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ABSTRACT
Influence maximization is a problem of maximizing the ag-
gregate adoption of products, technologies, or even beliefs.
Most past algorithms leveraged an assumption of submod-
ularity that captures diminishing returns to scale. While
submodularity is natural in many domains, early stages of
innovation adoption are often better characterized by con-
vexity, which is evident for renewable technologies, such as
rooftop solar. We formulate a dynamic influence maximiza-
tion problem under increasing returns to scale over a finite
time horizon, in which the decision maker faces a budget
constraint. We propose a simple algorithm in this model
which chooses the best time period to use up the entire bud-
get (called Best-Stage), and prove that this policy is opti-
mal in a very general setting. We also propose a heuristic
algorithm for this problem of which Best-Stage decision is a
special case. Additionally, we experimentally verify that the
proposed ”best-time” algorithm remains quite effective even
as we relax the assumptions under which optimality can be
proved. However, we find that when we add a “learning-by-
doing” effect, in which the adoption costs decrease not as a
function of time, but as a function of aggregate adoption, the
”best-time” policy becomes suboptimal, and is significantly
outperformed by our more general heuristic.

Categories and Subject Descriptors: G.1.6 [Numerical
Analysis]: Optimization—Dynamic Influence Maximization,
Constrained optimization

Keywords: Dynamic Influence Maximization; Convexity;
Backward Induction; Heuristic Algorithm

1. INTRODUCTION
One of the important algorithmic questions in marketing

on social networks is how one should leverage network effects
in promoting products so as to maximize long-term product
uptake. Indeed, a similar question arises in political science,
if framed in terms of maximizing uptake of beliefs and atti-
tudes, leading to particular voting behavior. Crucial to such
problems is a model of social influence on networks, and a
number of such models have been proposed [15, 9, 19, 10,
17, 5, 11, 13]. Some of the prominent models give rise to
global influence functions (capturing the expected number
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of adopters as a function of a subset of initially targeted
individuals) that are submodular, that is, possess a natural
diminishing returns property: targeting a greater number
of individuals yields a lower marginal increase in the out-
come. Submodularity is a powerful property for algorithm
design; in particular, a simple greedy heuristic has a prov-
able approximation guarantee, and is typically very close to
optimal in experiments [10, 5, 13, 16]. Submodularity as
typically defined is only helpful in a static setting, that is,
when we choose individuals to target in a single shot. But
an extension, termed adaptive submodularity, was proposed
to make use of greedy heuristics in dynamic environments
where individuals can be targeted over time [8].

The diminishing returns feature naturally arises in many
settings. However, early adoption trends can exhibit the op-
posite property of increasing returns to scale. For example,
in the classic Bass model [3] the early portion of the famous
“S-curve” is convex, and if one uses logistic regression to
model individual adoption choice—a natural model that was
used in recent work by the authors that learned individual
rooftop solar adoption behavior [20]—the model is convex
when probabilities are small. Arguably, early adoption set-
tings are most significant for the development of effective
product promotion strategies, since overall uptake is quite
critical to the ultimate success of the product line. This
is an especially acute concern in the “green energy” sector,
where renewable energy technologies, such as rooftop solar,
are only at a very early stage of overall adoption—indeed,
adoption has been negligible except in a few states, such as
California and Arizona.

We consider the problem of influence maximization with
network effects by aggregating a social network into an “ag-
gregate” adoption function which takes as input the number
of adopters at a given time t and outputs the number of
adopters at time t + 1. Our main theoretical result is that
when this function is convex and marketing budget can be
reinvested at a fixed interest rate δ (equivalently, marketing
or “seeding” costs decrease exponentially over time), influ-
ence over a finite time period can be maximized by using up
the entire targeted marketing budget at a single time point
(rather than splitting up the budget among multiple time
periods); we refer to the resulting simple algorithm as the
Best-Stage algorithm.

We study the degree to which the theoretical optimality
of the best-time algorithm holds in practice, using real data
of rooftop solar adoption in San Diego county [20]. As a
baseline, we develop a more general heuristic algorithm that
splits the budget equally over a set of consecutive months,
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with the size of this set and the starting month allowed to
vary. We find that investing the whole budget in a single
month is indeed (almost) optimal under a variety of sim-
plified seeding cost functions (exponential, polynomial, or
even linear with time), despite a number of gaps between
the theory and the experimental setup — suggesting that
the theoretical model is somewhat robust.

In contrast, the best-time algorithm becomes suboptimal
in an “ideal” model that was previously validated to con-
firm its predictive efficacy [20]. Through careful analysis,
we find that this is the result of “learning-by-doing” effects,
where marketing costs (for example, when actual products
are given away for free) depend on the total product uptake
in the marketplace.

