
Expectation-Maximization for Inverse Reinforcement
Learning with Hidden Data

Kenneth Bogert
THINC Lab, Dept. of
Computer Science

University of Georgia
Athens, GA 30602

kbogert@uga.edu

Jonathan Feng-Shun Lin
Dept. of Electrical and

Computer Engg.
University of Waterloo
Waterloo, ON N2L 3G1
jf2lin@uwaterloo.ca

Prashant Doshi
THINC Lab, Dept. of
Computer Science

University of Georgia
Athens, GA 30602

pdoshi@cs.uga.edu
Dana Kulic

Dept. of Electrical and
Computer Engg.

University of Waterloo
Waterloo, ON N2L 3G1

dana.kulic@uwaterloo.ca

ABSTRACT
We consider the problem of performing inverse reinforcement learn-
ing when the trajectory of the agent being observed is partially oc-
cluded from view. Motivated by robotic scenarios in which limited
sensor data is available to a learner, we treat the missing information
as hidden variables and present an algorithm based on expectation-
maximization to solve the non-linear, non-convex problem. Previous
work in this area simply removed the occluded portions from con-
sideration when computing feature expectations; in contrast our
technique takes expectations over the missing values, enabling learn-
ing even in the presence of dynamic occlusion. We evaluate our new
algorithm in a simulated reconnaissance scenario in which the visi-
ble portion of the state space varies. Finally, we show our approach
enables apprenticeship learning by observing a human performing a
sorting task in spite of key information missing from observations.

1. INTRODUCTION
Inverse reinforcement learning (IRL) [1] offers a way to learn

skilled behavior by passively observing an expert. It finds applica-
tions as a methodology for robot learning from demonstrations and
in imitation learning [2]. It approaches the task as that of learning
the expert’s preferences from observations given that the expert’s set
of capabilities and any associated non-determinism are known. The
underlying premise is that the preference function is more easily
transferable from the expert to the learner than other artifacts of the
expert’s behavior.

Technically, this problem is usually modeled by ascribing a
Markov decision process (MDP) to the expert whose solution guides
the expert’s actions. While the dynamics of the expert are presumed
to be available, the learner seeks to learn the reward function of this
MDP from observing trajectories composed of state-action pairs
of the expert [3]. As this maximum likelihood problem is under
constrained, a popular method involves finding the distribution over

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

possible expert behaviors that conform to the observed trajectories
and which maximizes entropy [4, 5].

To motivate this paper, consider a line robot who must learn to
sort fruit by observing a human expert. The particular task here
involves sorting distinguishably ripe fruit from fruit that may not
be ripe as yet. Immersing the expert in a motion capture system
coupled with a video camera provides trajectory and image data
that is informative about which type of fruit is placed in which bin.
However, the coupled system does not reveal that the ripe fruit must
be handled very gently during sorting and other fruit may not need
special care. While force sensors could help here these tend to be
inaccurate and imprecise. Nevertheless, it seems possible to infer
the latent variable related to handling from the fact that the sorted
fruit is generally not damaged and the time consumed in sorting
types of fruit.

In the above example, a component (or factor) of the expert’s
action is unobserved in the collected trajectories. Knowing this com-
ponent is essential in order to inversely learn the correct preferences
of the expert from its behavior and complete the task successfully.
Toward this end, this paper makes the following contributions:

1. We generalize IRL to operate in the context of data containing
hidden factors. Specifically, we present a novel generalization of
Ziebart et al.’s [4] maximum entropy optimization that conditions
on hidden variables. Because the corresponding nonlinear pro-
gram is not convex, the optimization is approximated to become
convex.

2. Expectation-maximization (EM) [6] is an iterative scheme that is
specifically well suited for optimization given hidden variables.
Wang et al. [7] present an application of EM toward solving the
latent-variable maximum entropy approximation. We adapt the
EM to operate in the context of IRL where observed trajectories
have missing action factors and address associated challenges.

