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“Sex is the queen of problems in evolutionary bi-
ology. Perhaps no other natural phenomenon has
aroused so much interest; certainly none has sowed
so much confusion.”

—Graham Bell, 1982

ABSTRACT
We consider a recent innovative theory by Chastain et al.
on the role of sex in evolution [10]. In short, the theory
suggests that the evolutionary process of gene recombina-
tion implements the celebrated multiplicative weights up-
dates algorithm (MWUA). They prove that the population
dynamics induced by sexual reproduction can be precisely
modeled by genes that use MWUA as their learning strategy
in a particular coordination game. The result holds in the
environments of weak selection, under the assumption that
the population frequencies remain a product distribution.

We revisit the theory, eliminating both the requirement
of weak selection and any assumption on the distribution of
the population. Removing the assumption of product dis-
tributions is crucial, since as we show, this assumption is
inconsistent with the population dynamics. We show that
the marginal allele distributions induced by the population
dynamics precisely match the marginals induced by a mul-
tiplicative weights update algorithm in this general setting,
thereby affirming and substantially generalizing these earlier
results.

We further revise the implications for convergence and
utility or fitness guarantees in coordination games. In con-
trast to the claim of Chastain et al. [10], we conclude that
the sexual evolutionary dynamics does not entail any prop-
erty of the population distribution, beyond those already
implied by convergence.
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1. INTRODUCTION
Connections between the theory of evolution, machine

learning and games have captured the imagination of re-
searchers for decades. Evolutionary models inspired a range
of applications from genetic algorithms to the design of dis-
tributed multi-agent systems [16, 8, 32]. Within game the-
ory, several solution concepts follow evolutionary processes,
and some of the most promising dynamics that lead to equi-
libria in games assume that players learn the behavior of
their opponents [17, 33].

A different connection between sex, evolution and ma-
chine learning was recently suggested by Chastain, Livnat,
Papadimitriou and Vazirani [10]. As they explain, also refer-
ring to Barton and Charlesworth [2], sexual reproduction is
costly for the individual and for the society in terms of time
and energy, and often breaks successful gene combinations.
From the perspective of an individual, sex dilutes his or her
genes by only transferring half of them to each offspring.
Thus the question that arises is why sexual reproduction is
so common in nature, and why is it so successful. Chas-
tain et al. [10] suggest that the evolutionary process under
sexual reproduction effectively implements a celebrated no-
regret learning algorithm. The structure of their argument
is as follows.

First, they restrict attention to a particular class of fitness
landscape where weak selection holds. Informally, weak se-
lection means that the fitness difference between genotypes
is bounded by a small constant, i.e., there are no extremely
good or extremely bad gene combinations.1 Second, they
consider the distribution of each gene’s alleles as a mixed
strategy in a matrix-form game, where there is one player
for each gene. The game is an identical interest game, where
each player gets the same utility— thus the joint distribution
of alleles corresponds to the mixed strategy of each player,
and the expected payoff of the game corresponds to the av-
erage fitness level of the population.

Chastain et al. [10] provide a correspondence between the
sexual population dynamics and the multiplicative weights
update algorithm (MWUA) [25, 6]. In particular, they estab-
lish a correspondence between strategies adopted by players

1A gene takes on a particular form, known as allele. By a
genotype, or gene combination, we refer to a set of alleles–
one for each gene. The genotype determines the properties
of the creature, and hence its fitness in a given environment.

929



in the game that adopt MWUA and the population dynam-
ics, under an assumption that the fitness matrix is in the
weak selection regime, and that the population dynamic re-
tains the structure of a product distribution on alleles. With
this correspondence in place, these authors apply the fact
that using MWUA in a repeated game leads to diminishing
regret for each player to conclude that the regret experi-
enced by genes also diminishes. They interpret this result
as maximization of a property of the population distribution,
namely “the sum of the expected cumulative differential fit-
ness over the alleles, plus the distribution’s entropy.”

We believe that such a multiagent abstraction of the evo-
lutionary process can contribute much to our understanding,
both of evolution and of learning algorithms. Interestingly,
the agents in this model are not the creatures in the pop-
ulation, nor Dawkins’ [11] genetic properties (alleles) that
compete one another, but rather genes that share a mutual
cause.

1.1 Our Contribution
We show that the main results of Chastain et al. [10]

can be substantially generalized. Specifically, we consider
the two standard population dynamics (where recombina-
tion acts before selection (RS), and vice versa (SR)), and
show that each of them precisely describes the marginal al-
lele distribution under a variation of the multiplicative up-
dates algorithm that is described for correlated strategies.
This correspondence holds for any number of genes/players,
any fitness matrix, any recombination rate, and any initial
population frequencies. In particular, and in contrast to
Chastain et al., we do not assume weak selection or require
the population distribution remains a product distribution
(i.e., with allele probabilities that are independent), and we
allow both the SR model and the RS model.

We discuss some of the implications of this correspon-
dence between these biological and algorithmic processes for
theoretical convergence properties. Under weak selection,
the observation that the cumulative regret of every gene is
bounded follows immediately from known convergence re-
sults, both in population dynamics and in game theory (see
related work). We show that under the SR dynamics, every
gene still has a bounded cumulative regret, without assum-
ing weak selection or a product distribution.

