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ABSTRACT
This paper proposes a generic data-driven crowd modeling frame-
work to generate crowd behaviors that can match the video data.
The proposed framework uses a dual-layer mechanism to model
the crowd behaviors. The bottom layer models the microscopic
collision avoidance behaviors, while the top layer models the
macroscopic crowd behaviors such as the goal selection patterns
and the path navigation patterns. Based on the dual-layer mecha-
nism, an automatic learning method is proposed to learn the model
components from video data. To validate its effectiveness, the
proposed framework is applied to generate the crowd behaviors
in New York Grand Central Terminal. The simulation results
demonstrate that the proposed method is able to construct effective
model that can generate the desired emergent crowd behaviors and
can offer promising prediction performance.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence,
Intelligent agents; J.4 [Computer Applications]: Social and
Behavioral Sciences, Sociology; J.7 [Computer Applications]:
Computers in Other Systems, Process control

General Terms
Algorithms

Keywords
Agent-Based Modeling; Crowd Simulation; Collision Avoidance
Behavior; Data-Driven Modeling; Macroscopic Behavior

1. INTRODUCTION
Crowd modeling and simulation is an active research field

that has drawn increasing attention from industry, academia and
government recently [1, 5, 18, 21, 24, 32]. The most common ap-
proach to simulating crowd dynamics is the agent-based modeling
(ABM) paradigm, which treats individuals as autonomous agents
that can perceive information and make decisions independently
based on their own behavior rules. Due to the significant increase
in computing power, the agent-based crowd modeling has been
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developing rapidly over the past decade, with a range of successful
applications in computer game, film design, evacuation planning
and military training [3, 7, 15, 22, 30, 34].

One fundamental issue in agent-based crowd modeling is to find
the correct parameter settings and behavior rules of agents, so that
the simulation can match the behavior observed in the physical
system. However, it is difficult to derive the agent behavioral rules
in agent-based simulation because an agent’s behavior is affected
by its environment as well as the surrounding agents. Moreover,
calibrating the parameter settings of agent behavior model is also a
time-consuming and tedious process.

To address the above issues, various data-driven crowd modeling
approaches have been proposed in the past few years. These
approaches generally can be classified into two groups. The first
group aims to learn examples (mostly in terms of state-action
pairs) from video data. The examples learned are then used to
update the movements of agents in particular situations so that
the simulated behaviors look similar to the video data [9, 10, 11,
12, 17, 29]. Meanwhile, the second group aims to calibrate the
model parameters through automatic methods such as evolutionary
algorithms (EAs), so that the simulated behaviors can match the
video data [8, 20, 27, 31]. Existing works have shown the potential
of data-driven approaches in automatic crowd modeling, but they
mainly focus on matching microscopic spatial crowd behaviors.
In many practical scenarios (e.g., in a train station), the crowd
behaviors are complicated and contain a number of macroscopic
motion patterns, such as the goal selection pattern and the path
navigation pattern. Some of the patterns are spatial while others
are temporal. In these scenarios, considering only the microscopic
spatial features is not sufficient to generate the desired emergent
crowd dynamics.

To solve the above problem, a novel data-driven crowd modeling
framework is proposed in this paper. The proposed framework
makes use of a dual-layer agent-based modeling mechanism to
model the behaviours of agents. The bottom layer focuses on
microscopic collision avoidance behaviours. Meanwhile, the top
layer models multiple spatial and temporal macroscopic patterns
such as the goal selection patterns, the path navigation patterns, the
distribution of preferred speed, and the frequency of pedestrians
entering the area. By considering multiple spatial and temporal be-
havior patterns simultaneously, the proposed framework provides a
general and flexible way to model complicated crowd behaviors in
practice. Moreover, based on the dual-layer modeling mechanism,
an automatic learning method is proposed to construct model
components based on off-line video data. A refinement method
to incrementally refine model components using on-line video is
also discussed. To validate its effectiveness, the proposed data-
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driven framework is applied to simulate the pedestrian behaviors
in New York Grand Central Terminal. The simulation results have
demonstrated the effectiveness of the proposed framework.

2. RELATED WORK
In recent years, as the automated technology of collecting

and processing real-world crowd data become more and more
prevalent, the research on data-driven crowd modeling has gained
increasing attention from researchers, and a number of data-driven
modeling approaches have been proposed up to now.