2. RELATED WORK
We build on the extensive literature of economics of diffu-

sion with network effects [7, 4, 2, 6]. Largely, however, this
literature is concerned with equilibria that arise, rather than
algorithmic considerations. The latter are extensively stud-
ied in the literature on influence maximization on social net-
works. A number of models have been proposed to quantify
influence diffusion on a network, perhaps the most promi-
nent of which are linear threshold and independent cascade
models [15, 9, 19, 10, 12, 21]. These and many related mod-
els give rise to a submodular “expected adoption” function.
Many past approaches to “one-shot” influence maximization
take advantage of this property in algorithmic development;
in particular, a simple greedy algorithm is highly effective in
practice, and offers a constant-factor approximation guaran-
tee relative to a globally optimal solution to the associated
combinatorial optimization problem [10, 13, 12].

While one-shot influence maximization on social networks
has received much attention, significantly less work addresses
the problem of dynamic influence maximization, where in-
dividuals can be seeded in sequence. In an important effort
in this vein, Golovin and Krause show that when dynamics
(and uncertainty) satisfy the property of adaptive submodu-
larity, a natural dynamic greedy heuristic is guaranteed to
be only a constant factor worse than the optimal clairvoy-
ant algorithm [8]. Our problem is distinct from this effort
in several ways. The first, and key, distinction is that we
are concerned with increasing returns to scale. The second
is that we capture network effects simply in terms of total
numbers of all past adoptions (thus, the social network is
completely connected for our purposes). The third is that
we introduce another key element of tension into the prob-
lem by supposing that there is a fixed total budget allocated
for seeding, and either this budget (or any portion of it) can
be set aside to collect interest, or the costs of seeding fall
over time (commonly, costs of products are expected to fall
over time as a result of learning-by-doing, or supply-side net-
work effects where better processes and technology reduce
production costs with increasing product uptake and experi-
ence in the marketplace). To our knowledge, we are the first
to consider the algorithmic problem of dynamic influence
maximization in such a context.

3. THE DYNAMIC INFLUENCE MAXIMIZA-
TION MODEL

We consider a problem of adoption diffusion with network
externalities. Our model of network externalities is simpli-
fied to consider only the aggregate adoption, which we de-
note by D. Specifically, we assume that the diffusion takes
place in discrete time, and the aggregate adoption at time t,
Dt, is a function only of adoption by the previous time step,
Dt−1: Dt = f(Dt−1). In other words, adoption dynamics
are deterministic and first-order Markovian. We make three
assumptions on the nature of the diffusion function f :

1. f is strictly convex (i.e., increasing returns to scale),

2. f is strictly monotonically increasing, and

3. ∀D > 0, f(D) > D.

Assumptions (2) and (3) ensure that aggregate adoption in-
creases over time (i.e., with every application of f); note
that they are not redundant. Assumption (1) of increasing
returns to scale captures a common model of early adoption
dynamics (the convex portion of the “S-curve” [3], or the
logistic regression model of adoption over a low-probability
region discussed in our experiments below). We suppose
that at time 0 (that is, initial decision time), there is some
initial number of adopters in the population, D0 ≥ 0.

As stated, the problem poses no algorithmic tension: if
one had a fixed budget for stimulating adoption, the entire
budget should be used up immediately, as it would then
take maximal advantage of network effects. We now in-
troduce the principal source of such tension: an exponen-
tially increasing budget. Specifically, suppose an agent is
initially given a budget B0 and any remaining budget will
accrue by a factor of δ. For example, we can decide to in-
vest residual budget at an interest rate δ. Alternatively, if
we are giving away a product, its cost may decrease over
time as technology matures, a process often referred to as
“learning-by-doing” [1, 14, 18]. Such learning-by-doing ef-
fects are paramount when we consider technology evolution
in its early stages, which is arguably the setting where we
would be most interested in promoting the product by giving
it away to a subset of the individuals in a population. No-
tice that either saving some of the budget at a fixed interest
rate, or costs of seeding decreasing at a constant rate, both
give rise to exponentially increasing purchasing power of the
budget over time. This gives rise to a non-trivial tension
between seeding early so as to maximally leverage network
effects and seeding later so as to maximize the number of
individuals seeded (as well as subsequent network effects).
The algorithmic question we pose is: how should we use
a given budget B over a fixed time horizon T so as to
maximize the total number of adopters at time T?
For simplicity, we assume unit cost for every seed; in other
words, any budget B will create exactly B new adopters.
This assumption will be relaxed in our experiments below.

Given the deterministic T -stage diffusion model and the
budget accrual process described above, as well as an ini-
tial budget B0 and aggregate adoption D0, we can define a
“seeding” policy π as a sequence of fractions of the budget
allocated in each stage, that is

π = (α0, α1, . . . , αT−1), αt ≥ 0.