Our analysis also uncovers what we view as one technical
gap and one conceptual gap regarding the fine details in the
original argument of Chastain et al. [10]. We believe that
due to the far reaching consequences of the theory it is im-
portant to rectify these details. First, according to the pop-
ulation dynamics the population frequencies may become
highly correlated (even under weak selection), and thus it is
important to avoid the assumption on product distributions.
Second, the property that is supposedly maximized by the
population dynamics is already entailed by the convergence
of the process (regardless of what equilibrium is reached).
We should therefore be careful when interpreting it as some
nontrivial advantage of the evolutionary process.

1.2 Related Work
The multiplicative weights update algorithm (MWUA) is

a general name for a broad class of methods in which a de-
cision maker facing uncertainty (or a player in a repeated
game), updates her strategy. While specifics vary, all varia-
tions of MWUA increase the probability of actions that have

been more successful in previous rounds. In general games,
the MWUA dynamic is known to lead to diminishing regret
over time [21, 3, 22, 7], but does not, in general, converge to
a Nash equilibrium of the game. For some classes of games
better convergence results are known; see Section 5.2 for
details.

The fundamental theorem of natural selection, which dates
back to Fisher [13], states that the population dynamics of
a single-locus diploid always increases the average fitness of
each generation, until it reaches convergence [28, 24].2 The
fundamental theorem further relates the rate of increase to
the variance of fitness in the population. In the general
case, for genotypes with more than a single locus, the fun-
damental theorem does not hold, although constructing a
counter example where a cycle occurs is non-trivial [18, 19].
However, convergence of the population dynamics has been
shown to hold when the fitness landscape has some specific
properties, such as weak selection, or weak epistasis [30].3

In asexual evolutionary dynamics, every descendent is an
exact copy of a single parent, with more fit parents produc-
ing more offspring (“survival of the fittest”). Regardless of
the number of loci, asexual dynamics coincides with MWUA
by a single player [4, 20]. Chastain et al. [10] were the first
to suggest that a similar correspondence can be established
for sexual population dynamics.

2. DEFINITIONS
We follow the definitions of Chastain et al. [10] where

possible. For more detailed explanation of the biological
terms and equations, see Bürger [5].

2.1 Population dynamics
A haploid is a creature that has only one copy of each

gene. Each gene has several distinct alleles. For example,
a gene for eye color can have alleles for black, brown, green
or blue color. In contrast, people are diploids, and have two
copies of each gene, one from each parent.

Under asexual reproduction, an offspring inherits all of its
genes from its single parent. In the case of sexual reproduc-
tion, each parent transfers half of its genes. Thus a haploid
inherits half of its properties from one parent and half from
the other parent. To keep the presentation simple we focus
on the case of a 2-locus haploid. This means that there are
two genes, denoted A and B. In the appendix we extend the
definitions and results to k-locus haploids, for k > 2. Gene
A has n possible alleles a1, . . . , an, and gene B has m possi-
ble alleles b1, . . . , bm. It is possible that n 6= m. We denote
the set {1, . . . , n} by [n]. A pair 〈ai, bj〉 of alleles defines a
genotype.

LetW = (wij)i≤n,j≤m denote a fitness matrix. The fitness
value wij ∈ R+ can be interpreted as the expected number
of offspring of a creature whose genotype is 〈ai, bj〉. We
assume that the fitness matrix is fixed, and does not change
throughout evolution. See Table 1 for an example.

2Roughly, a single-locus means there is only one property
that determines fitness, for example eye color or length of
tail. Multiple loci mean that fitness is determined by a com-
bination of several such properties. We explain what are
diploids and haploids in the next section.
3Weak epistasis means that the various genes have separate,
nearly-additive contribution to fitness. It is incomparable to
weak selection.
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wij b1 b2 p0ij b1 b2 y0 p1ij b1 b2 y0

a1 1 0.5 a1 0.1 0.15 0.25 a1 0.094 0.082 0.174
a2 1.5 1.2 a2 0.1 0.15 0.25 a2 0.158 0.170 0.328
a3 1.3 0.8 a3 0.2 0.3 0.5 a3 0.255 0.242 0.497

x0 0.4 0.6 x1 0.507 0.493

Table 1: An example of a 2-locus haploid fitness matrix, with n = 3,m = 2. There are 6 allele combinations,
or genotypes. On the left we give the fitness of each combination 〈ai, bj〉. In the middle, we provide an
initial population distribution, and on the right we provide the distribution after one update step of the SR
dynamics, for r = 0.5.

We denote by P t = (ptij)i≤n,j≤m the distribution of the
population at time t. The average fitness wt at time t is
written as wt = w(P t) =

∑
ij p

t
ijwij .

For example, the populations in Table 1 have an average
fitness of w(P 0) = 1.005 and w(P 1) = 1.1012. Denote by
xti =

∑
j p

t
ij and ytj =

∑
i p
t
ij the marginal frequencies at

time t of alleles ai and bj , respectively. Clearly ptij = xtiy
t
j

for all i, j iff P t is a product distribution. In the context
of population dynamics, the set of product distributions is
also called the Wright manifold. For general distributions,
Dt
ij = ptij − xtiytj is called the linkage disequilibrium.
The selection strength of W is the minimal s s.t. wij ∈

[1−s, 1+s] for all i, j. We say that W is in the weak selection
regime if s is very small, i.e., all of wij are close to 1.