3. The inverse learning is evaluated on data with missing factors
collected from human demonstrations of a ball-sorting task. Hu-
mans sorted two types of colored balls (as substitutes for fruit)
while immersed in a motion capture system coupled with a video
camera; no force senors were utilized. We show that our ap-
proach allowed the learner – a robotic arm – to correctly learn
to sort the balls while realizing that a certain type of ball needed

1034

to be handled gently in order to complete the task successfully,
analogously to the human expert.

The generalized IRL that operates with possibly hidden data
is well suited for a variety of other tasks where portions of the
data may be occluded from the learner. This paper’s contributions
represent significant steps toward making IRL ready for real-world
applications.

Rest of this paper is organized as follows. We review IRL and
an entropy optimization method for such learning in Section 2.
Hidden variables are introduced in Section 3 and a generalization
of maximal entropy IRL in the context of hidden data is presented.
We evaluate the performance of the generalized IRL on two robotic
problem domains in Section 4 and discuss related work in Section 5.
Concluding remarks and future work is outlined in Section 6.

2. BACKGROUND
We briefly review IRL and a solution method that is based on

maximum entropy [8].

2.1 Inverse Reinforcement Learning
IRL [3] seeks to find the most likely reward function, RI , that an

expert I is executing. Current IRL methods typically apply in the
presence of a single expert where the expert has solved a Markov
decision process (MDP). Furthermore, they assume that this MDP
excluding the reward function is known to the learner. The expert
executes its policy multiple times and each (fully) observed tra-
jectory of arbitrary length T is a sequence of state-action pairs,
Y = (〈s, a〉0, 〈s, a〉1, . . . , 〈s,∅〉T), where ∅ is the null action and
Y belongs to the set of observed trajectories Y . Let Y be the finite
set of all trajectories of length T ; Y ⊆ Y.

As the space of possible reward functions is very large, the func-
tion is commonly expressed as a linear combination of K > 0
feature functions, RI(s, a) ,

∑K
k=1 θk φk(s, a), where θk are the

weights, and φ: S × AI → {0, 1}, is a feature function. It maps
a state from the set of states, S, and an action from the set of I’s
actions, AI , to 0 or 1. IRL algorithms use feature expectations to
evaluate the quality of the learned reward function. The kth fea-
ture expectation for a learned reward function RI is,

∑
Y ∈Y Pr(Y)∑

〈s,a〉∈Y φk(s, a). Alternately, the kth feature expectation may be
formulated as,

∑
πI∈ΠI

Pr(πI)
∑
s∈S µπI (s) φk(s, πI(s)). Here,

µπI (s) is the state visitation frequency: the number of times state s
is visited on using deterministic policy πI from the set of policies
ΠI . The expectations are compared with those of the expert’s from
its observed trajectory, φ̂k ,

∑
Y ∈Y

P̃ r(Y)
∑

〈s,a〉∈Y
φk(s, a), where

P̃ r(Y) is the empirical probability of Y . For example, if all tra-
jectories in Y are observed just once then we may obtain, φ̂k ,

1
|Y|

∑
Y ∈Y

∑
〈s,a〉∈Y

φk(s, a).

2.2 Maximum Entropy IRL
Multiple policies may induce matches with the observed feature

expectations equally well. In order to resolve this ill-posed problem,
the principle of maximum entropy is useful [8]. While multiple
formulations of the IRL problem exist that involve maximizing
entropy [4, 5], we focus on the approach by Ziebart et al. [4] in this
paper. Hence, we briefly review this problem formulation.

The approach maintains a distribution over all trajectories con-
strained to match the observed feature expectations while being
maximally noncommittal to any one trajectory. Mathematically, the
problem is formulated as a nonlinear optimization:

max
∆

(
−
∑
Y ∈Y Pr(Y) log Pr(Y)

)
subject to

∑
Y ∈Y Pr(Y) = 1∑

Y ∈Y Pr(Y)
∑
〈s,a〉∈Y φk(s, a) = φ̂k ∀k

(1)

Here, ∆ is the space of all distributions Pr(Y) and φ̂k is as defined
previously in Section 2.1.