The most common class of existing data-driven modeling ap-
proaches focus on deriving microscopic trajectory patterns and
using the derived patterns to drive agents’ movements. Typically,
patterns are defined by examples, but the way how an example is
defined differs. The way to determine which example is to be used
during the simulation to drive agent’s movement is also different.
For example, Lee et al. [10] proposed to use a hierarchical model
to generate behaviors of agents. They used a finite state machine to
control the transitions between high-level activities such as joining
or leaving a group, while using state-action pairs to control the
low-level motions of agents. Each state-action pair determines
the future velocity for agents under particular situations. Their
work focused on learning state-action pairs from video to control
the low-level motion of agents. Eunjung et.al. [9] proposed a
data-driven crowd modeling approach which can construct a large
scale crowd that looks similar to the input video, in terms of
crowd formation and moving styles. In their model, a database of
formations and trajectory segments are firstly extracted from video.
Then each agent iteratively selects a trajectory segment from the
database to extend its moving trajectory so that it dose not collide
with other agents and the formation constraint is also satisfied.
Musse et al. [17] proposed a data-driven crowd modeling approach
for simulating human behaviors in normal life. They extracted
trajectories from videos to learn the desired velocities of agents in
different regions. Lerner et al. [11] proposed a data-driven crowd
modeling method which requires extracting a database of examples
from video in advance. Each example is a short trajectory segment.
During the simulation, when the trajectory segment of an agent is
exhausted or there is a significant change in the current situation,
the agent will query a similar example to extend its trajectory.
Zhao et al. [29] proposed a data-driven crowd modeling approach
also using examples extracted from video. In their method, each
example consists of the surrounding state information and the
corresponding moving velocity. An Artificial Neural Network
(ANN) is trained to classify the examples into several groups. In
each time step of the simulation, the trained ANN classifies each
agent into one of the groups according to the input state perceived
by the agent, and a suitable example is selected from the group to
update the velocity of the agent.

Some of the existing works focus on designing automatic meth-
ods to calibrate model parameters using video data so that the
simulated behaviors can match with those in the video. For
example, Johansson et al. [8] used an EA to tune parameters of the
commonly used crowd model– the social force model (SFM) [7].
Similarly, in [19, 20] and [27], optimization algorithms such as the
Gradient-based Newton method and the Genetic Algorithm (GA)
are used to calibrate parameters of SFM and the reciprocal velocity
obstacles (RVO) model [25] respectively. Yamaguchi et al. [28]
formulated a behavior model by considering multiple personal
and social factors. Machine learning techniques were designed
to automatically estimate the setting of each factor so as to fit
the video data. Zhong et al. [31] proposed an EA to calibrate
parameters of the SFM so that the crowd density distribution in
the simulation can match with those in the video.

The existing data-driven crowd modeling approaches mainly
focus on matching microscopic spatial behavior features. Different
from the existing approaches, our work focuses on matching mul-
tiple macroscopic features, both spatial (e.g., the path navigation
patterns) and temporal (e.g., the frequency of pedestrians entering
an area). In this way, our proposed framework provides a flexible
way to model the complicated crowd behaviors in practice.

In the computer vision community, there has been an increasing
amount of work on learning global motion patterns of crowds from
video data [2, 13, 14, 16, 4, 33]. For example, Ali and Shah [2]
proposed a lagrangian particle dynamics approach to detect and
segment crowd flows in dense scenarios. Lin et al. [13, 14]
proposed a lie algebraic approach to model crowd flows from video.
Mehran et al. [16] proposed a streakline representation of crowd
flow which helps to more accurately recognize spatial and temporal
changes in the video scene. Weina et al. [4] proposed a method to
detect groups of individuals which are travelling together in video
scenes. Zhou et al. [33] proposed to use Linear Dynamic System
(LDS) to model the moving pattern of pedestrians in the video
data. They utilized an Expectation Maximization (EM) algorithm
to learn parameter settings of the LDS. However, these works focus
on detecting collective motion patterns such as flow field from
video data. They have not been integrated with the agent-based
crowd models such as SFM and RVO to generate realistic crowd
behaviors. The research on integrating multi-agent crowd modeling
techniques with computer vision techniques for automatic crowd
modeling is still in its initial stage. This paper goes a step further
in this direction.