The dynamic influence maximization problem aspires to com-
pute a policy π∗ which leads to the maximum number of
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adopters based on the diffusion model f starting with initial
adoption D0, an initial budget B0, and a budget growth rate
δ. If we define the total number of adopters at time T as
the utility of a policy, the problem can be written as

π∗ = arg max
π

U(f, π,D0, B0, δ).

4. ALGORITHMS FOR DYNAMIC INFLU-
ENCE MAXIMIZATION

To solve the dynamic maximization problem, it is conve-
nient to view it as a T -stage decision process illustrated in
Figure 1.

0 1 2 T − 1

(D0, B0) (D1, B1) (D2, B2) (DT−1, BT−1)

< 1 < 1 < 1

1 1 1 1

Figure 1: T Stage Decision Process

At any stage t, we consider two types of actions for an
agent: spending all of the remaining budget (α = 1) and
fraction (or none) of budget (0 ≤ αt < 1). Particularly, as
long as one chooses αt = 1, the decision process is termi-
nated and the utility can be obtained in terms of the num-
ber of final users. Otherwise, one should proceed until the
budget is exhausted. Note that an agent will always spend
whatever budget is left at t = T −1 (since there is no utility
from keeping a fraction of it intact thereafter).

In principle, one can solve the dynamic influence maxi-
mization problem using backward induction. For a T -stage
decision problem, backward induction starts with consid-
ering optimal decisions at the last stage (i.e. t = T − 1)
for all possible realizations of D and B, then considers op-
timal choices at the second-to-last stage (i.e. t = T − 2)
using the optimal decisions in the final stage, and so on.
The process proceeds until the very first decision node (i.e.
t = 0) is reached, and finally an optimal policy can be re-
turned. However, such an approach quickly becomes in-
tractable when the evaluation of f is very time consuming
(for example, as in the instance described below, f corre-
sponds to an agent-based simulation of individual adoption
decisions). For example, if we suppose that each simulation
takes only 1 second, our population involves 10,000 individ-
uals, the budget can seed only 20 individuals, and our time
horizon is 20 stages (e.g., 20 months), dynamic program-
ming would take over 1000 hours, or about 1.5 months. Our
primary goal is to develop algorithmic approaches which are
orders of magnitude faster.

4.1 Optimal Algorithm
To start, consider Algorithm 1 (called Best-Stage), which

simply finds a single best stage t at which to use up all of
the budget accrued by this stage. Our main result in this
section is that the Best-Stage algorithm is optimal.

Theorem 4.1. Let t be the stage returned by the Best-
Stage algorithm. Then the policy π = (0, . . . , 0, B0δt, . . .)
where the only non-zero entry is at time t, is optimal.1

The proof of this result is rather involved, and we develop
it in a series of steps.

1Note that the nature of the policy after time t is irrelevant.

Data: D0, B0

Result: t
u∗ = 0;
t∗ = 0;
for t=0..T-1 do

u = FindAdoptions(D0, B0δt, t);
if u > u∗ then

u∗ = u;
t∗ = t;

end

end
Algorithm 1: The Best-Stage algorithm. The func-
tion FindAdoptions(D,B, t) computes the total number of
adoptions at time T when there are D adopters at time 0
and the entire budget B is used for seeding at time t.

Let us consider a general backward induction step from
the descendant nodes at stage t + 1 to their parent node
at stage t. Suppose at stage t there are Dt users and Bt

budget. Particularly, if the entire budget is used at t, an
agent will have utility

U(αt = 1) = f (T−t)(Dt +Bt) (1)

where notation f (m)(·) stands for applying f repeatedly for
m stages. If some fraction 0 ≤ αt < 1 of the budget is used
at stage t, there will be

Dt+1 = f(Dt + αtB
t) (2)

adopters and

Bt+1 = (1 + δ)(1− αt)Bt (3)

available budget in the next stage t+1. Let π∗ be an optimal
policy, and α∗t the fraction of budget allocated to seeding un-
der π∗ in stage t. Our next series of results characterize the
properties that π∗ (and fractions α∗t ) must have, by virtue
of its optimality.

Lemma 4.2. Suppose that at some stage t the optimal pol-
icy has α∗t = 0. Further, suppose that there is some t∗ > t
with α∗t∗ = 1 and α∗t′ = 0 for all t < t′ < t∗. Then α∗t−1 = 1
cannot be optimal.