We may apply Lagrangian relaxation bringing both the constraints
into the objective function and then solving the dual. The relaxed
objective function becomes,

L(Pr,θ, η) = −
∑

Y ∈Y
Pr(Y) logPr(Y) +

∑
k
θk(∑

Y ∈Y
Pr(Y)

∑
〈s,a〉∈Y

φk(s, a)− φ̂k
)

+ η(∑
Y ∈Y

Pr(Y)− 1
)

(2)

As Eq. 2 is convex for a deterministic MDP, taking the derivative
with respect to Pr(Y) and setting it to zero gives us the optimum:

∂L
∂Pr(Y)

= −log Pr(Y)− 1 +
∑
k

θk
∑
〈s,a〉∈Y

φk(s, a) + η = 0

Pr(Y) =
e
∑

k θk
∑
〈s,a〉∈Y φk(s,a)

Ξ(θ)
(3)

where Ξ(θ) is the normalization constant e−η+1; as such η may
easily be obtained. Plugging Eq. 3 back into the Lagrangian (Eq. 2),
we arrive at the dual Ldual(θ) which is concave. We have,

Ldual(θ) = log Ξ(θ)−
∑

k
θkφ̂k (4)

The dual above may be optimized to obtain θ∗ using the exponenti-
ated gradient descent [9]. The gradient,

∇Ldual(θ) =
∑

Y ∈Y
Pr(Y)

∑
〈s,a〉∈Y

φk(s, a)− φ̂k

involves summing over the set of all trajectories, which may be very
large. Ziebart et al. [4] suggest an efficient approach that calculates
the expected state visitation frequency and action distribution in-
stead. The feature expectations may be obtained easily given these
values.

3. MAXENT IRL WITH HIDDEN DATA
We consider situations where portions of the expert’s trajectory

encompassing some states, parts of actions or both are hidden from
the learner’s view. A simple modification to the maximum entropy
IRL reviewed in the previous section is to simply ignore occluded
portions of the trajectories when calculating feature expectations.
However, the gradient for those features that activate in the occluded
states only or due to occluded actions become zero. As a result, this
method may not learn weights for many features, which motivates a
principled way to managing hidden data.

We begin by providing a general formulation of maximum entropy
IRL with hidden data followed by applying it to our specific case
where components of actions cannot be observed by the learner.

3.1 General Formulation
Consider again the expert’s observed trajectory of length T , Y =

(〈s, a〉0, 〈s, a〉1, . . . , 〈s,∅〉T). Let Y be the observed portion of the
full trajectory X and denote the occluded portion as Z; in other
words, X = (Y ∪Z). Z could be a few more state-action pairs that

1035

were performed in a portion of the state space that is occluded from
the learner. It could also be the component of the expert’s action that
is hidden from the learner’s view.

Of course, we may simply ignore the occluded data [10]. However,
we hypothesize that a revised formulation of the maximum entropy
nonlinear program in (1), which allows for an expectation of Z
given Y provides a tighter solution. In other words, the resulting
distribution may possess lesser entropy because the observed Y
informs an expectation of Z effectively allowing more data.

Recall φ̂k in Section 2.1 whose analogous definition is
∑
X∈X

P̃ r(X)

×
∑

〈s,a〉∈X
φk(s, a). We may rewrite this as follows

∑
Y ∈Y

∑
Z∈Z

P̃ r(Y,Z)

×
∑

〈s,a〉∈X
φk(s, a). However, as Z is hidden we may treat it as a

latent variable and decompose the joint P̃ r(Y,Z) as,

φ̂
Z|Y
k ,

∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y)
∑

〈s,a〉∈Y ∪Z

φk(s, a) (5)

The maximum entropy program of (1) then changes to accommo-
date the hidden data as given below,

max
∆

(
−
∑
X∈X Pr(X) log Pr(X)

)
subject to

∑
X∈X Pr(X) = 1∑

X∈X Pr(X)
∑
〈s,a〉∈X φk(s, a) = φ̂

Z|Y
k ∀k

(6)

Here, ∆ is the space of all distributions Pr(X) and φ̂Z|Yk is as
defined in Eq. 5.

