Manipulation with Bounded Single-Peaked Width: A Parameterized Study

Yongjie Yang
Universität des Saarlandes
Campus E 1.7 (MMCI), D-66123 Saarbrücken, Germany
yyongjie@mmci.uni-saarland.de

ABSTRACT

We study the manipulation problem in elections with bounded single-peaked width from the parameterized complexity point of view. In particular, we focus on the Borda, Copeland$^\alpha$ and Maximin voting correspondences. For Borda, we prove that the unweighted manipulation problem with two manipulators is fixed-parameter tractable with respect to single-peaked width. For Maximin and Copeland$^\alpha$ for every $0 \leq \alpha \leq 1$, we prove that the unweighted manipulation problem is fixed-parameter tractable with respect to the combined parameter (k, t), where k denotes the single-peaked width and t denotes the number of manipulators. In addition, we study the weighted manipulation problem for Maximin and Copeland$^\alpha$ for every $0 \leq \alpha \leq 1$ in single-peaked elections and achieve several polynomial-time solvability results.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity; G.2.1 [Combinatorics]: Combinatorial algorithms; J.4 [Computer Applications]: Social Choice and Behavioral Sciences

General Terms

Algorithms

Keywords

single-peaked width; fixed-parameter tractable; parameterized complexity; Borda; Maximin; Copeland; weighted election

1. INTRODUCTION

Voting is a common method for preference aggregation and collective decision-making, and has applications in multi-agent systems [11], political elections, web spam reduction, pattern recognition, etc. For instance, in multiagent systems, it is often necessary for a group of agents to make a collective decision by means of voting in order to reach a joint goal. Unfortunately, by Arrow’s impossibility theorem [1], there is no (rank-based) voting system which satisfies a certain set of desirable criteria (see [1] for the details) when more than two candidates are involved. One possible way to bypass Arrow’s impossibility theorem is to restrict the domain of the preferences, for instance, the single-peaked domain introduced by Black [3]. Intuitively, in a single-peaked election, one can order the candidates from left to right such that every voter’s preference increases first and then decreases after some point as the candidates are considered from left to right.

Recently, the complexity of various voting problems in single-peaked elections has been attracting attention of many researchers from both theoretical computer science and social choice communities [4, 13, 15]. It turned out that many voting problems being \mathcal{NP}-hard in general become polynomial-time solvable when restricted to single-peaked elections [4, 15]. However, most elections in practice are not purely single-peaked, which motivates researchers to study more general models of elections. We refer to [5, 8, 10, 12, 14] for some variants of the single-peaked model.

In this paper, we consider a newly introduced generalization of single-peaked elections, the so-called elections with bounded single-peaked width [7]. Other nearly single-peakedness concepts like κ-maverick, κ-global swaps, κ-candidate deletion, and multi-peaked elections have also been considered to cope with voting problems [5, 12, 14, 23, 25]. Cornaz et al. [7] first introduced single-peaked width into the context of complexity studies of voting problems. In particular, they considered a multi-winner determination problem and proved that this problem is fixed-parameter tractable (\mathcal{FPT}) with single-peaked width as parameter. Recall that a parameterized problem consists of instances of the form (I, κ), where I denotes the main part and κ is an integer parameter. A parameterized problem is \mathcal{FPT} if it can be solved in $f(\kappa) \cdot |I|^{O(1)}$ time, where f is a computable function in the parameter κ. Later, Cornaz et al. [8] showed that the Kemeny winner determination is \mathcal{FPT} with single-peaked width as parameter. Recently, Yang and Guo [24] studied control problems under Condorcet, Maximin and Copeland in elections with bounded single-peaked width. They showed that the destructive control problems (making someone not win the election by adding/deleting votes) are generally \mathcal{FPT} with respect to single-peaked width, while the constructive control problems (making someone win the election by adding/deleting votes) are generally \mathcal{NP}-hard even when the single-peaked width is bounded by a small constant.

We mainly focus on the manipulation problem for Maximin, Copeland$^\alpha$ for every $0 \leq \alpha \leq 1$ and Borda. In the following, unless stated otherwise, manipulation refers to unweighted manipulation. In the manipulation problem, we are given a set of candidates including a distinguished candidate, a multiset of votes cast by the voters (nonmanipulators), and a set of manipulators who have not cast their votes yet. The question is whether the manipulators can cast their votes in a way so that the distinguished candidate becomes the winner. In the general case (the domain of the votes is not restricted), the manipulation problem for Maximin, Copeland$^\alpha$ for every $0 \leq \alpha \leq 1$ and Borda is polynomial-
time solvable if there is only one manipulator [20]. However, if there are two manipulators all these problems, except the manipulation for Copeland^0.5, turned out to be \(\mathcal{NP}\)-hard [2, 9, 16, 17, 20].

To the best of our knowledge, the complexity of the Copeland^0.5 manipulation problem with two manipulators is still open. In the special case, Yang and Guo [22] proved that the Borda manipulation problem with two manipulators for Borda is \(\mathcal{FP} \) with respect to single-peaked width. For Maximin and Copeland^0 for every \(0 \leq \alpha \leq 1 \), we prove that the manipulation problem is \(\mathcal{FP} \), when parameterized by the combined parameter \((k, t)\), where \(k \) denotes the single-peaked width and \(t \) the number of manipulators\(^1\). To this end, we derive several properties of elections with bounded single-peaked width. We believe that these properties are also helpful in solving further voting problems. Our results imply that the manipulation problem with any constant number of manipulators is polynomial-time solvable for Maximin and Copeland^\alpha for every \(0 \leq \alpha \leq 1 \), in single-peaked elections, in contrast to the \(\mathcal{NP}\)-hardness of the problem in the general case. We remark in our analysis, the single-peaked width is based on all the votes; that is, the votes by the nonmanipulators union the votes by the manipulators. Moreover, all the above mentioned results apply to both the unique-winner model and the nonunique winner model (definition is in Section \(2 \)). Our results concerning the above problems are summarized in Table 1.