Proof. Let α∗t−1 = a, and let Dt and Bt be the number
of adopters and remaining budget at time t if the optimal
policy π∗ is followed. Notice that there are T − t stages
remaining when we start at stage t. Thus, the utility in
stage t− 1 is given by

U(α∗t−1 = a, α∗t = 0) =

f (T−t∗)(f (t∗−t)(Dt) + (1 + δ)t
∗−tBt),

where Dt = f(Dt−1 + aBt−1), Bt = (1 + δ)(1 − a)Bt−1

and t∗ > t is the stage of the optimal policy π∗ after t at
which the entire budget is used up. The lemma states that
if α∗t = 0, then α∗t−1 = 1 must not be. In formal notation,
we can state this as U(α∗t−1 = a, α∗t = 0) > U(α∗t−1 = 1) for
a < 1. By monotonicity of f this is equivalent to

f (t∗−t)(Dt) + (1 + δ)t
∗−tBt > f (t∗−t+1)(Dt−1 +Bt−1). (4)

By optimality of α∗t = 0, we further have

f (T−t∗)(f (t∗−t)(Dt) + (1 + δ)t
∗−tBt) ≥ f (T−t)(Dt +Bt),
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which by monotonicity of f is equivalent to

f (t∗−t)(Dt) + (1 + δ)t
∗−tBt ≥ f (t∗−t)(Dt +Bt). (5)

If we could show that

f (t∗−t)(Dt +Bt) > f (t∗−t+1)(Dt +Bt)

or, equivalently,

Dt +Bt > f(Dt−1 +Bt−1),

then combining this with with (5) will imply that (4) must
hold. Let us rewrite (5) as follows

f (t∗−t)(Dt +Bt)− f (t∗−t)(Dt)

Bt
≤ (1 + δ)t

∗−t, (6)

or, equivalently, as

f (t∗−t)(Dt +Bt)− f (t∗−t)(Dt)

f (t∗−t−1)(Dt +Bt)− f (t∗−t−1)(Dt)

× . . .× f(Dt +Bt)− f(Dt)

Bt
≤ (1 + δ)t

∗−t

Because f (t∗−t)(Dt) > . . . > f(Dt) and by strict convexity,
it follows that

f (t∗−t)(Dt +Bt)− f (t∗−t)(Dt)

f (t∗−t−1)(Dt +Bt)− f (t∗−t−1)(Dt)

> . . . >
f(Dt +Bt)− f(Dt)

Bt
,

which in turn implies that

f(Dt +Bt)− f(Dt)

Bt
< 1 + δ. (7)

Additionally, observe that

Dt = f(Dt + aBt−1) > Dt + aBt−1

and

Bt = (1 + δ)(1− a)Bt−1 > (1− a)Bt−1

By strict convexity, it then follows that

f(Dt−1 +Bt−1)− f(Dt−1 + aBt−1)

(1− a)Bt−1
<
f(Dt +Bt)− f(Dt)

Bt

which together with (7) implies that

f(Dt−1 +Bt−1)− f(Dt−1 + aBt−1)

(1− a)Bt−1
< 1 + δ,

which is equivalent to

f(Dt−1 +Bt−1) < f(Dt−1 + aBt−1) + (1 + δ)(1− a)Bt−1

= Dt +Bt,

completing the proof.

The next lemma builds on Lemma 4.2 to significantly
strengthen its result.

Lemma 4.3. Suppose that at some stage t the optimal pol-
icy has α∗t = 0. Further, suppose that there is some t∗ > t
with α∗t∗ = 1 and α∗t′ = 0 for all t < t′ < t∗. Then α∗t−1 = 0.

Proof. In this lemma, we will show that it cannot be the
case that α∗t−1 ∈ (0, 1). Together with Lemma 4.2, it will
imply the desired result.

We prove this lemma by contradiction. Suppose that the
optimal choice is α∗t−1 = a with 0 < a < 1. The optimal
utility is then given by

U(α∗t−1 = a, α∗t = 0)

= f (T−t∗)(f (t∗−t)(Dt) + (1 + δ)t
∗−tBt),

where t∗ is the stage after t at which the entire budget is
spent and

Dt = f(Dt−1 + aBt−1), Bt = (1 + δ)(1− a)Bt−1.

By optimality of π∗, this policy should be (weakly) better
than a policy which spends nothing at stage t−1 and spends
the entire budget in stage t∗ (with the same t∗ as above).
The utility of such a policy is given by

U(α∗t−1 = 0, α∗t = 0) = f (T−t∗)(f (t∗−t)(D̄t) + (1 + δ)t
∗−tB̄t),

where

D̄t = f(Dt−1), B̄t = (1 + δ)Bt−1.

Since we assume U(α∗t−1 = 0, α∗t = 0) ≤ U(α∗t−1 = a, α∗t =
0),

f (t∗−t)(f(Dt−1)) + (1 + δ)t
∗−t+1Bt−1 ≤

f (t∗−t)(f(Dt−1 +aBt−1)) + (1 + δ)t
∗−t+1(1−a)Bt−1

or

f (t∗−t+1)(Dt−1 + aBt−1)− f (t∗−t+1)(Dt−1)

≥ (1 + δ)t
∗−t+1aBt−1,

which we can rewrite as

f (t∗−t+1)(Dt−1 + aBt−1)− f (t∗−t+1)(Dt−1)

aBt−1
≥ (1+δ)t

∗−t+1.