The key difference between the program of (1) and its general-
ized version above is in the computation of the observed feature
expectations, φ̂k, in the primary constraint. The original program
simply sums the value of the kth feature function across each 〈s, a〉
pair in the observed trajectory. However, as some 〈s, a〉 pairs may
be missing from the trajectory, we obtain an expectation of the hid-
den state-action pairs given the observed portion, Pr(Z|Y). Prior
probability P̃ r(Y) empirically approximates the true prior; we may
use the fraction of times Y appears in Y . Each pair in the complete
data Y ∪ Z is then utilized to find the observed feature function
counts.

The revised maximum entropy optimization above may be seen
as an application of Wang et al. [7]’s generalization of the maximum
entropy program to allow considerations of incomplete data to the
context of inverse reinforcement learning. This gives us the first
principled generalization of IRL to contexts involving hidden data
that does not simply ignore it. Notice that if Z is empty indicat-
ing that all data is observed, then X = Y and (6) reduces to the
maximum entropy program of (1). Thus, the above generalizes the
original maximum entropy program.

3.2 Hidden Actions
Motivated by the application of designing a robotic fruit sorter,

we consider the setting where the expert’s action consists of N >
1 components: AI = A1 × A2 × . . . × AN . A subset of these
components, M ≤ N are unobserved in its trajectory. Subsequently,
we may rewrite the set of actions as: AI = A1×A2× . . .×AM ×
. . .×AN . Let ÂI = A1 ×A2 × . . .×AM .

Given the above, Y reduces from the sequence of observed state-
action pairs to the observed state-action pairs where the actions
do not include the hidden component. Formally, Y = {〈s, a/â〉0,
〈s, a/â〉1, . . . , 〈s,∅〉T }, and Z = X/Y . The maximum entropy
program of (6) is applied to accommodate this hidden data.

Due to the presence of the conditional probability in the La-
grangian L(Pr(X),θ, η), the relaxed objective function is not con-
vex. Its partial derivative w.r.t. Pr(X) shown below may not yield
a closed-form solution:

∂L
∂Pr(X)

= −log Pr(X)− 1 +

K∑
k=1

θk
∑
〈s,a〉∈X

φk(s, a) +

K∑
k=1

θk


∑
Y ∈Y

P̃ r(Y)

∑
Z′∈Z

[∑
〈s,a〉∈X′

φk(s, a)−
∑

〈s,a〉∈X
φk(s, a)

]
Pr(X ′)

Pr(Y)2


+ η

where X ′ = (Y ∪ Z′) and Z′ is a hidden trajectory in Z. Wang
et al. suggest approximating the above partial derivative with the
following simpler form:

∂L
∂Pr(X)

≈ −log Pr(X)− 1 +

K∑
k=1

θk
∑
〈s,a〉∈X

φk(s, a) + η

Setting the above to 0 and solving for Pr(X) yields an optimum
for Pr(X) that is log linear:

Pr(X)∗ ≈ e

∑
k
θk

∑
〈s,a〉∈X

φk(s,a)

Ξ(θ)
(7)

Now that we have the (approximately) optimal value of Pr(X),
we seek to find the maximizing value of Lagrangian parameter vector
θ. In order to find this, Eq. 7 is substituted back in L(Pr,θ, η) and
we minimize the resulting dual to obtain the following:

Ldual(θ) ≈ log Ξ(θ)−
K∑
k=1

θk
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y)

×
∑

〈s,a〉∈Y ∪Z

φk(s, a) (8)

3.3 Expectation-Maximization
One way to obtain the maximizing value of parameter vector

θ is to again seek to perform the exponentiated gradient descent.
However, Eq. 8 may not offer a closed-form gradient due to the
presence of Pr(Z|Y). Alternatively, Wang et al. offer an EM-based
iterative scheme, which when adapted to our maximum entropy IRL
converges to a fixed point yielding θ that maximizes Eq. 8.