3. DATA-DRIVEN CROWD MODELING

3.1 Model Definition

Goal
Selection
Patterns

Path 
Navigation
Patterns

Macroscopic behaviors

Microscopic behaviors

agent

Frequencies of Pedestrians 
Entering the Area; Distributions 
of Speeds and Starting Points

Collision Avoidance Behaviors

Figure 1: The proposed dual-layer agent-based crowd model.

This paper focuses on simulating crowd movements in a well
defined area with a number of entry regions (SRs) and exit regions
(ERs). A pedestrian enters the area via an IR and leaves the area
via an OR. Such a scenario is very common in public places such
as a train station. In such a scenario, the behaviors of pedestrians
are mainly dependent on four factors: 1) how pedestrians enter
the area, 2) how pedestrians select their goals, 3) how pedestrians
navigate to their goals, and 4) how pedestrians avoid collisions
with other pedestrians and obstacles. In this paper, a dual-layer
agent-based crowd modeling framework is proposed to model the
behaviors of pedestrians in such a scenario. As shown in Fig. 1,
the bottom layer models the last factor (i.e., the collision avoidance
behaviors), while the top layer adopts three components to model
the other factors respectively.

Specifically, in the bottom layer, there are various collision
avoidance models that can be used, such as the SFM and the RVO2.
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In this paper, the RVO2 [25], which was proposed by Guy et al. in
2008, is adopted, owning to its highly effectiveness in generating
realistic collision avoidance behaviors [27]. In the RVO2, each
agent takes into account the observed velocities of other agents
to select an optimal velocity. For an agent, each neighboring
obstacle is assigned with an optimal reciprocal collision avoidance
line. This line is used to determine the feasible velocity space that
can ensure no collision occurs between agent and obstacle in a
given time period. Then the optimal collision-avoidance velocity
is obtained using linear programming. The readers are refereed
to [25] for the details of RVO2.

The top layer models the macroscopic behaviors of the crowd
by using three components. The first component describes how
new pedestrians enter the simulated area. Each SR (or ER) is
approximately represented by a rectangle region. Inspired by [33],
the behaviors of new pedestrians appearing in each SR is modeled
as a Poisson process:

f(ki;λ) =
λkiexp(−λ)

ki!
(1)

where ki is the number of new pedestrians entering the i-th SR
during a time period of λ. The starting positions of pedestrians
entering each IR are different from one another, so do the preferred
speeds of pedestrians. For simplicity, this paper uses the Gaussian
distribution to model the starting positions of pedestrians in each
SR and the preferred speeds of pedestrians respectively.

The second components models the goal selection patterns of
pedestrians by using a probability graph. The probability of
pedestrians moving from the i-th SR to the j-th ER is labelled as
pi,j . In this way, the goal selection patterns of pedestrians can be
represented by the following matrix:

P =

p1,1 p1,2 ... p1,M
... ... ... ...
pN,1 pN,2 ... pN,M

 . (2)

where N is the number of SRs and M is the number of ERs.
The last component models the path navigation patterns of

pedestrians. In this paper, we propose to use velocity field to
control the moving directions of pedestrians. The velocity field
consists of a series of position-direction pairs. Each position-
direction pair determines the future moving directions of pedestri-
ans near the position. Note that pedestrians at a same position can
have different moving directions, if their goals are different. Hence,
in the proposed method, each ER is associated with one velocity
field. Pedestrians choosing an ER as their goals will be navigated
by the corresponding velocity field. To construct the velocity fields
of all ERs, the entire region is divided into discrete grids, with each
grid having a size of ∆ ×∆. Suppose the entire region is divided
into H × W grids, then the velocity field of the i-th ER can be
represented by the following matrix:

Vi =

vi,1,1 vi,1,2 ... vi,1,W
... ... ... ...

vi,H,1 vi,H,2 ... vi,H,W

 . (3)

where vi,j,k is a two-dimensional vector which represents the
future moving direction of the pedestrians in the grid cell (j, k).
The value of vi,j,k is scenario specific and will be learned from the
input video data. Since the moving pattern of pedestrians from one
SR to an ER is determined by a series of position-direction pairs,
using velocity field is very flexible to generate complicated moving
patterns of pedestrians such as the “S" shape moving patterns.

In the next subsection, we will describe how the above model
components such as k, P and Vi can be obtained from video data.