In addition, we study the weighted manipulation problem, where each voter (manipulator or nonmanipulator) has a non-negative integer weight, in single-peaked elections. Conitzer et al. [6] proved

\(^1\)An instance of a parameterized problem with combined parameter \((\kappa_1, \kappa_2)\) can be considered as an instance of the same problem with the single parameter \(\kappa = \kappa_1 + \kappa_2 \).

Table 1: A summary of the complexity of the unweighted manipulation problem.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Manipulators</th>
<th>(t = 1)</th>
<th>(t = 2)</th>
<th>(t \geq 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borda</td>
<td>Gen (\mathcal{P})</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
</tr>
<tr>
<td></td>
<td>SPW (\mathcal{FPT})</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximin</td>
<td>Gen (\mathcal{P})</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
</tr>
<tr>
<td></td>
<td>SPWNM (\mathcal{FPT})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copeland^\alpha (\alpha \in [0, 0.5) \cup (0.5, 1])</td>
<td>Gen (\mathcal{P})</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
</tr>
<tr>
<td></td>
<td>SPWNM (\mathcal{FPT})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copeland^0.5</td>
<td>Gen (\mathcal{P})</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
<td>(\mathcal{NP})-hard</td>
</tr>
<tr>
<td></td>
<td>SPWNM (\mathcal{FPT})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: A summary of the complexity of the unweighted manipulation problem. Let \(k \) denote the single-peaked width. Here, ‘Gen’ should be read as ‘the general case’, ‘SPW’ should be read as “with respect to \(k \)”, and ‘SPWNM’ should be read as “with respect to the combined parameter \((k, t)\)”. Moreover, ‘\(\mathcal{P} \)’ stands for polynomial-time solvable. Our results are in bold. The polynomial-time solvability results are from [20], and the \(\mathcal{NP}\)-hardness results are from [2, 9, 16, 17, 20]. All the results shown in this table apply to both the unique-winner model and the nonunique-winner model. Entries with ‘?’ means that the corresponding problems are open.

Table 2: A summary of the complexity of the weighted manipulation problem.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Candidates</th>
<th>General</th>
<th>Single-Peaked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m = 2)</td>
<td>(m = 3)</td>
<td>(m \geq 4)</td>
</tr>
<tr>
<td>Borda</td>
<td>(\mathcal{P})</td>
<td>(\mathcal{NP})-h</td>
<td>(\mathcal{NP})-h</td>
</tr>
<tr>
<td>Maximin</td>
<td>(\mathcal{P})</td>
<td>(\mathcal{NP})-h</td>
<td>(\mathcal{NP})-h</td>
</tr>
<tr>
<td>Copeland^0</td>
<td>(\mathcal{P})</td>
<td>(\mathcal{NP})-h</td>
<td>(\mathcal{NP})-h</td>
</tr>
<tr>
<td>Copeland^1</td>
<td>(\mathcal{P})</td>
<td>(\mathcal{NP})-h</td>
<td>(\mathcal{NP})-h</td>
</tr>
<tr>
<td></td>
<td>(\mathcal{P})</td>
<td>(\mathcal{NP})-h: NON</td>
<td>(\mathcal{NP})-h</td>
</tr>
</tbody>
</table>

Table 2: A summary of the complexity of the weighted manipulation problem. Here, ‘\(\mathcal{NP}\)-h’ stands for \(\mathcal{NP}\)-hard, and ‘\(\mathcal{P} \)’ stands for polynomial-time solvable. Moreover, ‘NON’ and ‘UNI’ in the entry in the last row means the nonunique-winner model and the unique-winner model, respectively. All the other results apply to both the unique-winner model and the nonunique-winner model. Our results are in bold. The polynomial-time solvability results for Maximin in single-peaked elections follow from several lemmas in [4]. Other results are from [4, 6, 15, 16, 18]. The entry with ‘?’ means that the corresponding problem is open.

2. **PRELIMINARIES**

Elections: An election is a tuple \(\mathcal{E} = (\mathcal{C}, \mathcal{V}) \), where \(\mathcal{C} \) is a set of candidates and \(\mathcal{V} \) is a multiset of votes (for convenience, the terminologies “vote” and “voter” are used interchangeably throughout this paper), each of which is defined as a linear order \(\succ \) over \(\mathcal{C} \). For two candidates \(c \) and \(c' \) and a vote \(\succ \), we say \(c \) is ranked above \(c' \) or \(c \) prefers \(c' \) if \(c \succ c' \). We use \(N_E(c, c') \) to denote the number of votes ranking \(c \) above \(c' \) in \(\mathcal{E} \). We drop the index \(\mathcal{E} \) if it is clear from the context. We say \(c \) beats \(c' \) if \(N(c, c') > N(c', c) \), and \(c \) ties \(c' \) if \(N(c, c') = N(c', c) \). For two subsets \(\mathcal{C} \) and \(\mathcal{C}' \) of candidates, \(\mathcal{C} \succ \mathcal{C}' \) means that every candidate in \(\mathcal{C} \) is ranked above every candidate in \(\mathcal{C}' \) in the vote \(\succ \). A voting correspondence\(^2\) \(\phi \) is

\(^2\)A related terminology is voting rule which is defined as a function mapping an election to a single candidate. A voting correspondence can be modified to a voting rule using a tie-breaking method.
a function that maps an election $\mathcal{E} = (\mathcal{C}, \mathcal{V})$ to a nonempty subset $\varphi(\mathcal{E})$ of \mathcal{C}. We call the elements in $\varphi(\mathcal{E})$ the winners of \mathcal{E}. If $\varphi(\mathcal{E})$ contains only one winner, we call it a unique winner; otherwise, we call them co-winners. For an election $\mathcal{E} = (\mathcal{C}, \mathcal{V})$ and a subset $\mathcal{C} \subseteq \mathcal{C}$, we use $\mathcal{E}|\mathcal{C}$ to denote the election restricted to \mathcal{C}. Precisely, the restricted election $\mathcal{E}|\mathcal{C}$ has \mathcal{C} as the candidate set, and the votes of $\mathcal{E}|\mathcal{C}$ are obtained from \mathcal{E} by replacing each vote \succ of \mathcal{E} by a new vote \succ' such that for every two candidates $a, b \in \mathcal{C}$, $a \succ' b$ whenever $a \succ b$.