We seek to maximize the likelihood of Lagrangian parameters θ,
where the log likelihood is defined as LL(θ|Y) = log Pr(Y;θ).
This becomes,

LL(θ|Y) = log
∏
Y ∈Y

Pr(Y ;θ)P̃ r(Y) =
∑
Y ∈Y

P̃ r(Y) log Pr(Y ;θ)

=
∑
Y ∈Y

P̃ r(Y) log Pr(Y ;θ)
∑
Z∈Z

Pr(Z|Y ;θ)

=
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ) log Pr(Y ;θ)

1036

Rewriting Pr(Y ;θ) = Pr(Y,Z;θ)
Pr(Z|Y ;θ)

in the above equation we get,

LL(θ|Y) =
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ) log
Pr(Y,Z;θ)

Pr(Z|Y ;θ)

=
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ) (log Pr(Y,Z;θ)

−log Pr(Z|Y ;θ))

The above likelihood may be iteratively improved until conver-
gence (possibly to a local optima) by casting it in an EM scheme.
Specifically, the likelihood may be rewritten as,Q(θ,θ(t))+C(θ,θ(t))
where,

Q(θ,θ(t)) =
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ(t)) log Pr(Y,Z;θ)

(9)

C(θ,θ(t)) = −
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ(t)) log Pr(Z|Y ;θ)

Notice that in Eq. 9, we may replace Pr(Y,Z;θ) with Pr(X;θ),
and we may now substitute in Eq. 7. This gives us,

Q(θ,θ(t)) =
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ(t))

(∑
k

θk

×
∑
〈s,a〉∈X

φk(s, a)− log Ξ(θ)


= −

(
log Ξ(θ)−

∑
k

θk
∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;

θ(t))
∑
〈s,a〉∈X

φk(s, a)


Notice that the Q function above is almost the negative of the

dual Lagrangian presented in Eq. 8 with the only difference being
θ(t). On maximizing Q to convergence, we have θ = θ(t), due
to which we conclude that maximizing the Q function minimizes
the dual Lagrangian function. Therefore, approximately solving the
maximum entropy IRL of (6) for θ is equivalent to maximizing the
Q function; Theorem 1 states this formally.

THEOREM 1. Under the assumption that the distribution of the
complete trajectories is log linear, the reward function that max-
imizes the log likelihood of the observed incomplete trajectories
also maximizes the entropy of the distribution constrained by the
conditional expectation of the feature functions.

This gives us another path to a feasible solution to the generalized
IRL in (6) subject to the constraints and the log-linear model for
Pr(X)∗. However, due to the nonconvexity of the Lagrangian this
solution may not necessarily be the optimal one.

Using this insight, we may now split the primary constraint in (6)
into two portions and solve each separately.

3.3.1 E-step
The E-step involves obtaining a conditional expectation of the

K feature functions using the parameter θ(t) from the previous
iteration. We may initialize the parameter vector randomly. For all
k = 1 . . .K we obtain,

φ̂
Z|Y ,(t)
k =

∑
Y ∈Y

P̃ r(Y)
∑
Z∈Z

Pr(Z|Y ;θ(t))
∑

〈s,a〉∈Y ∪Z

φk(s, a)

3.3.2 M-step
This involves solving a simpler version of the constrained max-

imum entropy program of (6) by utilizing φ̂∗,(t)k from the E-step
above and the log linear model for Pr(X) to obtain θ.

max
∆

(
−
∑
X∈X

Pr(X) log Pr(X)

)
subject to

∑
X∈X

Pr(X) = 1∑
X∈X

Pr(X)
∑

〈s,a〉∈X
φk(s, a) = φ̂

Z|Y ,(t)
k ∀k

(10)

We point out that solving the nonlinear program above is facili-
tated by the fact that φ̂Z|Y ,(t)k is already available from the E-step
and therefore may be treated as a constant. Consequently, optimiz-
ing the relaxed Lagrangian for (10) becomes straightforward. The
iterative EM converges when θ obtained from the M-step is identical
to the previous θ(t).