On the other hand, by strict convexity of f

f (t∗−t+1)(Dt−1 + aBt−1)− f (t∗−t+1)(Dt−1)

aBt−1

<
f (t∗−t+1)(Dt−1 +Bt−1)− f (t∗−t+1)(Dt−1 + aBt−1)

(1− a)Bt−1
.

Moreover, by the same argument as used in the proof of
Lemma 4.2 to arrive at (6), the optimal choice a must satisfy

f (t∗−t+1)(Dt−1 +Bt−1)− f (t∗−t+1)(Dt−1 + aBt−1)

(1− a)Bt−1

≤ (1 + δ)t
∗−t+1,

which implies that

f (t∗−t+1)(Dt−1 + aBt−1)− f (t∗−t+1)(Dt−1)

aBt−1
< (1+δ)t

∗−t+1,

a contradiction.

Lemma 4.4. Suppose that α∗t = 1. Then α∗t−1 ∈ (0, 1)
cannot be optimal.

Proof. The utility of choosing α∗t−1 = a, where a ∈ [0, 1)

at stage t−1 is given by U(α∗t−1 = a, α∗t = 1) = f (T−t)(Dt+
Bt), where Dt = f(Dt−1 + aBt−1) and Bt = (1 + δ)(1 −
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a)Bt−1. Suppose that a 6= 1. Then U(a = 1) ≤ U(0 ≤ a <
0, α∗t = 1), which means that

f (T−t+1)(Dt−1 +Bt−1)

≤ f (T−t)(f(Dt−1 + aBt−1) + (1 + δ)(1− a)Bt−1),

or, by monotonicity,

f(Dt−1 +Bt−1) ≤ f(Dt−1 + aBt−1) + (1 + δ)(1− a)Bt−1.

Rearranging, we obtain

f(Dt−1 +Bt−1)− f(Dt−1 + aBt−1)

(1− a)Bt−1
≤ 1 + δ. (8)

On the other hand, the presumption of optimality of α∗t = 1
implies that αt = 1 is a (weakly) better choice than αt = 0.
In other words, spending all budget at stage t is nevertheless
better than saving it and spending at any other stages after
t. This implies that for any τ > t,

f (T−τ)(f (τ−t)(Dt) + (1 + δ)τ−tBt) ≤ f (T−t)(Dt +Bt).

By monotonicity this is equivalent to

f (τ−t)(Dt) + (1 + δ)τ−tBt ≤ f (τ−t)(Dt +Bt),

which we can rewrite as

f (τ−t)(Dt +Bt)− f (τ−t)(Dt)

Bt
≥ (1 + δ)τ−t.

In particular, if we let τ = t+ 1, we have

f(Dt +Bt)− f(Dt)

Bt
≥ 1 + δ.

By strict convexity and assumption (3) on f , it follows that

f(Dt +Bt)− f(Dt)

Bt
>
f(Dt−1 +Bt−1)− f(Dt−1 + aBt−1)

(1− a)Bt−1
.

We now show that if a 6= 1, it must be the case that a = 0.
Notice that if U(a = 0, αt = 1) ≤ U(0 < a < 1, α∗t = 1), it
must be that

f (T−t)(f(Dt−1) + (1 + δ)Bt−1)

≤ f (T−t)(f(Dt−1 + aBt−1) + (1 + δ)(1− a)Bt−1),

or, equivalently,

f(Dt−1)+(1+δ)Bt−1 ≤ f(Dt−1+aBt−1)+(1+δ)(1−a)Bt−1,

which can be written as

f(Dt−1 + aBt−1)− f(Dt−1)

aBt−1
≥ 1 + δ. (9)

By strict convexity, we have

f(Dt−1 + aBt−1)− f(Dt−1)

aBt−1

<
f(Dt−1 +Bt−1)− f(Dt−1 + aBt−1)

(1− a)Bt−1
,

which, together with (8) and (9) implies that 1 + δ < 1 + δ,
a contradiction. Consequently, either a = 0 or a = 1.

Armed with Lemmas 4.2-4.4, we are now ready to prove
our main result.