Single-Peaked Width: An election $(\mathcal{C}, \mathcal{V})$ is single-peaked if there is an order \mathcal{L} of \mathcal{C}, from left to right, such that for every vote \succ and every three candidates $a, b, c \in \mathcal{C}$ with $a \succ b \succ c$ or $c \succ b \succ a$, $a \succ b$ implies $a \succ c$, where $a \mathcal{L} b$ means a lies on the left-side of b in \mathcal{L}. We call \mathcal{L} a harmonious order. See Figure 1 for an example.

![Figure 1: A single-peaked election with three votes](image1)

Borda: In a Borda election, every voter gives 0 points to its last-ranked candidate, 1 point to its second-last ranked candidate and so on. A candidate with the highest score is a winner.

Copeland ($0 \leq \alpha \leq 1$): For a candidate c, let $B(c)$ be the set of candidates who are beaten by c and $T(c)$ the set of candidates who tie with c. The Copeland score of c is then defined as $|B(c)| + \alpha \cdot |T(c)|$. A Copeland$^\alpha$ winner is a candidate with the highest score.

Maximin: For a candidate c, the Maximin score of c is defined as $\min_{a \in \mathcal{C} \setminus \{c\}} N(a, c')$. A Maximin winner is a candidate with the highest Maximin score.

Problem Definitions. In the unweighted manipulation problem studied in this paper, we are given an election $\mathcal{E} = (\mathcal{C} \cup \{p\}, \mathcal{V})$ with single-peaked width k, an optimal single-peaked partition P and a set of voters who have not cast their votes yet. Here, p is the distinguished candidate. We call the set of voters who have not cast their votes the manipulators. The question is whether the manipulators can cast their votes according to the single-peaked partition P so that the distinguished candidate p becomes the winner under a specific voting correspondence, e.g., Maximin, Copeland$^\alpha$ and Borda. In the weighted manipulation problem, each voter (manipulator or nonmanipulator) has a nonnegative integer weight. Each vote defined as \succ and with weight w is regarded as w individual votes each of which is defined as \succ. The assumption that the single-peaked partition is given in the input is based on the observation that in many real-world applications, the single-peaked partition is known in advance. This is actually one of the reasons why domain restricted elections can arise in practice. For example, in real-world single-peaked political elections, the voters are thought to agree upon that the candidates are ordered on a common known left-right dimension. See [3] for related discussion. Moreover, in this scenario, if the manipulators do not cast their votes according to the given single-peaked partition, they will be easily recognized as manipulators. See also [4, 14, 15, 19] for further study of manipulation problems where the domain of the manipulative votes is restricted.

Remark. All our results apply to both the unique-winner and the nonunique-winner models. In the unique-winner model, the objective is to make the distinguished candidate the unique winner, while in the nonunique-winner model the objective is to make the distinguished candidate a winner (that is, either a unique winner or a co-winner). For simplicity, all our proofs and algorithms are solely based on the unique-winner model.

3. **MAXIMIN**

In this section, we explore the parameterized complexity of the manipulation problem for Maximin. In particular, we prove that
the manipulation problem for Maximin is FPT, when parameterized by the combined parameter (k, t), where k is the single-peaked width and t is the number of manipulators. To this end, we introduce some properties of Maximin elections with bounded single-peaked width. These properties are also helpful in understanding the behavior of the Maximin correspondence. The first property is formally stated in Lemma 1. In an informal way, it states that for each candidate c, the closer another candidate c' lies to c according to the single-peaked partition, the less is the number of voters who prefer c to c'. For a positive integer n, let $\{1, 2, \ldots, n\}$.

Lemma 1. Let (C_1, C_2, \ldots, C_n) be the single-peaked partition and c be a candidate in a certain interval C_i. Then, $N(c, b_1) \leq N(c, b_2)$ for all $b_1 \in C_{i-1}$ and $b_2 \in C_i$ with $i < x \leq y < x$. Moreover, each candidate $c \leq N(c, a_1) \leq N(c, a_2)$ for all $a_1 \in C_{i+1}$ and $a_2 \in C_i$ with $x \leq a \leq y$.

Proof. We first prove the first part of the claim. Let b_1 and b_2 be the two candidates as stated in the claim. For all $j \in [\omega]$, we denote the set of votes with peaks at C_j or on the right-side of C_j by V_j^r, and denote the set of votes with peaks at C_j or on the left-side of C_j by V_j^l. It is obvious that all votes in V_j^l prefer c to b_1 and b_2 and all votes in V_j^r prefer b_1 to c. Let $V_{i-1}^{\geq b_1}$ be the set of votes with peaks between C_i and C_{i-1} and prefer c to b_1. Thus, $N(c, b_1) = |V_i^l| + |V_{i-1}^{\geq b_1}|$. Due to the definition of single-peaked partition, all votes in $V_{i-1}^{\geq b_1}$ prefer b_2 to c. Therefore, $N(c, b_2) \geq |V_i^l| + |V_{i-1}^{\geq b_1}| = N(c, b_1)$.

Due to symmetry, the second part is also correct.