Due to the presence of local optima, we perform restarts with
different initial values for θ and treat the run that achieved the
highest entropy as the optimal one.

4. PERFORMANCE EVALUATION
In this section, we describe the method for evaluating the perfor-

mance of the EM based IRL presented previously. We introduce
suitable baselines for comparison and report on our experiments.

4.1 Problem Domains and Features
We introduce two problem domains to evaluate the performance

of the EM based generalized IRL with hidden data.

UAV reconnaissance with ground cover Our first domain is a
simulation-only reconnaissance application in which an aerial drone
L tracks a fugitive I moving repeatedly through a grid of sectors
to a safe sector. The drone is tasked with learning the policy of
the fugitive from observing multiple runs over time each of which
differs because the fugitive starts at a random location and exhibits
a stochastic transition function. An important challenge is that some
of the sectors are forested, which provides cover for the fugitive.
Unfortunately, the fugitive’s action is completely occluded from L
in the forested sectors. We illustrate this domain in Fig. 1.

L

I

Figure 1: An overhead drone is tracking a fugitive moving
through a 3 × 4 grid of sectors. The fugitive’s movement is
partially occluded as it passes through the forest cover. The
sectors shaded blue and orange are safe and penalty sectors
respectively.

Learner L models the fugitive I as following the same policy
output from its MDP across the runs. The states, actions and tran-
sition function of the MDP are known to L; this is the standard
assumption in IRL although recent work seeks to partially relax this

1037

assumption [11]. The states of the MDP are the sector coordinates
(x, y) and I has four actions that move it in each of the four cardinal
directions. I’s transition function is modeled as I moving in the
intended direction successfully with a probability of 0.9 and the re-
maining probability mass is distributed to moving in the other three
directions. The reward function of the fugitive RI is modeled as a
linear combination of weighted feature functions. RI is composed
of the following three binary feature functions:

1. Cost of movement is the penalty for taking an action. This
encourages I to reach the safe sector quickly. It is used at all
states and actions;

2. Goal state reached is activated if I reaches the sector located
at (4,3);

3. Penalty state reached is activated if I reaches the sector
located at (4, 2) in the theater.

Learning from human demonstration of ball sorting The sec-
ond domain involves a learning robot L equipped with Trossen
Robotics’ PhantomX Pincher arm that is given data on humans
simulating a fruit sorting task. Humans are immersed in a Motion
Analysis, 8 Eagle camera system and are tasked with sorting 24
colored balls into two bins without deforming the balls. Motion
capture markers are placed along one of their arms and the wrist and
coordinate data is recorded in the Cortex software. A synchronized
video camera records the performance as well. L must successfully
perform the same task.

Four types of balls – 6 each – are present. These are laboratory
substitutes for ripe and regular fruit of two varieties. Balls made of
soft playable clay represent ripe fruit and must be handled gently.
Ping-pong balls and other solid balls can be handled regularly.

Despite the presence of the motion capture and video camera
system, a key factor in performing the task successfully remains un-
captured. This is the amount of force that is applied while grabbing
the balls and placing them in a bin. In particular, the soft clay ball
(substitute for ripe fruit) must be grabbed gently to avoid damaging
it while the hard ball (regular fruit) is grabbed with default force.
We show frames of two human subjects sorting the balls in Fig. 2.

Learner L models human I’s sorting behavior as guided by a
policy that is output from a MDP whose states, actions and transition
function are known to L. States of the MDP are combinations of
the following four factors: ball_position = { on table, in center, bin
1, bin 2}, ball_type = {1,2,3,4}, holding_ball = {true, false}, and
time_for_prev_action which is the time duration of the last action
discretized into 12 segments: {less than 0.3s, 0.3s, 0.4s, . . . , 1.3s,
greater than 1.3s}.

Human I performs one of the following seven actions:

• Grab hard denotes the hand grabbing a ball with default force
and sets the holding_ball factor to true;

• Grab soft denotes the hand grabbing a ball gently and sets
holding_ball to true.