Update step.
In asexual reproduction, every creature of genotype 〈ai, bj〉

has in expectation wij offspring, all of which are of genotype
〈ai, bj〉. Thus there is selection w/o recombination, and the
frequencies in the next period are pt+1

ij = pSij =
wij

wt p
t
ij .

In sexual reproduction, every pair of creatures, say of geno-
types 〈ai, bl〉 and 〈ak, bj〉 bring offspring who may belong
(with equal probabilities) to genotype 〈ai, bl〉, 〈ak, bj〉, 〈ai, bj〉,
or 〈ak, bl〉. Thus, in the next generation, a creature of
genotype 〈ai, bj〉 can be the result of combining one parent
of genotype 〈ai, ?〉 with another parent of genotype 〈?, bj〉.
There are two ways to infer the distribution of the next gen-
eration, depending on whether recombination occurs before
selection or vice versa (see, e.g., [27]). We describe each of
these two ways next.

Selection before recombination (SR).
Summing over all possible matches and their frequencies,

and normalizing, we get:

pSRij =

∑
l∈[m]

∑
k∈[n] p

t
ilwilp

t
kjwkj

(wt)2
.

In addition, the recombination rate, r ∈ [0, 1], determines
the part of the genome that is being replaced in crossover, so
r = 1 means that the entire genome is the result of recombi-
nation, whereas r = 0 means no recombination occurs, and
the offspring are genetically identical to one of their parents.
Population frequencies in the next period are thus set as:

pt+1
ij = rpSRij + (1− r)pSij . (1)

Recombination before selection (RS).
With only recombination, the frequency of the genotype
〈ai, bj〉 is the product of the respective probabilities in the
previous generation, i.e., pRij = xtiy

t
j . When recombination

occurs before selection, we have (before normalization):

pRSij = wijp
R
ij = wijx

t
iy
t
j .

Taking into account the recombination rate and normal-
ization, we get,

pt+1
ij =

1

wR
(rpRSij + (1− r)pSij) =

1

wR
wij(p

t
ij − rDt

ij), (2)

where wR =
∑
ij wij(p

t
ij − rDt

ij), and Dt
ij is the linkage

disequilibrium at time t.

For an example of change in population frequencies, see
Tables 1-4. We say that P t is a stable state under a partic-
ular dynamics, if P t+1 = P t.

2.2 Identical interest games
An identical interest game of two players is defined by

a payoff matrix G, where gij is the payoff of each player
if the first plays action i, and the second plays action j.
A mixed strategy of a player is an independent distribu-
tion over her actions. The mixed strategies x,y are a Nash
equilibrium if no player can switch to a strategy that has
a strictly higher expected payoff. That is, if for any action
i′ ∈ [n],

∑
j yjgi′j ≤

∑
i

∑
j xiyigij , and similarly for any

j′ ∈ [m].
Every fitness matrix W induces an identical interest game,

where gij = wij . This is a game where each of the two genes
selects an allele as an action (or a distribution over alleles,
as a mixed strategy). A matrix of population frequencies
P can be thought of as correlated strategies for the players.
The expected payoff of each player under these strategies
is w(P ). Given a distribution P , G|P is the subgame of G
induced by the support of P . That is, the subgame where
action i is allowed iff pij > 0 for some j.

2.3 Multiplicative updates algorithms
Suppose that two players play a game G (not necessar-

ily identical interest) repeatedly. Each player observes the
strategy of her opponent in each turn, and can change her
own strategy accordingly.4 One prominent approach is to
gradually put more weight (i.e., probability) on pure actions
that were good in the previous steps. Many variations of the
multiplicative weights update algorithm (MWUA) are built
upon this idea, and some have been applied to strategic set-
tings [3, 26, 23]. We follow the variation used by Chastain
et al. [10]. This variation is equivalent to the Polynomial
Weights (PW) algorithm [7], under the assumption that the

4We assume that the player observes the full joint distribu-
tion P t, and can thus infer the (expected) utility of every
action ai at time t.
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SR b1 b2 y1 RS b1 b2 y1

a1 0.088 0.085 0.174 a1 0.099 0.074 0.174
a2 0.167 0.162 0.328 a2 0.149 0.179 0.328
a3 0.252 0.245 0.497 a3 0.258 0.239 0.497
x1 0.507 0.493 x1 0.507 0.493

Table 2: Population frequencies P 1 = (p1ij)ij, i.e. af-
ter one update step, for r = 1. On the left, we pro-
vide frequencies when selection occurs before recom-
bination, whereas on the right recombination pre-
cedes selection. The updated marginal frequencies
of alleles are the same in both cases.

SR b1 b2 y1 RS b1 b2 y1

a1 0.094 0.082 0.174 a1 0.099 0.074 0.174
a2 0.158 0.170 0.328 a2 0.149 0.179 0.328
a3 0.255 0.242 0.497 a3 0.258 0.239 0.497
x1 0.507 0.493 x1 0.507 0.493

Table 3: Population frequencies P 1 for r = 0.5. Un-
der RS we get the same frequencies as with r = 1
(and in fact any other value of r). This is because
when P 0 is a product distribution there is no effect
of recombination under RS.

utility of all actions (ai)i≤n is observed after each period
(see Kale [22], p. 10).