Recall that the Maximin score of a candidate c is equal to $N(c, c')$ where c' achieves the minimum value of $N(c, \cdot)$. Let c be a candidate from a certain interval C_i. Let $MIN(c)$ be the set of candidates that achieve the minimum value of $N(c, \cdot)$; hence, we have that $Maximin(c) = N(c, c')$ for every $c' \in MIN(c)$. According to Lemma 1, we have that $(C_{i-1} \cup C_i \cup C_{i+1}) \cap MIN(c) \neq \emptyset$. Therefore, to determine the Maximin score of c, it is sufficient to consider the election restricted to $C_{i-1} \cup C_i \cup C_{i+1}$ whose size is bounded by $3k$, where k is the single-peaked width. In the following, we introduce another property which helps to improve the upper bound.

Lemma 2. Let c be a candidate and C' be an interval with $c \notin C'$. Then, $N(c, a) = N(c, b)$ for every two candidates $a, b \in C'$.

Proof. Since C' is an interval, all voters rank the candidates in C' contiguously. Therefore, each vote either prefers c to all candidates in C' or prefers all candidates in C' to c, implying that for every two candidates $a, b \in C'$, $N(c, a) = N(c, b)$.

According to Lemmas 1 and 2, the Maximin score of a candidate c is determined by all candidates in the interval including c, together with any two arbitrary candidates from the two neighbor intervals of the interval including c, one from each.

Lemma 3. Let $E = (C, V)$ be an election with single-peaked partition $P = (C_1, C_2, \ldots, C_n)$ and c be a candidate in an interval C_i. Then the Maximin score of c in E, denoted by $Maximin(c)$, is

$$Maximin(c) = Maximin_{E \subseteq (C_i \cup \{a, b\})}(c)$$

Here, a and b are any two arbitrary candidates in C_{i-1} and C_{i+1}, respectively (only b appears if $i = 1$ and only a appears if $i = \omega$).

It is clearly true that in the general case the optimal choice for the manipulators is to rank the distinguished candidate in the top. This is because of the monotonicity of Maximin. Recall that a voting correspondence τ is monotonic if in every τ election (that is, election where winners are selected according to τ), ranking a winner higher in some vote does not exclude the winner from the winning set [20]. However, when the election has a bounded single-peaked width, the correctness of the statement is not straightforward anymore, since improving one’s position in a vote may destroy the single-peakedness. In the following, we provide a formal proof to support the above claim in elections with bounded single-peaked width.

Lemma 4. Every Yes-instance of the manipulation problem for Maximin in elections with bounded single-peaked width has a solution where all manipulators rank the interval C_p including the distinguished candidate p above every other interval. Moreover, p is ranked above every other candidate.

Proof. We prove this lemma by showing that if there is a solution which does not satisfy the lemma, we can construct another solution which satisfies the lemma. Observe first that it is always optimal to rank p above every other candidate in C_p, since there is no single-peaked restriction inside C_p. Therefore, it is sufficient to prove that ranking C_p in the top is the optimal choice for all the manipulators.

Assume that v is a manipulator who did not rank the interval C_p in the top. Let (L_0, L_1, \ldots, L_2) be the single-peaked partition. Let $C_1 = \{L_0, L_1, \ldots, L_2\}$ be the set of intervals on the right-side of C_p according to the single-peaked partition and $C_2 = \{R_1, \ldots, R_7\}$ be the set of intervals on the right-side of C_p. Without loss of generality, assume that $a, b \geq 1$, that is, $C_1, C_2 \neq \emptyset$. Furthermore, assume that the manipulator v ranked some interval $L \in C_1$ in the top. Due to the single-peakedness, the manipulator v has the following preference over the intervals in $C_p \cup C_1$: $C_p \succ R_1 \succ R_2 \succ \ldots \succ R_6$. We consider two cases.

The first case is that for each $L \in C_1, L \succ C_p$. In this case, we can create a new solution by recasting the vote of v with \succ defined as $C_p \succ \ldots \succ L_1 \succ \ldots \succ L_a \succ \ldots \succ R_1 \succ \ldots \succ R_6$. Here, the preference between every two candidates in the same interval preserves the same as before. That is, for every two candidates c and c' in the same interval, c is ranked above c' in the new vote whenever c is ranked above c' in the original vote.

The second case is that there is an $L \in C_i$ with $L \prec C_p$. In this case, there must be a $z \in [a]$ such that $L_z \prec C_p$ for all $j \in [z - 1]$ and $L_z \prec C_p$ for all $a \geq j \geq z$. Let $C = C_1 \cup \{L_z, L_{z+1}, \ldots, L_a\}$. We can get a new solution by recasting the vote \succ of v as \succ' with preference $C_p \succ \ldots \succ L_1 \succ \ldots \succ L_a \succ \ldots \succ R_6$, where among C, we have $C \succ \ldots \succ C'$ if and only if $C \succ C'$ for every C', $C' \in C$. Moreover, the preference between every two candidates in the same interval preserves the same as before. See Figure 3 for an illustration.

Now we prove the correctness. Let $E = (C \cup \{p\}, V)$ be the original election and $E' = (C \cup \{p\}, V')$ be the election obtained from E by replacing the vote $\succ \in V$ by \succ', as discussed above. We need to prove $Maximin_{E'}(p) > Maximin_{E}(c)$ for every $c \in C$, given that $Maximin_{E}(p) > Maximin_{E}(c)$. For a candidate c, let $MIN(c)$ be the set of candidates c' such that $Maximin_{E}(c) = N_{E}(c)$. Let $peak(c, right)$ be the number of votes with peaks not on the left side of the interval including c. We prove for the second case (the proof for the first case is analogous). Let $C' = C_i \setminus \tilde{C} = \{L_1, \ldots, L_{z-1}\}$.

