaining are set to zero by the CPPN), and the
properties of the ANNs are not well-correlated with the task.
On other hand, NEAT evolves slightly more complex ANNs
that do reflect the task’s underlying structure, as shown by
the superior fitness scores.

A different strategy is used by R-HybrID and switch-
HybrID. Comparing with NEAT, the two algorithms evolve
ANNs with significantly higher complexity. In switch-
HybrID, when the switch from HyperNEAT to NEAT is
made, the 74 possible ANN parameters are always expressed
by the CPPNs, and the average fitness score of the highest
scoring ANNs is 0.65 ± 0.09. That is, the majority of the
ANN structure is created by the indirect encoding in the
first phase of the evolutionary process. After the switch,
the direct encoding refines solutions by adjusting connection
weights and adding 33 new parameters on average, thereby
effectively contributing to the evolution of competitive con-
trollers. In R-HybrID, the synergy between the indirect en-
coding and the direct encoding components is continuous
throughout evolution. The evolutionary process explores
multiple encoding combinations simultaneously while pro-
gressively adding new directly encoded structure. The final
solutions evolved by R-HybrID have on average 84 out of 107
parameters directly encoded, indicating that both encodings
contribute to the synthesis of effective controllers.

To assess the algorithms’ performance when task com-
plexity is scaled up, we increase the number of robots that
operate in a fixed-length track. Figure 6 summarises the
results of the experiments that use from two robots to five
robots. Indicative of increased task difficulty, the transition
from a single robot setting to a two robots setting causes
a significant decrease in the fitness scores of all algorithms
considered (ρ < 0.001, Mann-Whitney).

In terms of the scalability of the algorithms with respect to
the number of robots, results show that R-HybrID typically
performs better than the remaining algorithms as the num-
ber of robots increases. For three and four robots, R-HybrID
significantly outperforms NEAT and HyperNEAT (ρ < 0.01
and ρ < 0.001, Mann-Whitney). For five robots, R-HybrID
significantly outperforms all other algorithms (ρ < 0.001,
Mann-Whitney). In effect, the average complexity of ANNs
is quantitatively similar across the distinct multirobot ex-
periments, and comparable (except for NEAT) to the results
listed in Table 1 for the single-robot experiments. On aver-
age, when multiple robots are used: (i) NEAT ANNs have
from 51.78 to 69.83 parameters, (ii) HyperNEAT ANNs have
from 27.43 to 33.93 parameters, (iii) switch-HybrID ANNs
have from 121.20 to 131.57 parameters, and (iv) R-HybrID
ANNs have from 105.37 to 120.13 parameters.

R-HybrID and switch-HybrID always evolve controllers
that are significantly more complex than those evolved by
HyperNEAT and NEAT. The key idea is that the indi-
rect encoding component of the algorithms, given its abil-
ity to reuse information, can effectively create large-scale
ANNs that the direct encoding component refines and ad-
justs. This refinement process can occur either in parallel
as in R-HybrID or in a second phase as in switch-HybrID.
Importantly, as illustrated in Table 2 by sampling the per-
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Figure 6: Distribution of the fitness scores in the
coupled inverted pendulum experiments with mul-
tiple robots. Higher scores are better.

formance of controllers at intermediate points of the evolu-
tionary process, R-HybrID’s ability to search across multi-
ple encoding combinations simultaneously allows it to evolve
better solutions in the early stages of the evolution, which
contributes to its superior performance in the experiments
with multiple robots.

5.3 Evolving Memory Behaviours
In previous studies on the evolution of cognitive be-

haviours, see [16] for a review, successful synthesis of mem-
ory behaviours typically relies on the specialised domain
knowledge such as task-decomposition approaches, and on
more complicated neural models. Our goal, on the other
hand, is to study if R-HybrID’s ability to explore multi-
ple encoding combinations simultaneously can contribute to
the evolution of memory capabilities. Figure 7 summarises
the performance of the algorithms considered in the fit-
ness setup and in the novelty setup. Controllers are di-
vided into four classes based on performance: (i) poor so-
lutions, i.e., controllers that often fail to navigate through
the maze (fitness score below 7,500), (ii) reactive policies,

Table 2: Coupled inverted pendulum task with five
robots. Average fitness score of the highest scoring
solution at intermediate points of the evolutionary
process. Results are averaged over 30 independent
runs for each algorithm.

Generation
200 400 600 800 1000

Switch-HybrID 0.15 0.19 0.19 0.27 0.32
R-HybrID 0.22 0.30 0.38 0.43 0.44
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controllers that always reach the end of the same branch of
the maze regardless of which stimuli are provided (fitness
score = 7,500), (iii) controllers that exceed the reactive pol-
icy but are unable to solve the complete task (7,500 < fitness
score < 12,000), and (iv) perfect solutions that solve the task
(fitness score = 12,000).