Polynomial Weights.
We use the term PW to distinguish this from other vari-

ations of MWUA. For any ε > 0, the ε-PW algorithm for
a single decision maker is defined as follows. Suppose first
that in time t, the player uses strategy xt. Let gti be the
utility to the player when playing some pure action i ∈ [n].
According to the ε-PW algorithm, the strategy of the player
in the next step would be xt+1(i) ∼= xt(i)(1 + εgti), where
∼= stands for “proportional to” (we need to normalize, since
xt+1 has to be a valid distribution). A special case of the
algorithm is the limit case ε→∞, where xt+1(i) ∼= xt(i)gti ;
i.e., the probability of playing an action increases propor-
tionally to its expected performance in the previous round.
Unless specified otherwise we assume this limit case, which
we refer to as the parameter-free PW.

PW in Games.
The fundamental feature of the PW algorithm is that the

probability of playing action ai changes proportionally to
the expected utility of action ai.

Consider 2-player game G, where gij is the utility (of both
players if G is an identical interest game) from the joint
action 〈ai, bj〉. In the context of a game, we can think of at
least two different interpretations of the utility of playing ai,
derived from the joint distribution P . For this, let ytj(ai) =
P t(bj |ai), i.e., the probability that player 2 plays bj given
that player 1 plays ai, according to the distribution P t. The
two interpretations we have in mind are:

• Set gt
i

=
∑
j y

t
j(ai)gij . This is the expected utility

that player 1 would get for playing ai in round t. This
definition is consistent with common interpretation of
expected utility in games (e.g., in Kale [22], Sec. 2.3.1).

SR b1 b2 y2 RS b1 b2 y2

a1 0.079 0.042 0.122 a1 0.09 0.034 0.124
a2 0.228 0.172 0.401 a2 0.203 0.195 0.398
a3 0.294 0.183 0.477 a3 0.305 0.173 0.478
x2 0.602 0.398 x2 0.598 0.402

Table 4: Population frequencies P 2, i.e. after two
update steps for r = 0.5. The marginal distributions
are no longer the same, since P 1 under RS is not a
product distribution.

• Set gti =
∑
j y

t
jgij . This is the expected utility that

player 1 will get in the next round for playing ai if
player 2 will select an action independently according
to her current marginal probabilities. Thus each agent
updates her strategy as if the strategies are indepen-
dent, and ignoring any observed correlation. This def-
inition results in the PW algorithm used in Chastain
et al. [10].

The above definitions require some discussion. While the
traditional assumption is that each player only observes a
sample from the joint distribution at each round, and up-
dates the strategy based on the empirical distribution, strat-
egy updates can also be performed in the same way when
the player observes the joint distribution at round t, even if
it is hard to imagine such a case occurs in practice.

Intuitively, under the first interpretation, the player con-
siders correlation, whereas under the second the player as-
sumes independence, and then uses the marginals to com-
pute the expected utility. E.g suppose that players play
Rock-Paper-Scissors, and the history is 100 repetitions
of the sequence [(Ro,Pa) (Pa,Sc) (Sc,Sc)]. Then under the
first interpretation the best action for agent 1 is Sc (since it
leads to the best expected utility); whereas under the second
interpretation the best action for agent 1 is Ro, since agent 2
is more likely to play Sc.5 Clearly, when P t is a product
distribution (as in Chastain et al. [10]) then gti = gt

i
, and

the algorithms coincide. We can also combine the two in-
terpretations to induce new algorithms. We thus define the
PW(α) algorithm (either Parameter-free PW(α) or ε-PW(α)),
where the probability of playing ai is updated according to

g
t,(α)
i = αgti + (1− α)gt

i
.

Exponential Weights.
The Hedge algorithm [14, 15] is another variation of

MWUA that is very similar to PW. The difference is that
the weight of action i in each step changes by a factor that
is exponential in the utility, rather than linear. That is,

xt+1(i) ∼= xt(i)(1+ε)g
t
i . For negligible ε > 0, ε-Hedge and ε-

PW are essentially the same, but for large ε they may behave
quite differently.

3. ANALYSIS OF THE SR DYNAMICS
In this section we prove that the SR population dynam-

ics of marginal allele frequencies coincide precisely with the
5We can also think of the two approaches as the two sides of
Newcomb’s paradox [31]: the player observes a correlation,
even though deciding on a strategy cannot change the ex-
pected utility of each action. Thus it is not obvious whether
the observed correlation should be considered in the strategy
update.
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multiplicative updates dynamics in the corresponding game.
This extends Theorem 4 in Chastain et al. [10] (SI text),
in that it holds without weak selection or the assumption
of product distributions through multiple iterations. We
also generalize the proposition to hold for any number of
loci/players in Appendix A.

Proposition 1. Let W be any fitness matrix, and con-
sider the game G where gij = wij. Then under the SR pop-
ulation dynamics, for any distribution P t and any r ∈ [0, 1],
we have xt+1

i = 1
wt x

t
ig
t

i
.