Proof of Theorem 4.1. We prove the theorem by in-
duction.
Base Case: T = 1 For an 1-stage decision problem, it is
clearly optimal to spend the entire budget budget, so the
optimal policy is α∗0 = 1.
Inductive Step: Suppose the argument holds for T =
K ≥ 1. That is for any K-stage decision problem, the
optimal policy is using all budget at some stage t∗, s.t,
t∗ ∈ 0, 1, . . . ,K − 1. Let us now consider a T = K + 1-stage
decision problem. Assume we are at the final backward in-
duction step from nodes in stage t = 1 the root node (i.e.
t = 0). Note that those different decision nodes at stage
t = 1 are results from different values of α0 picked at t = 0.
Generally, for any node (D1, B1) in stage t = 1, by the in-
ductive assumption, an optimal policy must spend the entire
budget at some stage between stage 1 and T − 1; in other
words, starting in stage t = 1, Best-Stage is optimal. Such
a policy can only be one of the following three types:

1. α∗0 = 1: spend the entire budget at t = 0;

2. α∗0 = 0: spend all budget at a single stage t∗ > 0;

3. 0 < α∗0 < 1: spend only a fraction of budget at stage
t = 0, and the rest at a single stage t∗ > 0.

Clearly, we only need to rule out the third type.
Case 1: α∗1 = 0 By Lemma 4.3, it must be the case that
α∗0 = 0.
Case 2: α∗1 = 1 By Lemma 4.4, it must be the case that
either α∗0 = 0 or α∗0 = 1. In either case, the optimal policy
has the form of Best-Stage.

The Best-Stage algorithm is clearly far faster than dy-
namic programming, with running time O(T ), compared to
O(DBT ) for the former, where D is the size of the popula-
tion, B the maximum budget, and T the time horizon. In
our example above, it will take only 20 seconds, as compared
to 1.5 months!

4.2 A Heuristic Search Algorithm
The model we described above is clearly stylized. As with

any stylized model, a natural question is how far its assump-
tions can be relaxed without losing the guarantees that come
with them—in our case, a very simple and provably optimal
algorithm for dynamic influence maximization. If we are
to undertake such an analysis experimentally, it is simply
not feasible to use dynamic programming as a baseline, for
reasons made clear earlier. As an alternative, we propose
a heuristic algorithm which generalizes the Best-Stage algo-
rithm, but does not incur too prohibitive a cost in terms of
running time. Rather than choosing a single best stage, this
algorithm, which we term Best-K-Stages (see Algorithm 2)
iterates over integers K between 1 and T − 1, splitting the
budget equally among K consecutive time steps. This al-
gorithm only takes O(T 2), which is still quite manageable
(about 200 seconds in our example above).

5. EXPERIMENTS
To verify the efficacy of our proposed algorithm, we uti-

lize an agent-based simulation introduced by [20] which fore-
casts rooftop solar adoption in a representative zip code in
San Diego county. This simulation has several features of
relevance to us. First, it utilizes agent models which were
learned from actual adoption, as well as auxiliary data, using
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U ← −∞;
π∗ ← ∅;
for i =1,...,T-1 do

for j = 0,..., T-i-1 do
π ← (αj , . . . , αj+i−1);
if U(M,π,B0, δ) > U then

U ← max{U,U(M,π,B0, δ)};
π∗ ← π;

end

end

end
return π∗

Algorithm 2: The Best-K-Stages Algorithm.

a logistic regression model. Second, the model includes net-
work effects: aggregate adoption is one of the variables that
has a significant impact on individual adoption decisions.
Third, the solar market is still very much in its developing
stages, even in San Diego county, and consequently the rel-
evant region of the logistic regression model is convex in the
network effects variable. Fourth, while in the policy con-
text of this model the budget remains fixed over the T -stage
time horizon, costs decrease over time. In particular, in the
previously validated version of the model [20], costs actu-
ally decrease as a function of “learning-by-doing”, modeled
as aggregate adoption in San Diego county (which in turn
increases over time). Moreover, the costs decrease linearly,
rather than exponentially. As a result, the cost in this sim-
ulation does not satisfy the assumptions that guarantee the
optimality of the Best-Stage algorithm.

An additional deviation from the idealized model we con-
sider above is that the system cost enters the consideration
in two ways: first, decreasing cost translates into an effec-
tively increasing budget, and second, cost enters the adop-
tion model directly as a part of economic considerations
in rooftop solar adoption. A final important imperfection
is that the budget need not be perfectly divisible by cost.
In this section, we systematically investigate the extent to
which these deviations from the “ideal” modeled above im-
pact the optimality of the Best-Stage algorithm.

Throughout, time is discretized in months, and we fix our
time horizon at 24 months (that is, 24 stages). We use
the Best-K-Stages as our benchmark, observing in each case
below expected adoption at horizon T as a function of K.
Thus, when we find K = 1 yields an optimal or a near-
optimal solution, we conclude that the deviation from model
assumptions is not significant, while optimal K > 1 suggests
the converse. We used the budget allocated by the Califor-
nia Solar Initiative (CSI) to the San Diego county incentive
program as our baseline, and consider amplifications of this
budget, denoted by “BX”. For example, 50X budget means
that 50 times the CSI budget was used in an experiment.
Moreover, we explored the impact of the magnitude of the
peer effect variable in the model by considering as a base-
line the network effect coefficient produced by learning the
adoption model from data, as well as its amplifications, de-
noted by “PX”; for example “2X” network effect means that
we doubled the network effect coefficient.