Once the model components are constructed, the crowd simulation
can be carried out as described in Algorithm 1. In Algorithm 1,
the global goal of an agent is the ER selected based on P. The
local goals of an agent are viewpoints to guide the agent to its
global goal. Suppose an agent selects the i-th ER as the global
goal. The current position of the agent is x, and the grid cell (j, k)
contains the agent. Then the local goal of the agent at x is set
equal to the center point grid cell (j, k) plus vi,j,k. At each time
step of the simulation, a number of new agents are first generated
according to the Poisson process of each SR. The starting positions
and velocities of new agents are initialized accordingly based on
the statistical information extracted from video data. The global
goal of each new agent is set according to P. Then the local goal
of each agent is obtained based on the corresponding velocity field.
Finally, the RVO2 is used to update the position and speed of each
agent so that all agents can reach their local goals.

Algorithm 1: CROWD SIMULATION PROCEDURE.

1 for step = 1 to max_steps do
2 for i = 1 to M do
3 Sample a number of new agents according to ki;
4 Set the starting position and velocity of each new

agent;
5 Set the global goal of each new agent according to P
6 for i = 1 to total number of agents in the scene do
7 Suppose the global goal of the i-th agent (Ai) is the

j-th ER;
8 Update the local goal of Ai according to Vj
9 Use RVO2 to update the velocities and positions of all

agents.

3.2 Construction of Model Components
This section proposes an automatic method to construct model

components, so that the simulation can fit the video data. We focus
on constructing the three components in the top layer, while the
bottom layer is configured using the default values of RVO2. This
is because that the top layer has a much stronger influence on the
macroscopic behaviors while the default settings of RVO2 have
been shown effective to generate realistic microscopic collision
avoidance behaviors. Specifically, we consider that the data
extracted from videos are trajectories, each of which is represented
by a series of vectors:

T = < e1, e2, ..., en >

= < (x1, y1), ..., (xn, yn) >
(4)

where ei = (xi, yi) represents the position of the i-th point of
the trajectory, and n represents the total number of points of the
trajectory. In this study, the trajectories are extracted by the KL
keypoint tracker [23]. Due to occlusion and scene clutters, most
trajectories extracted from the video in dense crowd scenarios are
short and highly fragmented. Our objective is to construct the
model components based on these extracted trajectories. As shown
in Fig. 2, procedures to construct the model components are as
follows.

3.2.1 Initialization
Firstly, to reduce the training time, each trajectory is divided

into a small number of segments (denoted as < g1, g2, ..., gk >),
which are used to represent the entire trajectory. The segmentation
points are chosen from the original extracted points appropriately,
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Figure 2: The model construction procedure.

so that the length of each segment is equal to or slightly larger than√
2∆. In this way, each grid cell contains at most one segment

point. This can facilitate the construction of velocity fields, as will
be described later. Algorithm 2 illustrates the procedure to obtain
the segmentation points.

Algorithm 2: TRAJECTORY SEGMENTATION PROCEDURE.

1 k = 1;
2 for i = 1 to n do
3 if i = 1 or i = n then
4 gk = ei;
5 k = k + 1;

6 else
7 d = ||gk−1 − ei||;
8 if d >

√
2∆ then

9 gk = ei;
10 k = k + 1;

11 return < g1, g2, ..., gk >

After that, the velocity field of each ER (i.e., Vi) is then
initialized by assigning each grid with a vector that directly points
to the ER. That is , the value of vi,j,k is set as:

vi,j,k =

{
Γ(
−→
AB), if grid cell (j, k) contains no obstacle.

(0, 0), if grid cell (j, k) contains obstacles.
(5)

where A is the centre point of grid cell (j, k), B is the center point
of the rectangle that represents the i-th ER, and function Γ(−→a )
normalizes the input vector −→a so that the length of −→a is equal to√

2∆.

3.2.2 Construction of Model Components Based on
Off-line Video

In this step, the K-means clustering algorithm is firstly used to
classify all trajectories intoM groups, whereM is the total number
of ERs. The trajectories in the same group are expected to terminate
at the same ER. To apply the K-means algorithm, the center of the

i-th cluster is defined as

Ci =

ci,1,1 ci,1,2 ... ci,1,W
... ... ... ...

ci,H,1 ci,H,2 ... ci,H,W

 (6)

where ci,j,k is initially set equal to vi,j,k. Accordingly, each
trajectory is represented by:

Fi =

ξi,1,1 ξ,1,2 ... ξi,1,W
... ... ... ...