Observe first that with recasting \succ, only the candidates in $C' \cup C_p$ have chance to increase their scores. Moreover, each candidate can increase his score by at most one. Therefore, it is sufficient
to prove that $\text{Maximin}(p) > \text{Maximin}(c)$ for every $c \in C_p \cup C_p$. This clearly holds for every candidate in C_p, since the new vote preserves the preference between every two candidates in C_p. We prove the correctness for every candidate in C' by contradiction. Suppose that $c \in L_i$ with $L_i \in C'$ is a candidate with $\text{Maximin}(p) > \text{Maximin}(c)$ but $\text{Maximin}(p) \leq \text{Maximin}(c)$. Since recasting the vote \succ does not decrease the score of p, we know that the score of c is increased by one after recasting the vote \succ. This happens only if $L_i \cap \text{MIN}(c) = \emptyset$ and $L_i \cup \text{MIN}(c) \neq \emptyset$. In this case, $\text{Maximin}(c) = \text{peak}(c, r_{\text{right}})$, where r_{right} is any arbitrary candidate in L_{i+1} (the first equation is due to Lemma 2 and the second is due to the single-peakedness). Let c' be any arbitrary candidate in L_i. Then, due to the definition of the Maximin correspondence, $\text{Maximin}(p) \leq \text{peak}(p, c') \leq \text{peak}(c, \text{right}) = \text{Maximin}(c)$, contradicting with the fact that $\text{Maximin}(p) > \text{Maximin}(c)$ for every $c \in C$. The lemma is proved. \qed

Now we are ready to show the main result of this section.

Theorem 1. The manipulation problem for Maximin is FPT with respect to the combined parameter (k, t), where k is the single-peaked width and t is the number of manipulators.

Proof. We prove the theorem by proposing an FPT algorithm. The algorithm ranks all the intervals first and then ranks the candidates in each interval.

Let (C_1, C_2, \ldots, C_n) be the single-peaked partition with width k, and C_i be the interval containing the distinguished candidate p. Due to Lemma 4, all manipulators can safely rank C_i in the top. Let c be any arbitrary candidate. Without loss of generality, assume c is in the interval C_i. Then, for every candidate $c' \in C_{i-1} \cup C_{i+1}$, $N(c, c')$ is known. Precisely, $N(c, c') = |V_c|$, if $c' \in C_{i-1}$, and $N(c, c') = |V_{c'}|$ otherwise. Here, V_c (resp. $V_{c'}$) is the set of votes with peaks at C_i or on the left-side (resp. right-side) of C_i. Due to Lemma 3 and the above analysis, the Maximin score of c is $\text{min}(|V_{c'}|, |V_c|, \text{Maximin}_{C \cup C_i}(c))$. Since Maximin$_{C \cup C_i}(c)$ does not depend on how the manipulators rank the intervals, all manipulators can safely rank the intervals in any way which is consistent with the single-peaked partition. For example all the manipulators can rank the intervals as follows.

$C_1 \succ C_{i-1} \succ C_{i-2} \succ \ldots \succ C_i \succ C_{i+1} \succ C_{i+2} \succ \ldots \succ C_n$

It remains to rank the candidates in each interval. Let t be the number of manipulators. We begin with the interval C_i, including p. We enumerate all the possible combinations of t linear orders over the candidates in C_i, each linear order is assumed to be the partial vote over C_i cast by a manipulator. Since $|C_i| \leq k$, there are at most $k!t$ combinations. Moreover, each combination gives p a Maximin score by adding the partial votes corresponding to the t linear orders of the combination to the election. The algorithm chooses one combination which gives p the maximum Maximin score in the election restricted to C_i. Then, the manipulators rank the candidates in C_i according to the t linear orders of the chosen combination. Now the final Maximin score of p is known. It remains to rank the candidates in other intervals. We use a similar method. In particular, for each remaining interval C, we enumerate all possibilities of ranking the candidates in C until we find one which does not prevent p from being the winner. If for every possibility there is a candidate in C which has an equal or greater score than that of p, we immediately return “No”; otherwise, we proceed with the next interval. The algorithm runs in $O(k!t^t)$ time since ranking the candidates in each interval takes $k!^t$ time and we have ω intervals to consider. \qed

4. COPELAND

In this section, we study the manipulation problem for Copeland$^+$ for every $0 \leq \alpha \leq 1$. In particular, we prove that the manipulation problem for Copeland$^+$ for every $0 \leq \alpha \leq 1$ is FPT, when parameterized by the combined parameter (k, t), where k is the single-peaked width and t is the number of manipulators. We start with some useful properties.

Lemma 5. Every Yes-instance of the manipulation problem for Copeland$^+$ in elections with bounded single-peaked width has a solution where all manipulators rank the interval including the distinguished candidate in the top.

The proof for the above lemma is similar to the one for Lemma 4. We omit the proof, due to space limitations.

The following lemma states that the Copeland$^+$ scores of the candidates in different intervals strictly increase when the intervals are considered from either side to the median group.

Lemma 6. Let $G[C_1, C_2, \ldots, C_n]$ be the median group of an election with candidates set C, with respect to the single-peaked partition (C_1, C_2, \ldots, C_n). Let $a_1 \in C_1, a_2 \in C_2, b_1 \in C_2, b_2 \in C_2$ be any four arbitrary candidates with $a_2 < b_1 \leq l$ and $r \leq x_1 < x_2$. Then, the Copeland$^+$ score of b_2 (resp. a_1) is strictly greater than that of b_2 (resp. a_2) for every $0 \leq \alpha \leq 1$.

Proof. Due to symmetry, we prove only for b_1 and b_2. Let C_1 be the set of candidates included in intervals on the right-side of C_0. Clearly, $b_1 \in C_1$. Since all votes have peaks at C_0, or on the left-side of C_0, the algorithms requires more than half of the votes, rank every candidate in C_1. Since every candidate in C_1, above every candidate in C_0, we know that every candidate in $C_1 \cup C_0$, beats every candidate in C_1. Thus, b_1 beats every candidate in C_1, implying that the candidates in C_1 contribute at least one more point (from b_2) to b_1 than to b_2. Now consider the candidates in $C_2 = C \setminus (C_1 \cup C_0)$. That is, the candidates included in intervals on the left-side of C_0. Due to the definitions of single-peaked election and single-peaked partition, for every candidate $c \in C_2$, every vote which prefers b_2 to c also prefers b_1 to c. Thus, if b_2 beats (resp. ties) a candidate $c \in C_2$, so does b_1 (resp.
Due to Lemma 6, we know that for every candidate c which is not in the median group, there exists at least one candidate who has a strictly greater Copeland score than that of c. This implies that the Copeland winners must be included in the median group.