5.1 Exponential Cost
Our hypothesis is that the primary consideration is the na-

ture of the cost model, with the remaining “imperfections”
introduced by the complex considerations of the agent-based
model in question being significantly less important. To in-

vestigate, we replace the cost model in the original model
with a much simpler cost function which decreases expo-
nentially with time t (equivalently, the budget is exponen-
tially increasing over time): C(t) = C0e

ωt, or, equivalently,
log(C) = log(C0) + ωt. We used the rooftop solar cost data
for San Diego county to estimate the parameters log(C0)
and ω in this model (see Table 1). The new cost model was
then “injected” into the otherwise unmodified agent-based
model.

Table 1: Exponential Cost Model (R2 = 0.020)

Parameter Coefficient

log(C0) 10.55
ω -0.0059
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Figure 2: Exponential Cost: 50X Budget, 1X network ef-
fects.
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Figure 3: Exponential Cost: 50X Budget, 1.75X network
effects.

The maximum expected adoption of seeding policies over
different lengths (values of K in Best-K-Stages) is illustrated
in Figure 2a. The results suggest that seeding in a single
stage tends to be a better policy than splitting the budget
over multiple stages. Moreover, for length-1 policies we find
that in this case seeding at very end (i.e., in stage T − 1)
is optimal, as shown in Figure 2b, where the horizontal
axis is the seeding month. This is likely because benefit of
the exponential cost decay in this variation of the model ex-
ceeds the gains from seeding early due to network effects. As
the importance of network effects increases, we expect that
seeding earlier would become more beneficial. To investi-
gate, we manually varied the coefficient of network effects in
the adoption model, multiplying it by a factor of 1.75 and 2,
and comparing the outcomes. Seeding in a single stage is still
quite effective (Figure 3a and 4a; the jagged nature of the

954



5 10 15 20 25
Length

25
9

26
1

26
3

26
5

26
8

A
do

pt
io

n

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Different Lengths (K values).

0 5 10 15 20 25
Month

25
9

26
1

26
3

26
5

26
8

A
do

pt
io

n

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

(b) Different Seeding Month

Figure 4: Exponential Cost: 50X Budget, 2X network ef-
fects.

plots is likely due to the indivisibilities discussed above), but
the optimal month to seed shifts earlier, as shown in Figure
3b and 4b.

5.2 Original Agent-Based Model
As shown in the previous section, the Best-Stage algo-

rithm performs impressively despite a number of imperfec-
tions in the agent-based model of aggregate rooftop solar
adoption. Next, we test its effectiveness in the context of an
“ideal” model that was previously thoroughly validated in
forecasting solar adoption. Significantly, the cost function
used in this model includes a number of relevant parameters
(such as system size), and in place of explicit dependence on
time, it is a decreasing function of the overall uptake of solar
systems in San Diego county (see Table 2). Finally, the cost
function is modeled as linear in its parameters (with a fixed
lower bound at zero).

Table 2: Cost function in the original agent-based model
(R2 = 0.8399).

Predictor Coefficient

(Intercept) 11,400
Home Value 7.38e-04

Living Square Feet 0.15
System Capacity 6,210

San Diego County Adoption -1.06

The results in Figure 5a are surprising: the Best-Stage al-
gorithm performs significantly worse than policies that split
budget over a relatively long contiguous series of months
(K > 5). Figure 5b further reveals that we optimally wish
to push the initial month of this contiguous sequence rather
late in the period; in other words, network effects are rela-
tively weak. The key question is: what goes wrong? The
observations in the previous section strongly suggest that it
is the form of the cost function that is at the heart of the
issue. We therefore proceed to carefully investigate what,
precisely, about the nature of the cost function in this model
is the cause of this qualitative change relative to our stylized
model in Section 3. Specifically, we start with a simplified
model of solar adoption that conforms to the assumptions
of our main result (i.e., using only time as a variable), and
incrementally relax it to bring it closer to the cost function
actually used in the original simulation environment. In par-
ticular, we begin with a polynomial cost function, proceed
to investigate a linear cost model (in time only), and finally
consider a linear cost function that depends on aggregate
product uptake (learning-by-doing) rather than time.
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Figure 5: Actual Cost Learning-by-doing: 10X Budget,1X
network effects.

5.3 Polynomial Cost
The exponential cost function, or exponentially increasing

budget, seems quite dramatic. What if we slow this growth
in budget buying power to be polynomial?