ξi,H,1 ξi,H,2 ... ξi,H,W

 (7)

where the value of ξi,j,k is set by:

ξi,j,k =

{
Γ(−−−−→ghgh+1), if ∃gh ∈ grid cell(j, k)

(0, 0), otherwise
(8)

where gh is the h-th segmentation point of the trajectory.
With the above representation, the distance between the i-th

trajectory and the j-th cluster is calculated by:

D(i, j) =||Fi 	 Cj ||

=
∑

u<H,v<W,ξi,u,v 6=(0,0)

(||ξi,u,v − cj,u,v||) (9)

where ||−→a || returns the length of vector −→a .
Then in each iteration of the K-means clustering process, each

trajectory is classified into the nearest cluster. At the end of each
iteration, the center of each cluster is updated by:

Ci = E� I (10)

E = Fk1 + Fk2+, ...,+Fkm + Ci (11)

I = ℵ(Fk1) + ℵ(Fk2)+, ...,+ℵ(Fkm) + ℵ(Ci) (12)

where k1, k2, ..., km are indices of trajectories classified into the i-
th cluster; E records the sum of vectors in each grid cell; I records
the number of non-zero vectors in each grid cell; function ℵ(Fi)
converts Fi to a binary matrix:

ℵ(Fi) =

I1,1 I1,2 ... I1,W
... ... ... ...
IH,1 IH,2 ... IH,W

 (13)

where

Ij,k =

{
1, if ξi,j,k 6= (0, 0)

0, otherwise
(14)

� is a special operation which returns a new matrix by:

E� I =


E1,1

I1,1

E1,2

I1,2
... E1,W

I1,W

... ... ... ...
EH,1

IH,1

EH,2

IH,2
...

EH,W

IH,W

 . (15)

The general procedure of the proposed training process is illustrat-
ed in Algorithm 3.

After classifying all trajectories, each Ci is then used as the
temporary velocity field of the corresponding ER. In order to make
the moving curves of pedestrians smoother, the temporary velocity
field is further revised by considering the neighboring influences:

vi,j,k = Γ(
∑

u<H,v<W

exp(
−d(j,k),(u,v)

ω
)ci,u,v) (16)
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Algorithm 3: K-MEANS TRAINING PROCEDURE.

1 initialize Ci and Fi by Eq.(6) to Eq.(8).
2 for i = 1 to max_iterations do

/* N is the total number of
trajectories used for training. */

3 for j = 1 to N do
4 for k = 1 to M do
5 Calculate D(j, k) by Eq.(9)

6 u = mink{D(j, k)|k = 1, ...,M}
7 Classify trajectory j to cluster u

8 Update the centers of clusters by Eq.(10).

9 return C1,C2, ...,CM

where ω (e.g., ω = 2) is a scaling factor and d(j,k),(u,v) is the
distance between grid cell (j, k) and grid cell (u, v), which can be
calculated by:

d(j,k),(u,v) =
√

((j − u) ∗∆)2 + ((k − v) ∗∆)2 (17)

In this way, the vector that is closer to grid cell (j, k) will have a
larger influence on vi,j,k.

Once the velocity fields of all ERs are obtained, they can then
be utilized to learn the state transition rates between SRs and ERs
(i.e., the probability graph). To achieve this, the trajectories that
start from the i-th SR and end at other regions (i.e., the last point
of the trajectory is not in the i-th SR) are selected for analysis. We
omit the other trajectories so as to avoid re-calculating multiple
trajectories of the same pedestrian. The goal of each selected
trajectory is set to be the ER whose velocity field has the smallest
distance to the trajectory. Denote Si,j as the total number of
trajectories that have the i-th SR as the origin and the j-th ER as
the goal, then the transition rate from the i-th SR to the j-th ER is
set to be:

pi,j =
Si,j∑M
k=1 Si,k

(18)

The frequency of new pedestrians appearing in the i-th SR (i.e.,
ki) is also learned by analyzing the above selected trajectories.
The first time step of each selected trajectory that has the i-th SR
as the origin indicates a new pedestrian appearing in the i-th SR,
and the average number of pedestrians appearing in the i-th SR
during a time period of λ is calculated as ki. Moreover, the mean
and the covariance of the first point of the selected trajectories are
calculated. This information is used to set the starting positions
of new pedestrians in the simulation. In addition, the mean and
the standard deviation of speeds are also calculated to generate the
preferred speeds of agents in the simulation.