Lemma 7. Every Copeland winner for all $0 \leq \alpha \leq 1$ is from the median group.

Now we come to the main result of this section.

Theorem 2. The manipulation problem for Copeland for every $0 \leq \alpha \leq 1$ is $\mathcal{FP} \mathcal{T}$ with respect to the combined parameter (k, t), where k denotes the single-peaked width and t the number of manipulators.

Proof. To prove the theorem, we derive an $\mathcal{FP} \mathcal{T}$-algorithm. Let t be the number of manipulators and k be the single-peaked width of the given election. The algorithm first ranks the interval C including the distinguished candidate p in the top in all the manipulative votes. If p is not in the median group, we can immediately return “No”, due to Lemma 7. Otherwise, we enumerate all possible combinations of t linear orders over the candidates in C. Since C has at most k candidates, there are at most $k!$ combinations. Moreover, each combination of t linear orders gives a Copeland score of p in the election restricted to C by asking the t manipulators to rank the candidates in C according to the t linear orders of the combinations. The algorithm chooses one combination which gives p the maximum Copeland score in the election restricted to C. Then, the manipulators rank the candidates in C according to the linear orders in the combination. Without loss of generality, assume that the single-peaked partition is $(C_1, C_2, ..., C_t)$, and the median group $G[C_1, C_2]$ contains C_1, C_2 and all intervals between C_1 and C_2 (C_1 and C_2 may be identical. In this case the algorithm becomes easier). Since all manipulators rank C in the top and C is in the median group, we have that either $p \not\in C_1$ or $p \in C_t$ (that is, $C = C_1$ or $C = C_t$). Without loss of generality, assume that $p \in C_t$. Due to Lemma 7, to make p the winner, we need only to make sure that every candidate included in $G[C_1, C_t]$ has no equal or greater score than that of p. Hence, the optimal solution for all manipulators is to rank the intervals as follows.

$$C_t > C_{t-1} > ... > C_1 > C_{t+1} > ... > C_\omega$$

In this case, every candidate in $G[C_1, C_t] \setminus C_t$ gets the least points from the candidates in $\bigcup_{i=1}^{t-1} C_i$. It remains to rank the candidates in each interval. Due to Lemmas 6 and 7, for each interval which is not in $G[C_1, C_t]$, no matter how the candidates in this interval are ranked, none of the candidates can have an equal or greater score than that of p. Hence, we rank them arbitrarily. For each interval in $G[C_1, C_t] \setminus \{C_t\}$, we rank the candidates with the similar method as for Maximin. That is, for each interval $C' \in G[C_1, C_t] \setminus \{C_t\}$, we enumerate all the combinations of t linear orders over the candidates in C' until we find one which does not prevent p from being the winner. On the other hand, if no such combinatorial exists, we return “No”. The running time of the algorithm is $O((\omega \cdot k)!)$.

5. BORDA

In this section, we study the Borda manipulation with two manipulators in elections with bounded single-peaked width. Recall that this problem is \mathcal{NP}-hard in general [2,9] but polynomial-time solvable in single-peaked elections [22].

Theorem 3. The manipulation problem with two manipulators for Borda is $\mathcal{FP} \mathcal{T}$ when parameterized by single-peaked width.

Our $\mathcal{FP} \mathcal{T}$ algorithm is based on the polynomial-time algorithm for the same problem in single-peaked elections [22]. The algorithm ranks the intervals according to the single-peaked partition, beginning with the one including the distinguished candidate and ending with a one on either side. To rank each interval, the algorithm first assigns respective contiguous positions for the interval, then ranks the candidates in the interval in a brute-force way. The procedure of ranking the intervals mimics the algorithm for Borda manipulation in single-peaked elections in [22], and thus takes polynomial time. Since each interval contains at most k candidates (k is the single-peaked width of the given election), ranking candidates in each interval takes $O(k!)^t$ time (each manipulator has at most $k!$ choices and there are two manipulators). The whole running time of the algorithm will be $O(k^2 \cdot \text{poly}(|E|))$, where $|E|$ is the size of the given election.

Main Idea. We illustrate the algorithm according to Figure 4. In the first step, the interval C_0 including p is ranked in the top of the two manipulative votes, and p is ranked in the top within C_0. The final score of p is known now. Assume that p is the current winner. Then we check all possibilities (at most $(k - 1)!^2$) of ranking the candidates in $C_0 \setminus \{p\}$ until we find one case which does not prevent p from being the winner. After this, due to the single-peakedness, only R_1 or L_1 can be ranked in the next free positions. We check whether at least one of them can be ranked in the next free positions of the two manipulative votes simultaneously, without preventing p from being the winner. This can be done in $k!^2$ time by enumerating all possibilities. Suppose that R_1 can be ranked in this way as shown in Figure 4. Then, again due to the single-peakedness, only R_2 or L_1 can be ranked in the next free positions. We do the same thing for these two intervals as discussed above for R_1 and L_1. Differently, suppose that at this time none of R_2 and L_1 can be ranked simultaneously without preventing p from being the winner. Then, if the given instance is a Yes-instance, the only possible case is that each of R_2 and L_1 is ranked in the next free positions of different manipulative votes, as shown in Figure 4. Note that at this moment we do not know how the manipulators rank the candidates in R_2 and L_1. We will rank them as follows. In fact, our algorithm will always do the following once there is an interval which has been ranked by one manipulator but not by the other one. Let’s take R_2 as an example. In this case, we are going to rank R_2 in the highest possible free contiguous positions of the second manipulative vote. To this end, for all free contiguous positions, from the highest to the lowest, we check whether R_2 can be ranked in these positions so that p is still the winner. Each case can be checked in $k!^2$ time as discussed above. If no such case exists, the instance must be a No-instance. Suppose that R_2 is ranked as shown in Figure 4 without preventing p from being the winner. Then due to the single-peakedness, the free positions between L_1 and R_2 can only be occupied by L_2, L_3 and so forth (the interval R_2 may need to be moved to lower contiguous positions if there are no enough positions for L_4. This does not change the solvability.). We do the same thing for each interval which has been ranked by exactly one manipulator until none of them exists. Then, either we find a solution or the next free positions of the two manipulative votes are “neat” (the set of intervals that have ranked in the first manipulative vote is