Proof. By the SR population dynamics (Eq. (1)),

xt+1
i =

∑
j

pt+1
ij =

∑
j

(rpSRij + (1− r)pSij)

= r
∑
j

∑
l

∑
k p

t
ilwilp

t
kjwkj

(wt)2
+ (1− r)

∑
j

ptijwij

wt

= r
1

wt

∑
l

ptilwil
1

wt

∑
k

∑
j

ptkjwkj + (1− r)
∑
j

ptijwij

wt

Then since
∑
k

∑
j p

t
kjwkj is the average fitness at time t,

xt+1
i = r

1

wt

∑
j

ptijwij
1

wt
wt + (1− r)

∑
j

ptijwij

wt

= r
1

wt

∑
j

ptijwij + (1− r)
∑
j

ptijwij

wt

=
1

wt

∑
j

ptijwij =
1

wt

∑
j

xtiy
t
j(ai)wij ,

thus the recombination factor r does not play a direct role in
the new marginal under the SR dynamics. It does have an
indirect role though, since it affects the correlation, and thus
the marginal distribution at the next generation t+ 2.

Theorem 4 in Chastain et al. [10] follows as a special case
when P t is a product distribution. By repeatedly applying
Proposition 1, we get the following result, which holds for
any value of r.

Corollary 1. Let W be a fitness matrix, P 0 be any dis-
tribution. Suppose that P t+1 is attained from P t by the SR
population dynamics, and that xt+1,yt+1 are attained from
P t by players using the parameter-free PW(0) algorithm in
the game G = W . Then for all t > 0 and any i, xti =

∑
j p

t
ij.

It is important to note that the marginal distributions
xt,yt do not determine P t completely. Thus the PW algo-
rithm specifies the strategy of each player (regardless of r),
but not how these strategies are correlated.

4. ANALYSIS OF THE RS DYNAMICS
Turning to the RS population dynamics, our starting

point is Lemma 3 in Chastain et al. [10] (SI text), which
states that pt+1

ij = 1
wRwijx

t
iy
t
j (under the assumption that

P t is a product distribution). We establish a similar prop-
erty for general distributions. We use the fact that for any
fitness matrix W and distribution P t,

pt+1
ij =

1

wR
(rwijx

t
iy
t
j + (1− r)wijptij).

This follows immediately from the definition (Eq. (2)).

Recall that g
t,(r)
i =

(
rgti + (1− r)gt

i

)
. We derive an alter-

native extension of Theorem 4 in Chastain et al. [10] (SI
text) for the RS dynamics.

Proposition 2. Let W be any fitness matrix, and con-
sider the game G where gij = wij. Then under the RS pop-
ulation dynamics, for any distribution P t and any r ∈ [0, 1],

xt+1
i = 1

wR x
t
ig
t,(r)
i .

Proof. By the RS population dynamics (Eq. (2)),

xt+1
i =

∑
j

pt+1
ij =

∑
j

1

wR
(rwijx

t
iy
t
j + (1− r)wijptij)

=
1

wR

∑
j

(rwijx
t
iy
t
j + (1− r)wijxtiytj(ai))

=
1

wR
xti(r

∑
j

wijy
t
j + (1− r)

∑
j

wijy
t
j(ai)).

Finally, by the definitions of gti and gt
i
,

xt+1
i =

1

wR
xti

(
rgti + (1− r)gt

i

)
=

1

wR
xtig

t,(r)
i .

In contrast to the SR dynamics, here r appears explicitly
in the marginal distribution xt+1.

So we get that under RS the marginal frequency of allele ai
is updated according to an expected utility that takes only
part of the correlation into account. This part is propor-
tional to the recombination rate r. We get a similar result
to Corollary 1:

Corollary 2. Let W be a fitness matrix, P 0 be any dis-
tribution. Suppose that P t+1 is attained from P t by the RS
population dynamics, and that xt+1,yt+1 are attained from
P t by players using the parameter-free PW(r) algorithm in
the game G = W . Then for all t > 0 and any i, xti =

∑
j p

t
ij.

5. CONVERGENCE AND EQUILIBRIUM
In this section, we consider implications of the general

theory on the correspondence between sexual population
dynamics and multiplicative-weights algorithms on conver-
gence properties.

5.1 Diminishing regret
In Chastain et al. [10] (Sections 3 and 4 of the SI text),

the authors apply standard properties of MWUA to show
that the cumulative external regret of each gene is bounded
(Corollary 5 there). In other words, if in retrospect gene 1
would have “played” some fixed allele ai throughout the
game, the cumulative fitness (summing over all iterations)
would not have been much better. This result leans only on
the properties of the algorithm, and does not require the in-
dependence of strategies. Thus we will write a similar regret
bound explicitly in our more general model.

Consider any fitness matrix W whose selection strength
is s. Let AFTi = 1

T

∑T
t=1 g

t

i
(the average fitness in retro-

spect if allele ai had been used throughout the game), and

AFTSR = 1
T

∑T
t=1 w

t (the actual average fitness under the
SR dynamics).
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Corollary 3. For any T ∈ N, any s ∈ (0, 1
2
) and all

i ≤ n, AFTSR ≥ AFTi − s2 − ln(n)/T .