3.3 Discussion of Refining Model Components
Based on On-line Video

In some practical applications, new video data can be contin-
uously obtained on line during the simulation. In these cases, it
is desirable to make use of the new data to continuously revise
the model, so that the model can automatically adapt to the new
situations. The proposed framework has a good potentiality to
meet this requirement. This subsection briefly discusses some
techniques that can be used to deal with the on-line video data.

Suppose there is a new trajectory (F′) extracted from on-line
video. We can first classify it to the nearest cluster (denoted as
the i-th cluster), and then update the center of the i-th cluster by:

E = E0 + F′ (19)

I = I0 + ℵ(F′) (20)

C = E � I (21)

where E0 and I0 are calculated by Eq.(10) in the previous training
process. Then the velocity field of the i-th ER can be updated using
Eq. (16). In this way, the velocity fields can be incrementally
revised without processing all extracted trajectories.

To update ki, two statistical values sp and si should be recorded
during the off-line learning process, where sp is the total number
of pedestrians appearing in the i-th SR and si is the total number
of time intervals (i.e., a time interval = λ). Then ki can be updated
by:

ki =
sp+ ∆p

si+ ∆i
(22)

where ∆p and ∆i are the number of pedestrians and the number of
time intervals calculated based on the new data respectively.

Similarly, the transition probability graph can be incrementally
updated by:

pi,j =
sai,j + ∆ni,j∑M

j=1(sai,j + ∆ni,j)
(23)

where sai,j is the total number of old trajectories from the i-th SR
to the j-th ER, ∆ni,j is the total number of new trajectories from
the i-th SR to the j-th ER. The mean and variance of speed can also
be incrementally updated using the methods proposed in [26].

4. SIMULATION STUDIES

4.1 Simulation Settings
To test the effectiveness of the proposed data-driven modeling

framework, this section applies the framework to simulate the
crowd behaviors in New York Grand Central Terminal. A 33-
minutes video is used for model training and validation1. The video
has a resolution of 480 x 720 and the frame rate is 24fps. Fig. 3
shows a frame of the video. There are 40000 trajectories extracted
from the video. In this paper, the first 20000 trajectories are used
for training, and the next 20000 trajectories are used for validation.

Figure 3: A frame of the video.

To generate more realistic crowd behaviors, the 40000 trajec-
tories are transformed from “Pixel coordinate system" to “World
coordinate system" in this paper. Fig. 4 plots the transformed
trajectories used in the simulation studies2. Before constructing
1The video and extracted trajectories are downloaded
from http://www.ee.cuhk.edu.hk/~xgwang/
grandcentral.html
2The transformed trajectories, the simulation videos and the
related source code of the paper can be downloaded from:
http://crowds.sce.ntu.edu.sg/index.php/
research/ddabcm
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Figure 4: The transformed trajectories used in this paper.

the model components, eight SRs adn eight ERs are marked using
the following eight rectangles : SR1 = ER1 ={0, 32, 18, 47}, SR2
= ER2 ={18, 32, 37, 47}, SR3 = ER3 ={34, 21, 37, 30}, SR4 =
ER4 = {34, 8, 37, 19}, SR5 = ER5 = {34, 0, 37, 8}, SR6 = ER6 =
{18, 0, 34, 1}, SR7 = ER7 = {0, 0, 18, 1}, and SR8 = ER8 = {0, 8,
4, 19}, where the position of each rectangle is denoted in the form
of {left, bottom, right, top}.

Figure 5: The average shift distance of all Ci against the number of
iterations.