On average, grabbing a ball gently is slower than grabbing it
by default. Both grab actions are applicable for states where
the ball position is on the table only;

• Move To center denotes the hand moving to the center position
while holding a ball. This action applies for states where the
hand has grabbed the ball that is on the table;

• Move to bin 1 is the hand moving to bin 1 while holding the
ball;

(a)

(b)

Figure 2: Video captures from our experiment showing a sub-
ject performing the ball sorting task. Notice that there are four
types of balls in all - soft clay balls of two colors and hard ping-
pong balls of two colors. Balls are sorted into two bins based on
their color. (a) Subject picks a hard ball, and (b) Subject places
a soft ball in one of the bins. Positions of the red bounding box
correspond to the states of the MDP.

• Move to bin 2 is the hand holding the ball moving to bin 2;

These actions that move the ball to the bins are applicable
when the ball is held and its position is in the center;

• Release hard places the ball with default force in a bin and
sets the factor holding_ball to false, and on average is faster
than grab soft; only for states in the center position

• Release soft places the ball gently in a bin and sets hold-
ing_ball to false.

On average, placing a ball gently in a bin is slower than plac-
ing it with regular force. Both release actions are applicable
when the ball is held and its position is in the center.

The transition function models each action as having its intended
effect with a probability of 0.9 with the remaining probability mass
distributed to the intended states of other actions applicable at the
current state. For the state variable time_for_prev_action, the re-
maining mass is distributed to the other values.

Finally, I’s reward function is modeled to have the following
feature functions:

• Release ball type X in bin 1 leads to 4 feature functions each
of which is activated when a ball of that type is placed in bin
1;

• Release ball type X in bin 2, 4 features each of which is
activated when a ball of that type is placed in bin 2;

• Handle ball type X gently also leads to 4 features each of
which is activated when the ball of the corresponding type is
grabbed and moved gently.

1038

 0

 2

 4

 6

 8

 10

 1 10 100

IL
E

Number of observed trajectories

MaxEnt IRL
Hidden Data EM

IRL*

(a)

 0

 5

 10

 15

 20

 25

 1 10 100

IL
E

Number of observed trajectories

MaxEnt IRL
Hidden Data EM

IRL*

(b)

 0

 2

 4

 6

 8

 10

 12

 1 10 100

IL
E

Number of observed trajectories

Hidden Data EM

(c)

Figure 3: Performance evaluation of all three methods on the UAV reconnaissance simulation. (a) ILE for all methods in the fully
observable setting. Notice that Hidden Data EM’s performance coincides with that of MaxEnt IRL as we may expect. (b) ILE for
the setting where the fugitive’s trajectories are partially occluded. (c) High levels of occlusion which changes randomly between
trajectories. Lower ILE is better. Vertical bars denote the standard deviation.

In total, the reward function is composed of 12 weighted feature
functions.

Parameters of the robot’s MDP are similar to those of the human’s
except that the arm took the same time to move the ball from the
table to the bin whether it is grasping the ball gently or not. However,
we noticed that the arm exhibited a greater tendency to drop the
ball when grasping it gently. Therefore, we modified the transition
function to reflect this property of the robotic arm. Specifically,
actions with the default (hard) grasp have a 0.89 probability of
being successful and 0.11 probability of dropping the ball. On the
other hand, movement actions involving a gentle grasp have an
increased 0.17 probability of dropping the ball while moving it to
the bin (values were determined empirically prior to the experiment).
Finally, the reward function features are the same as for the human.