\[^3\]By employing a similar dynamic programming technique as in [22], ranking candidates in each interval can be done in $O(8^k)$. Hence, the whole running time can be improved to $O(8^k \cdot \text{poly}(|E|))$.\]
the same as that in the second manipulative vote). If it is the latter case, we go back to the step where we shall consider whether one interval can be ranked in the next free positions simultaneously as discussed in the beginning of the algorithm. A formal description of the algorithm is given in Algorithm 1.

Algorithm 1: The \(\mathcal{FPT} \) algorithm for the unweighted Borda manipulation with two manipulators in elections with bounded single-peaked width.

1. Both manipulators rank \(p \) in their highest positions;
2. if \(C_p \cap \{p\} \rightarrow \{ (\pi_1, 2, [C_p]), (\pi_2, 2, [C_p]) \} \) then
 extend \((S_1, C_p)\) and extend \((S_2, C_p)\);
3. else
 return “NO”;
4. while \(\bigcup_{s \in S_1} s = \bigcup_{s \in S_2} s \neq C \cup \{p\} \) do
 if \(\exists B \in N(S) \) with \(B \rightarrow \{ (\pi_1, |S| + 1, |B|) \} \) then
 extend \((S_1, B)\) and extend \((S_2, B)\);
 else if \(|N(S)| = 1 \) then
 return “NO”;
 else
 let \(N(S) = \{ B, B' \} \);
 if \(B \rightarrow (\pi_1, |S| + 1, |S| + |B|) \) and \(B' \rightarrow (\pi_2, |S| + 1, |S| + |B'|) \) then
 extend \((S_1, B)\) and extend \((S_2, B')\);
 else
 return “NO”;
 end
end
5. while \(S_1 \neq S_2 \) do
 let \(B \) be any interval in \(N(S_1 \cap S_2) \);
 if \(B \neq (\pi_2, |S| + 1, |S| + |B|) \) then
 return “NO”;
 else
 let \(B' := N(S_2) \setminus B \);
 if \(B' \rightarrow (\pi_2, |S| + 1, |S| + |B'|) \) then
 extend \((S_2, B')\);
 else
 return “NO”;
end
end
return “YES”;

We use functions \(\pi : C \cup \{p\} \rightarrow [C \cup \{p\}] \) that map candidates to positions to represent a vote. In particular, \(\pi_1 \) and \(\pi_2 \) will be the first and the second manipulative votes, respectively. A candidate \(c \) with \(\pi(c) = 1 \) has the highest position and thus gets the maximum \([C] \) points. Initially, we set \(\pi(c) = 0 \) for every candidate \(c \).

For an interval \(C \) and two integers \(k_1 \) and \(k_r \) with \(1 \leq k_1 \leq k_r \leq |C| \) and \(|C| = k_r - k_1 + 1 \), we use \(C \rightarrow (\pi, k_1, k_r) \) (resp. \(C \not\rightarrow (\pi, k_1, k_r) \)) to denote that the candidates in \(C \) can (resp. cannot) be safely ranked in the positions \(\{k_1, k_1 + 1, \ldots, k_r\} \) of \(\pi \). Here, “safely” means that it is possible to rank the candidates in these positions of \(\pi \) without preventing \(p \) from being the winner. Similarly, we use \(C \rightarrow \{ (\pi_1, k_1^1, k_r^1), (\pi_2, k_1^2, k_r^2) \} \) (resp. \(C \not\rightarrow \{ (\pi_1, k_1^1, k_r^1), (\pi_2, k_1^2, k_r^2) \} \)) to denote that it is possible (resp. not possible) to rank the candidates in \(C \) in the positions \(\{k_1^1, k_1^1 + 1, \ldots, k_r^1\} \) of \(\pi_1 \) and in the positions \(\{k_1^2, k_1^2 + 1, \ldots, k_r^2\} \) of \(\pi_2 \) simultaneously, without preventing \(p \) from being the winner. Checking whether \(C \rightarrow (\pi_1, k_1, k_r) \) can be done in \(|C|! \) time by enumerating all the linear orders over \(C \) and checking whether \(C \rightarrow \{ (\pi_1, k_1^1, k_r^1), (\pi_2, k_1^2, k_r^2) \} \) can be done in \(|C|!^2 \) by enumerating all the two linear orders over \(C \).

A block is a collection of intervals lying contiguously in the single-peaked partition. For example in Figure 4, \(\{C_p, R_1, R_2\} \) is a block, but \(\{C_p, R_2\} \) is not since there is an interval \(R_1 \) between \(C_p \) and \(R_2 \). For a block \(S \), let \(N(S) \) be the set of intervals lying directly on the left-side or on the right-side of \(S \). For example in Figure 4, setting \(S = \{C_p, R_1, R_2\} \), we have \(N(S) = \{L_3, R_3\} \). Clearly, \(|N(S)| \leq 2 \) for every block \(S \). In our algorithm, each manipulator maintains a block which initially is empty. Let \(S_i \) be the block maintained by the \(i \)-th manipulator, where \(i = 1, 2 \). For an interval \(C \in N(S_1) \) and the block \(S_1 \), we use \(\text{extend}(S_1, C) \) to denote the operation \(S_1 := S_1 \cup C \), where \(\text{’:=’} \) is the assignment operator that sets the left-hand operand equal to the right-hand expression value.