4.2 Model Training Results
In the model training process, the maximum iterations of the K-

means clustering algorithm is set to be 50. Fig. 5 shows the average
shift distance of all Ci at each iteration. It can be observed that the
average shift distance drops quickly during the first 10 iterations,
which indicates that the classification result quickly converges
within a few number of iterations. Fig. 6 shows an example of
the final learned velocity fields. It can be observed that the moving
curves look realistic and can help agents to avoid obstacles. Table 1
lists the transition probabilities between SRs and ERs, where the
first column describes the SRs and the first row describes the ERs.
The last row describes the sum of the probability values in each
column. It can be observed that ER4 is more likely to be chosen
as the goal, which is consistent with what was observed from the
video. The mean and covariance of moving speeds is 1.09m/s
and 0.282 respectively. The average number of new pedestrians
appearing in the 8 SRs during 5 seconds are 1.105, 1.993, 1.140,
0.140, 1.049, 12.189, 6.965 and 1 respectively.

Figure 6: An example of the trained velocity fields.

4.3 Model Validation
Firstly, we validate the constructed model by comparing the

densities distributions of the crowds in the simulation and the video
data. We omit the first 20000 trajectories which are used for
training purpose, and use the next 20000 trajectories to calculate
the densities of the crowds in video data. The simulations are run
using the same number of time steps as in the video data. The
entire region is evenly divided into 37 × 48 grids, with each grid
having a size of 1m × 1m. The center points of all grids are used
as representative points to estimate the density distribution of the
crowd. As suggested in Helbing’s work [6] , the local density of
the representative point (i, j) is computed by:

ρi,j =
1

2πR2

n∑
k=1

exp(−d(i, j, k)2

R2
) (24)

where n is the number of points in all trajectories, d(i, j, k) is
the distance from the k-th point to point (i, j), and R is a scaling
parameter. In this way, a point in a trajectory that is closer to the
representative point (i, j) will have a larger contribution to its local
density value.

We compare the proposed model (labelled as Dual-layer Agent-
Based Crowd model, D-ABC) with four other models. The
first model (labelled as D-ABC/V) is the same as D-ABC model
except that it uses the initial velocity fields rather than the trained
velocity fields for navigation. The second version (labelled as D-
ABC/T) is the same as D-ABC except that agents in D-ABC/T
randomly choose ERs as their goals rather than using the transition
probabilities listed in Table 1. The third model (labelled as D-
ABC/VT) is the same as D-ABC/V except that agents in D-
ABC/VT randomly choose ERs as their goals. The fourth model
(labelled as RVO2-random) is a simple RVO2 model without using
velocity fields and the transition probabilities. In the RVO2-random
model, the number of new pedestrians entering each SR during a
time period of λ is fixed as

∑8
i=1(ki)/8.

Fig. 7 shows the density distributions of the crowds of the video
and those generated by the five models. Compared with the results
of the other four models, the result of D-ABC looks more similar
to that of the video data. There are two significant features in the
density distribution of the video data. The first feature is that the
density values in the middle circle are very small, because there
is a counter located in that area. The second feature is that the
density values of a narrow area from (20, 0) to (37, 15) are the
highest among all regions. Without using the probability graph, the
result of D-ABC/T fails to contain the second feature. Meanwhile,
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Table 1: The transition probabilities between SRs and ERs.
ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8

SR1 0.0000 0.0514 0.0882 0.1102 0.2720 0.1470 0.1985 0.1327
SR2 0.0825 0.0000 0.0596 0.1284 0.1743 0.1651 0.2155 0.1746
SR3 0.1081 0.0608 0.0000 0.1013 0.0540 0.2635 0.2635 0.1488
SR4 0.0000 0.1666 0.7500 0.0000 0.0000 0.0833 0.0000 0.0001
SR5 0.1890 0.0731 0.0365 0.6402 0.0000 0.0304 0.0121 0.0187
SR6 0.1471 0.1334 0.1363 0.4198 0.0559 0.0000 0.0214 0.0861
SR7 0.2555 0.2161 0.1544 0.1927 0.0202 0.0149 0.0000 0.1462
SR8 0.1363 0.1363 0.0757 0.0909 0.1212 0.0303 0.4090 0.0003
sum 0.9185 0.8377 1.3007 1.6835 0.6976 0.7345 1.12 0.7075

(a) video
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(b) D‐ABC

(e) D‐ABC/VT
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Figure 7: The crowd density distributions of the video and the five models.

Table 2: The error of the five density distributions.
Model D-ABC D-ABC/T D-ABC/V D-ABC/VT RVO2-random
error 1113.35 1312.23 1215.66 1380.24 1590.75

the result of D-ABC/V fails to contain the first feature, due to
the lack of good velocity fields. The results of D-ABC/VT and
RVO2-random fail to contain both features. This is because that
the agents in these two models choose goals randomly and can not
intelligently avoid obstacles in the middle region. By using the
trained velocity fields and the probability graph, the result of D-
ABC contains both features.