In the fitness setup, NEAT successfully solves the task
in 9/30 runs, HyperNEAT cannot solve the task, switch-
HybrID evolves perfect solutions in 4/30 runs, and R-HybrID
yields a success rate of 6/30 runs. Indicative of the task’s de-
ceptiveness, evolution converges to non-cognitive behaviours
in 101/120 runs when considering all runs of the fitness
setup. This tendency of fitness-based evolution to converge
to non-cognitive behaviours highlights that regardless of the
underlying algorithm, a fitness function that evaluates in
detail the robot’s progress and performance is typically not
sufficient to realise instances of cognitive behaviour [16]. In
this particular case, the reason is that effectively evolving
memory behaviours requires accumulating ANN structure
that provides no immediate performance benefits, and that
is therefore not recognised by the fitness function.

In the novelty setup, R-HybrID can solve the memory task
in 16/30 runs, significantly more often than the other three
algorithms (ρ < 0.01, Fisher’s exact test). NEAT solves the
complete task in 6/30 runs, HyperNEAT is not able to solve
the task in any of the runs, and switch-HybrID yields a suc-
cess rate of 3/30 runs. Whereas NEAT and switch-HybrID
yield similar performance in the fitness setup and in the nov-
elty setup, HyperNEAT cannot solve the task in any of the
setups and evolves poor solutions significantly more often
in the novelty setup (ρ < 0.001, Fisher’s exact test). In
addition to evolving perfect solutions more frequently than
the other algorithms, R-HybrID also finds them faster. R-
HybrID requires on average 388 ± 202 generations to find
perfect solutions, while NEAT and switch-HybrID respec-
tively require 487 ± 200 generations and 772 ± 58 gener-
ations. In terms of how memory abilities are implemented
in the neural architecture, R-HybrID ANNs have on aver-
age 7.25 ± 8.58 recurrent connections, while NEAT ANNs
and switch-HybrID ANNs have respectively 4.50 ± 4.76 and
4.00 ± 2.65 recurrent connections. The results in the fitness
setup are qualitatively similar in the sense that R-HybrID
also finds solutions that have more recurrent connections
earlier in the evolutionary process. Overall, these combined
results illustrate that when open-ended methods such as
novelty search are used to drive the evolutionary process
instead of a fixed fitness objective, a suitable encoding and
evolutionary algorithm is also a key factor underlying the
evolution of memory behaviours.

6. CONCLUSIONS
In this paper, we introduced R-HybrID, a novel approach

to the evolution of ANN-based controllers for autonomous
agents. Contrarily to switch-HybrID, which requires a switch
point defined by the experimenter to change from an indi-
rect encoding to a direct encoding, R-HybrID can automat-
ically explore multiple encoding combinations. We assessed
R-HybrID in three tasks: (i) a high-dimensional visual dis-
crimination task that requires discovering geometric princi-
ples to distinguish two square objects regardless of their lo-
cation, (ii) the coupled inverted pendulum task, a challeng-
ing benchmark for modular robotics scenarios with multiple
local optima, (iii) a memory task that has been shown dif-
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Figure 7: Performance in the memory task. The
ability of the algorithms to evolve: poor solutions,
reactive controllers, controllers that exceed a reac-
tive behaviour, and controllers that solve the task.
The evolutionary process is guided by: a low-level
fitness function (top), and novelty search (bottom).
Once deception is not present, R-HybrID solves the
task more consistently than the other algorithms.

ficult for current algorithms because it requires accumulat-
ing neural structure that may provide no immediate perfor-
mance benefits. We showed that R-HybrID can effectively
evolve regular, large-scale ANNs to solve the visual dis-
crimination task, and that R-HybrID typically outperforms
switch-HybrID, HyperNEAT, and NEAT in the coupled in-
verted pendulum task and in the memory task. Overall, our
results show that R-HybrID is a potential path forward in
the evolution of controllers by automatically combining the
pattern-producing capabilities of HyperNEAT with a direct
encoding-based refinement process to account for the irreg-
ularities that exist in challenging problems [5].

One direction for future work is applying R-HybrID to
other challenging domains such as online evolution, in which
robots evolve controllers while they operate in the task envi-
ronment [32], and to tasks that require integrating multiple
cognitive behaviours simultaneously [16]. In particular, ex-
tending R-HybrID to combine evolution and lifetime learn-
ing algorithms [25, 29, 30, 31] may be an important step in
the synthesis of controllers for agents. Learning algorithms
have been to accelerate the evolution of suitable solutions,
a phenomenon known as the Baldwin effect [14]. Because
learning rules and parameters are encoded in the genome
to be optimised, learning algorithms are likely to face the
same issues of non-learning algorithms with respect to the
regularity vs. irregularity and suitable encoding aspects.
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