In Line 25, one of \(B \in S_1 \) or \(B \in S_2 \) must hold. We remark that the above algorithm can be adapted to handle the corresponding optimization problem, where instead of answering ‘Yes’ or ‘No’, the algorithm finds a solution for the given instance. For this purpose, \(\text{extend}(S_1, C) \) will denote both the operation \(S_1 := S_1 \cup C \) and the following operation: ranks the candidates in \(C \) in the next contiguous positions of the \(i \)-th manipulative vote in a way that does not prevent \(p \) from being the winner. Due to space limitations, we omit further details.

6. WEIGHTED MANIPULATION

In this section, we study the weighted manipulation problem in single-peaked elections.

Faliszewski et al. [15] examined the weighted manipulation problem in single-peaked elections with three candidates for positional scoring correspondences, and proved that the problem is \(\mathcal{NP} \)-hard if and only if \(a_1 - a_3 > 2(a_2 - a_3) > 0 \), where \((a_1, a_2, a_3) \) is the scoring vector with \(a_1 \geq a_2 \geq a_3 \). Recall that each positional scoring correspondence is defined by a non-negative integer scoring vector \((a_1, a_2, \ldots, a_m) \) with \(a_1 \geq a_2 \geq \ldots \geq a_m \), where \(m \) is the number of candidates. Then every candidate \(c \) gets \(a_i \) points from each vote that ranks \(c \) in the \(i \)-th position. The winners are the candidates who have the maximum total score. Their re-
sult implies that the weighted Borda manipulation with three candidates is polynomial-time solvable in single-peaked elections. However, when the number of candidates increases to four, the weighted Borda manipulation problem becomes \(\mathcal{NP}\)-hard [15]. Brandt et al. [4] took the result in [15] a further step by deriving a dichotomy for the weighted manipulation problem for positional scoring correspondences with no restriction on the number of candidates.

In this section, we complement their results by exploring the weighted manipulation problem for Copeland\(^{\alpha}\) and Maximin in single-peaked elections. A voting correspondence is weakCondorcet-consistent if the winners are exactly the weak Condorcet winners whenever there exists weak Condorcet winners [4]. First recall that both Maximin and Copeland\(^ \alpha \) are weakCondorcet-consistent in single-peaked elections, and thus, the weighted manipulation problem for Maximin and Copeland\(^ \alpha \) is polynomial-time solvable in single-peaked elections (we refer to [4] for the detailed arguments why the polynomial-time solvability holds). However, the Copeland\(^ {\alpha} \) voting for every \(0 \leq \alpha < 1\) is not weakCondorcet-consistent even in single-peaked elections [4].

Our result of this section is summarized in the following theorem.

Theorem 4. The weighted manipulation problem for Copeland\(^{\alpha}\) is polynomial-time solvable in single-peaked elections, for every \(0 \leq \alpha < 1\).

Proof. We first give the proof for the unique-winner model with three candidates. To this end, we derive a polynomial-time algorithm. First observe that ranking the distinguished candidate \(p\) in the top is always the optimal choice. Hence, if \(p\) is not in the middle in the harmonious order, all the manipulators have only one way to cast their votes, and thus, the problem can be solved. Assume now that \(p\) is in the middle of the harmonious order. Without loss of generality, let \(a, b, p\) be the three candidates and \((a, p, b)\) be the harmonious order. We consider the following cases to rank \(a\) and \(b\). First observe that \(p\) beats at least one of \(a\) and \(b\) in the final election, no matter how the manipulators rank \(a\) and \(b\). To check this, let \(x_a, x_p\) and \(x_b\) be the total weight of the votes (both manipulators and nonmanipulators) with their peaks at \(a\), \(p\) and \(b\), respectively. Since all manipulators have their peaks at \(p\), we have that \(x_p > 0\). Thus, one of \(x_a + x_p > \frac{x_a + x_p + x_b}{2}\) and \(x_b + x_p > \frac{x_a + x_p + x_b}{2}\) must hold, implying that \(p\) beats at least one of \(a\) and \(b\). It remains to consider the following two cases. Note that since all the manipulators rank the distinguished candidate \(p\) in the top, the comparison between \(p\) and every \(a\) and \(b\) is known.

Case 1. \(p\) beats both \(a\) and \(b\). In this case, \(p\) must be the unique winner no matter the comparison between \(a\) and \(b\). Thus, we can immediately return ‘Yes’.

Case 2. \(p\) beats exactly one of \(\{a, b\}\). Without loss of generality, assume that \(p\) beats \(a\) only. Then, casting their votes as \(p \succ a \succ b\) must be the optimal choice for the manipulators, since otherwise, \(b\) will beat \(a\), implying \(p\) cannot be the unique winner.

The above algorithm directly applies to the nonunique-winner model. Due to space limitations, we only give the main idea of the algorithm for the weighted manipulation when the number of candidates is not bounded. Let \(c_1, c_2, \ldots, c_l, p, c_{l+1}, \ldots, c_m\) be the harmonious order. The manipulators first rank the distinguished candidate in the top. Then, if \([p]\) is not in the median group (the median group in the weighted case is the median group in the unweighted case with each voter with weight \(w\) being considered as \(w\) individual unweighted voters), return ‘No’. Otherwise, all the manipulators cast their votes as follows. If \([p]\) is on the left-side of the median group, then all the manipulators cast their votes as \(p \succ c_1 \succ \ldots \succ c_l \succ c_{l+1} \succ \ldots \succ c_m\). Otherwise, all the manipulators cast their votes as \(p \succ c_l \succ \ldots \succ c_1 \succ c_{l+1} \succ \ldots \succ c_m\). The correctness of the algorithm is based on \(\alpha\).
REFERENCES