Proof. Set ∆ij =
wij−1

s
; m

(t)
i =

∑
j y

t
j(ai)∆ij , and

ε = s. Note that ∆ij and m
(t)
i are in the range [−1, 1].

Intuitively, m
(t)
i is the expected profit of player 1 from play-

ing action ai in the “differential game” W−1
s

.

Theorem 3 [22] states that under the ε-PW algorithm6

T∑
t=1

x(t)m(t) ≥
T∑
t=1

m
(t)
i − ε

T∑
t=1

(m
(t)
i )2 − ln(n)

ε
, (3)

where x
(t)
i is the probability that the decision maker chose

action ai in iteration t (thus x
(t)
i = xti by our notation).

The proof follows directly from the theorem. Observe that

m
(t)
i = (gt

i
− 1)/s, and

x(t) ·m(t) =
∑
i

xtim
(t)
i =

∑
i

xti
∑
j

ytj(ai)∆ij

=
∑
ij

ptij
wij − 1

s
=
wt − 1

s
.

Thus

AFTi =
1

T

T∑
t=1

gt
i

=
1

T

T∑
t=1

sm
(t)
i + 1 = 1 + ε

1

T

T∑
t=1

m
(t)
i

AFTSR =
1

T

T∑
t=1

wt =
1

T

T∑
t=1

(1 + sm(t) · p(t))

= 1 + ε
1

T

T∑
t=1

m(t) · p(t). (replacing ε = s)

Plugging in Eq. (3),

AFTSR ≥ 1 + ε
1

T

(
T∑
t=1

m
(t)
i − ε

T∑
t=1

(m
(t)
i )2 − ln(n)

ε

)

≥ 1 + ε
1

T

(
T∑
t=1

m
(t)
i − ε

T∑
t=1

1− ln(n)

ε

)

=

(
1 + ε

1

T

T∑
t=1

m
(t)
i

)
− ε2 − 1

T
ln(n)

= AFTi − s2 − ln(n)/T,

as required.

We highlight that the bound on the regret of each agent
(or gene) stated in this result depends only on the algorithm
used by the agent, and not on the strategies of other agents.
These may be independent, correlated, or even chosen in an
adversarial manner. For simplicity we present the proof for
two players/genes. The extension to any number of players
is immediate because the theorem bounds the regret of each
agent separately.

By taking s to zero and T to infinity, we get that the
average cumulative regret AFTSR − AFTi tends to zero, as
stated in Chastain et al. [10] (they use a more refined form
of the inequality that contains the entropy of P t rather than
lnn).

6Kale [22] analyzes the Exponential Weights algorithm but
a slight modification of the analysis works for PW.

For the RS dynamics we get something similar but not

quite the same. Since g
t,(r)
i is not exactly the expected

fitness at time t, we get that cumulative regret is dimin-
ishing but not w.r.t. the actual average fitness wt. That
is, the regret is determined as if the actual expected fit-

ness of action ai is g
t,(r)
i . More formally, we get a variation

of Corollary 3, where AFTi = 1
T

∑T
t=1 g

t,(r)
i and AFTRS =

1
T

∑T
t=1

∑
i x

t
ig
t,(r)
i .

5.2 Convergence under weak selection
In normal-form games, following strategies with bounded

or diminishing regret does not, in general, guarantee con-
vergence to a fixed point in the strategy space.7 For some
classes of games though, much more is known. For example,
if all players in a potential game apply the ε-Hedge algo-
rithm, with a sufficiently small ε, then P t converges to a
Nash equilibrium [23], and almost always to a pure Nash
equilibrium. Similar results have been shown for concave
games [12]. Since identical-interest games are both poten-
tial games and concave games, and since for small ε we have
that Hedge and PW are essentially the same, these results
apply to our setting. This means that under each of RS and
SR dynamics, the population converges to a stable state, for
a sufficiently low selection strength s.

This implication is not new, and has been shown inde-
pendently in the evolutionary biology literature. Indeed,
Nagylaki et al. [30] prove that under weak selection, the
population dynamics converges to a point distribution from
any initial state (that is, to a Nash equilibrium of the sub-
game induced by the support of the initial distribution).
Note that under weak selection, Corollary 3 becomes trivial:
once in a pure Nash equilibrium (ai∗ , bj∗) (say at time t∗),
the optimal action of agent 1 is to keep playing a∗i . Thus
for any t > t∗, wt = gt

i∗
, and the cumulative regret does not

increase further.

6. DISCUSSION
Chastain et al. [10] extend an interesting connection be-

tween evolution, learning, and games from asexual reproduc-
tion (i.e., replicator dynamics) to sexual reproduction. The
proof of Theorem 4 in Chastain et al. [10] gives a formal
meaning to this connection. Namely, that the strategy up-
date of each player who is using PW(1) in the fitness game,
coincides with the change in allele frequencies of the corre-
sponding gene (under weak selection and product distribu-
tions). This relation is generalized in our Propositions 1 and

2, since for product distributions PW(α) is the same for all
α.