To quantitatively measure the similarity between the simulated
behaviors and those observed in the video data, we calculate the
distance between the density distributions of the simulated crowd
and those of the video data:

error =

T∑
t=1

√∑H
i=1

∑W
j=1(ρi,j(t)− ρ0i,j(t))2

H ∗W (25)

where ρi,j(t) is the simulated density value of point (i, j) at t
time step, and ρ0i,j(t) is that of the video data. Table 2 lists the
error values of the five models. It is clear that D-ABC obtains
the smallest error value. The above results demonstrate that the
proposed training method is effective to improve the performance
of the model in generating desired emergent crowd dynamics.

Secondly, we investigate the prediction performance of the

Figure 9: Prediction errors of the D-ABC and the ConVelocity.

proposed D-ABC model. We randomly choose 20 relatively long
trajectories for prediction analysis. For each trajectory, its first
1/3 points are assumed to be known in advance. Based on the
1/3 points, the D-ABC model firstly estimates the goal of each
trajectory by choosing an ER whose velocity field is the closest
to the trajectory. Then the D-ABC model uses the corresponding
velocity field to determine the future moving directions. During
the simulation, each trajectory is associated to one agent. The
trajectories of other background pedestrians are set the same as
in the video data, while that of the chosen one is determined
by the D-ABC model. The first 1/3 points of the chosen agent
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Figure 8: Examples of the predicted trajectories found by the D-ABC and the ConVelocity.

Table 3: Average of the final prediction errors.
Method ConVelocity D-ABC
Average of PE 2.372 1.66
p-value 0.01647 N/A

is also set as the same as in the video data. We compare the
performance of the D-ABC model with a constant velocity method
(referred as ConVelocity) which uses the average velocity of the
past observation to predict future positions. Fig. 8 shows four
examples of the prediction results. It can be observed that the
predicted trajectories offered by the D-ABC model can better
match with the true trajectories.

To quantify the difference of the prediction performance, the
mean prediction error is used for comparison. For a specific
trajectory, the prediction error is calculated by:

PE =

b∑
k=a

(||rk − r′k||) (26)

where a and b are the starting time step and the end time step of
the prediction period, rk and r′k are the positions of the k-th point
in video data and in the simulation respectively. Fig. 9 shows the
average predicted errors of the 20 trajectories going with the time
steps. Clearly, as the number of time steps increases, the predicted
error of the D-ABC model becomes much better than that of the
ConVelocity.

Table 3 lists the average of the final prediction errors of the D-
ABC and the ConVelocity. It can be observed that the average
prediction error of the D-ABC is smaller than that of the Con-
Velocity. In addition, we perform a one tail t-test to check the
significant difference of the 20 prediction results. The p-value (PE
of ConVelocity is smaller than or equal to that of the D-ABC) is
0.01647 which indicates that the performance of the proposed D-
ABC is significantly better than that of the ConVelocity at a 0.05
confidence level.

5. CONCLUSION
This paper has proposed a generic data-driven crowd modeling

framework to generate realistic crowd behaviours that can match
the video data. Our method models crowd behaviours in a
hierarchical manner, by considering both the microscopic collision
avoidance behaviours and multiple macroscopic behaviours. An
automatic method is proposed to construct the model components
from the video data. The proposed framework was used to simulate
the crowd behaviours in New York Grand Central Terminal. The
simulation results have shown that our proposed framework is
effective to generate the desired crowd dynamics and can provide
promising prediction performance.

The proposed methodology can construct components of crowd
model by learning behavior patterns from video. Once a well-fit
crowd model is constructed, it then can be used to predict the crowd
behaviors under different initial conditions. As the framework
considers several components for specifying agent behaviours,
it would be flexible. For instance, the algorithm for collision
avoidance could be changed, or other components for considering
other issues could be integrated. In the current work, the knowledge
learned from the video is only suitable for the specific scenario.
Therefore, using machine learning techniques such as genetic
programming to distill generic behavior rules that are applicable to
different scenarios is a promising future research work. In addition,
applying the proposed method to practical applications such as
crowd tracking is another interesting research direction.
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