We formulate the following simple model of polynomial
cost: C(t) = C0t

θ, where t is time variable, and C0 and θ
are parameters. This function is equivalent to log(C(t)) =
log(C0) + θ log(t), which we can fit using linear regression.
The resulting coefficients are given in Table 3.

Table 3: Polynomial Cost Model (R2 = 0.014)

Parameter Coefficient

log(C0) 10.70
log(t) -0.098
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Figure 6: Polynomial Cost: 50X Budget.

Figures 6a, 6b, and 7a suggest that Best-Stage is still a
very good policy here, albeit the jagged nature of the plots
(likely due to indivisibilities) makes this observation some-
what equivocal when network effects are very weak. How-
ever, as the magnitude of network effects increases, the ad-
vantage of Best-Stage over alternatives becomes more pro-
nounced. On balance, it seems clear that the polynomial vs.
exponential nature of the cost function does not give rise to
a qualitative difference in the effectiveness of our underlying
model.

5.4 Linear Cost
Given that the polynomial cost model did not appear to

bring about a substantial difference, we proceed to relax
to a linear cost model, inching even closer to the “ideal”
model used in the simulation. Our linear cost model has
linear dependence on time, implying a slower decay rate than
the polynomial cost function: C(t) = a + bt. As before,
parameters a and b are estimated using solar system cost
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Figure 7: Polynomial Cost: 50X Budget, 2X network effects.

data for San Diego county, with the results given in Table
4. As before, we ran the experiments by “plugging in” this

Table 4: Linear Cost Model (R2 = 0.012)

Parameter Coefficient

Intercept 42,053
t -201

cost model into the simulation environment (retraining the
individual adoption propensities). Our experiments show
that seeding in a single month is, again, more effective than
seeding in multiple consecutive stages (See Figure 8a and
8b), even as we vary the importance of network effects.
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Figure 8: Linear Cost: 50X Budget.

5.5 Linear Cost with Learning-by-Doing
Both “ideal” cost model and linear cost model are linear

in their features. The key difference is that the ideal cost
function depends on cumulative adoption, whereas the latter
only depends on time. We now move yet closer to the ideal
model, replacing the linear dependence on time with linear
dependence on aggregate solar system uptake in San Diego
county: C(t) = c+dy(t), where y(t) is number of solar adop-
tion up to time t. The parameters c and d are estimated via
linear regression, and are given in Table 5. Remarkably,
the results now echo our observations in the “ideal” model
(Figures 9a and 9b): Best-Stage is decidedly suboptimal,
and policies that split the budget among K = 5 or more
consecutive stages perform significantly better. Addition-
ally, we can see that the “optimal” number of stages to seed
(at least in our heuristic algorithm) increases as the magni-
tude of network effects increases (Figure 9a and 9b). The
key distinction from the idealized model is that learning-
by-doing makes the temporal benefit of waiting endogenous:
now seeding earlier will directly reduce future seeding costs
and, consequently, the effectiveness of residual budget. As a

Table 5: Linear Cost Model with Learning-by-Doing (R2 =
0.013)

Parameter Coefficient

(Intercept) 40,356
y -1.74
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Figure 9: Linear Cost with Learning-by-Doing: 10X Budget

result, we observe what amounts to an“interior”optimum in
budget allocation, with some of the budget used in seeding
in order to make residual budget more valuable later.

6. CONCLUSION
We formulate a novel dynamic influence maximization

problem under increasing returns to scale and prove that the
optimal policy must use up budget at a single stage, giving
rise to a simple Best-Stage search algorithm. In addition, we
propose a heuristic algorithm, Best-K-Stages, that includes
Best-Stage as a special case. We experimentally verify that
the proposed Best-Stage algorithm remains quite effective
even as we relax the assumptions to different time-involved
cost dynamics, i.e., polynomial and linear cost. On the other
hand, we find that when we replace the time dependency
of the cost function by cumulative adoption (learning-by-
doing), Best-K-Stages significantly outperforms Best-Stage.

Looking forward, there are several possible directions we
would like to pursue in the future. First, it is clear that there
must exist even better policies remaining unexplored for the
“ideal” cost model with learning-by-doing. Our heuristic
search algorithm only covers a special subset of policies. De-
sign of more efficient algorithms to find optimal solutions in
such a realistic setting can be a meaningful extension to our
current work. Second, the dynamic influence maximization
problem proposed in this paper assumes seeding does not
discriminate among individuals. This is a very strong as-
sumption, but enables us to make significant progress. Seed-
ing in a social network with heterogeneous individuals has
been shown to be NP -hard even for“one-shot”decisions and
a simple submodular diffusion model [10]. A relaxation to
individual heterogeneity is sure to create further algorithmic
challenges.
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