Chastain et al. [10] also claim something stronger: that
the population dynamics is precisely the PW dynamics. The
natural formal interpretation of this conclusion would be in
the spirit of our Corollary 1, i.e., that allele distributions
and players’ strategies would coincide after any number of
steps. In our case we prove this for the marginal probabili-
ties. But as we have discussed, their conclusion only follows
from their Theorem 4 under the assumption that P t remains
a product distribution. This is counterfactual, in that P t+1

7It is known that the average joint distribution over all iter-
ations converges to the set of correlated equilibria [3]. This
is less relevant to us because we are interested in the limit
of P t.
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is in general not a product distribution (under their assump-
tions on the dynamic process), and thus the next step of the

PW(r) algorithm and the population dynamics would not
be precisely equivalent but only approximately equivalent.
The approximation becomes less accurate in each step, and
in fact even under weak selection the population dynam-
ics may diverge from the Wright manifold, or converge to
a different outcome than the PW(r) algorithm, as we show
in Appendix B. Thus while the intuition of Chastain et
al. [10] was correct, the only way to rectify their analysis
is via the more general proof without assumptions on the
selection strength (even if we accept weak selection as bio-
logically plausible).

What does evolution maximize?.
In Chastain et al. [10] (Corollary 5 in the SI text), it is

also shown that under weak selection, “population genetics is
tantamount to each gene optimizing at generation t a quan-
tity equal to the cumulative expected fitness over all gener-
ations up to t,” (plus the entropy). While this is technically
correct (our Cor. 3 is a restatement of this result), we feel
that an unwary reader might reach the wrong impression,
that this is a mathematical explanation of some guarantee
on the average fitness of the population. We thus emphasize
that the both [10] and our paper establish only the property
of diminishing regret, which is already implied when P t con-
verges to a Nash equilibrium. Players never have regret in a
Nash equilibrium, and thus the cumulative regret tends to
zero after the equilibrium is played sufficiently many times.

Thus the population dynamics cannot provide any guar-
antees on fitness (or on any other property) that are not
already implied by an arbitrary Nash equilibrium. In the
evolutionary context this means that the outcome can be
as bad as the worst local maximum of the fitness matrix.
Also note that convergence is to a point distribution (a pure
Nash equilibrium, see Sec. 5.2), and thus its entropy is 0 and
irrelevant for the maximization claim.

Convergence without weak selection.
It is an open question as to what other natural conditions

are sufficient to guarantee convergence of sexual population
dynamics. We have conducted simulations that show that
convergence to a pure equilibrium occurs w.h.p. even with-
out weak selection, and in fact the convergence speed in-
creases as selection strength s (or the learning rate ε) grows.
At the same time, the quality of the solution/population
reached seems to be the same regardless of the selection
strength/learning rate (we measured quality as the fitness
of the local maximum the dynamics converged to, normal-
ized w.r.t. the global maximum). Both trends are visible
in Figure 1 for 8 × 5 matrices, based on 1000 instances for
each plot. Similar results are obtained with other sizes of
matrices.

However, it is known that the sexual population dynam-
ics on general fitness matrices (even on 4× 4 matrices) does
not always converge, and explicit examples have been con-
structed [18, 1, 19]. By Corollaries 1 and 2, convergence of
the PW algorithm to a pure Nash equilibrium, and conver-
gence of the population dynamics to a point distribution is
the same thing. Thus characterizing the conditions under
which these dynamics converge will answer two questions at
once.
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Figure 1: On the left, F (T ) is the fraction of in-
stances that converge (reach maxij p

t
ij > 1 − 10−5)

within at most T generations. On the right, F (Q) is
the fraction of instances that converge to an equilib-

rium with quality q at most Q, where q = wt−1
maxij wij−1

(the ratio between average fitness in the equilibrium
that was reached, and the optimal fitness). Results
are for random fitness matrices of size 8 × 5, where
wij is sampled uniformly at random from [1−s, 1+s].
Note that most instances do not converge to the op-
timal outcome.

Conclusions.
We formally describe a precise connection between popu-

lation dynamics and the multiplicative weights update algo-
rithm. For this connection, we adopt a version of MWUA
that takes the correlation of player strategies into account,
while still supporting no regret claims. More specifically,
two different variations of the Polynomial Weights subclass
of MWUA each coincide with the marginal allele distribution
under the two common sexual population dynamics (SR and
RS). It is important to note that the correspondence that we
establish is between the marginal frequencies/probabilities,
rather than the full joint distribution.

Notably, weak selection is not required to make these con-
nections.Yet, it is known that weak selection provides an ad-
ditional guarantee, which is that the dynamics converge to a
particular population distribution [29]. It remains an open
question to understand what other conditions are sufficient
for convergence of the PW algorithm in identical interest
games. Solving this question will also uncover more cases
where the fundamental theorem of natural selection applies.
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APPENDIX
A. EXTENSION TO MULTIPLE GENES

A k-locus haploid has k genes, each of which is inherited
from one of its two parents. In this appendix we show how
to extend our main results to a haploid with k > 2 loci.
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A.1 Notation
We consider a haploid with k loci, each with nj alleles,

j ≤ k. We denote K = [k] = {1, 2, . . . , k}, and use J to
denote subsets of K.

A genotype is defined by a vector of indices iK =
〈i1, . . . , ik〉 for ij ∈ [nj ]. We denote by I(J) the set
of all

∏
j∈J nj partial index vectors of the form 〈ij〉j∈J .

We sometimes concatenate two or more partial genotypes:
i′′J′′ = 〈iJ , i′J′〉 for some iJ ∈ I(J), i′J′ ∈ I(J ′). We use −J
to denote K \ J .

The fitness of a genotype iK is denoted by wiK . W =
(wiK )iK∈I(K) is called the fitness landscape (which is a ma-
trix for k = 2). Similarly, the population frequency of geno-
type iK at time t is denoted by ptiK , and P t = (ptiK )iK∈I(K).

The average fitness at time t is

wt =
∑

iK∈I(K)

ptiKwiK =

n1∑
i1=1

· · ·
nk∑
ik=1

ptiKwiK . (4)

Let xtj be the marginal distribution of locus j ∈ K at time
t, i.e., for all ij ∈ [nj ], x

t
ij =

∑
i−j∈I(−j) p

t
ij ,i−j

.

In the special case of 2 loci, K = {1, 2}, and xti1 , x
t
l2

corre-

spond to xti, y
t
l as used in the main text. We also define the

marginal fitness of allele ij ∈ [nj ] at time t as the average
fitness of all the population with allele ij . That is,

wtij =
∑

i−j∈I(−j)

pt(i−j |ij)wij ,i−j . (5)

Due to space constraints, we only bring here the deriva-
tion for the RS dynamics. The derivation for the (multi-
dimensional) SR dynamics is considerably lengthier and is
thus omitted and appears in the full version.8

A.2 RS dynamics
According to the multi-dimensional extension of pt+1

iK
,

pt+1
iK

=
1

wR
(rwiK

∏
j∈K

xtij + (1− r)wiKp
t
iK ). (6)

Given a game G and a joint distribution P t, let gtij =∑
i−j∈I(−j)(

∏
j′∈I(−j) x

t
ij′

)gij ,i−j . That is, the expected

utility of playing aij when every agent j′ plays xtj′ .

Lemma 1. Let W be any fitness matrix, and consider the
game G = W . Then under the RS population dynamics, for

any distribution P t and any r ∈ [0, 1], xt+1
ij

= 1
wR x

t
ijg

t,(r)
ij

.

Proof. By definition, xt+1
ij

=
∑

i−j∈I(−j) p
t+1
ij ,i−j

. Thus

By Eq. (6),

xt+1
ij

=
∑

i−j∈I(−j)

1

wR

rwij ,i−jx
t
ij

∏
j′∈I(−j)

xtij′

+ (1− r)wij ,i−jp
t
ij ,i−j

)
=

1

wR
xtij

r ∑
i−j∈I(−j)

wij ,i−j

∏
j′∈I(−j)

xtij′

+ (1− r)
∑

i−j∈I(−j)

wij ,i−jP
t(i−j |ij)


8http://arxiv.org/abs/1502.05056

Thus

xt+1
ij

=
1

wR
xtij

(
rgti + (1− r)gt

i

)
=

1

wR
xtijg

t,(r)
i ,

as required.

B. PW AND PRODUCT DISTRIBUTIONS
Consider the “uncorrelated” version of the PW algorithm,

which is the one used in [10]:

xt+1
i = xti

∑
j

ytjwij = xtig
t
i. (7)

In [10] there is no distinction between RS and SR. The
formal definition that they use coincides with RS (p. 1 of
the SI text), whereas in an earlier draft they used SR (p.5
in [9]). In a private communication the authors clarified
that they use SR and RS interchangeably, since under weak
selection they are very close.

Divergence from the Wright manifold.
Chastain et al. [10] justify the assumption that P t is a

product distribution by quoting the result of Nagylaki [29],
which states for any process (P t)t there is a “correspond-
ing process” on the Wright manifold, which converges to the
same point. However it is not clear whether this correspond-
ing process is the one in [10] (i.e., where the correlation is
eliminated following each step). To further stress this point,
we will show that the population dynamics and the PW algo-
rithm used in [10] can significantly differ (we saw empirically
that the marginals also differ significantly).

Consider the 2× 2 fitness matrix where w11 = 1 + s, and
wij = 1 otherwise. For simplicity assume first that r = 0
(thus SR and RS are the same). Suppose that P 0 is the
uniform distribution (that is on the Wright manifold). While
the population dynamics will eventually converge to p11 = 1,

there is some t s.t. P t is approximately

(
5/8 1/8
1/8 1/8

)
.

Thus
∥∥P t − xt × yt

∥∥
d
> 1

8
= Ω(1) for any `d norm and

regardless of the selection strength s. The gap is still large
for other small constant values of r (including when s� r).
Thus the population dynamics can get very far from the
Wright manifold.

In the example above both processes will converge to the
same outcome (p11 = 1), but at different rates.

Difference in convergence.
One can also construct examples that converge to dif-

ferent outcomes. For example, for s = 0.01 consider

W =

(
1.01 1

1 1.0099603

)
. If the initial distribution is

x0 = yt = (0.499, 0.501), then the (independent) PW dy-
namics converges to p22 = 1, whereas for r = 0.5 the SR
dynamics converges to p11 = 1. Such examples can be con-
structed for any values of s > 0 and r < 1.
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