4.2 Metrics and Baselines
In order to evaluate the performance of a method for IRL, it is

tempting to compare the learned reward function directly to the
actual reward function of I , RI , if available. However, the learned
reward function depends on the quality and quantity of the observa-
tions, and such comparisons ignore the fact that reward functions
different from I’s actual one may still result in the same optimal
policy as the one utilized by I; these reward functions should be
considered equivalent. Consequently, we adopt the metric used by
Choi and Kim [12], which compares between the value functions of
policies obtained from optimally solving I’s MDP and from solving
the MDP that is formed by using the learned reward function. In
other words, let RLI be the reward function learned by L, π∗I be
the optimal policy of I and πLI be the policy obtained by optimally
solving the MDP whose reward function is now RLI . Then, we use
the following inverse learning error (ILE) metric:

ILE = ||V π
∗
I − V π

L
I ||1

where V π
∗
I is the optimal value function of I’s MDP and V π

L
I

is the value function due to utilizing the policy πLI on I’s MDP.
In the event that the learned reward function results in a policy
identical to I’s actual optimal policy, π∗I = πLI , ILE will be 0; ILE
monotonically increases as the two diverge. Furthermore, use of the
difference in values also allows the error to grow proportionately
to the value of the states where the learned policy diverges thereby
placing emphasis on higher-valued states.

When the true reward function is unavailable we must utilize an-
other metric to show successful learning. As our fruit sorting domain
involves learning from humans with unknown reward functions we
evaluate the learned rewards by utilizing them to guide a real robot
in an apprenticeship learning procedure. Specifically, the learned

rewards are transfered to the robot’s MDP, which is then solved
optimally to obtain the policy executed by the robot. This allows us
to evaluate the performance of our new method by evaluating the
performance of the robot in its assigned task.

To provide a comparative baseline, we evaluate the EM based
IRL against two existing methods. First is a simple modification of
Ziebart et al.’s IRL that was reviewed in Section 2.2. Specifically,
occluded portions of the trajectories are simply ignored when calcu-
lating feature expectations. Thus the gradient for those features that
activate in the occluded states or due to occluded actions become
zero. As a result, this algorithm may not learn weights for many
features. We label this algorithm as MaxEnt IRL.

A second baseline is to use a single-expert version of the method
presented by Bogert and Doshi [10] that manages occlusion. While
this algorithm also ignores feature expectations due to occluded
states, it does not use the gradient and as such may find the correct
weights for most features. However, this method requires the set of
occluded states and actions to be fixed across all trajectories. As
such, it cannot be applied to scenarios where this changes between
observations. This method is labeled as IRL∗.

Finally, we note that a possible approach in the context of oc-
cluded actions when actions are deterministic or when the transition
stochasticity is very low is to simply fill in the blanks with the most
likely action that produces the observed state transition in the trajec-
tory. However, this approach becomes implausible in the context of
actions with moderate or high nondeterminism or when two or more
actions have similar transition probabilities; the latter case presents
itself in both our domains. As such, this approach lacks robustness
and a principled way of learning under occlusion is needed.

4.3 Experiments
We begin by comparing the performance of EM based IRL, la-

beled as Hidden Data EM, with the performances of MaxEnt IRL
and IRL∗ on simulations in the UAV reconnaissance domain. Each
method received up to 50 trajectories where a trajectory involved
movement by the fugitive for 5 steps. At least one path exists from
any start sector that reaches the safe sector within 5 steps. The
fugitive started at different locations and its state-action pairs con-
stitute the trajectory. The UAV can observe neither the state nor the
action of the fugitive when it is passing through sectors covered
by forest. Hidden Data EM used 10 restarts with random initial
feature weights and the result with the maximum entropy is chosen
as output.

Figure 3(a) reports the ILE as UAV L observes an increasing
number of trajectories in the absence of any occlusion. The data
points shown are the means of 100 runs. Here, we expect the per-

1039

Figure 4: A series of snapshots of the Phantom Pincher arm sorting the balls. We introduce balls one at a time due to lack of sufficient
space for several balls and the arm being small. The two bins with balls are visible on the left side of the arm. We show the deformed
clay ball due to mishandling and the non-deformed clay ball on the right.

formance of Hidden Data EM to be identical to the performance
of MaxEnt IRL because the former collapses into the latter when
the set Z is empty. Indeed, the performances of the two methods
coincide. IRL∗ performs slightly better than the other two methods
in this test – this may be attributed to its policy-oriented approach
making better use of available data.

Next, we compare all three methods under fixed occlusion (Fig.
3(b)) and when the occlusion varies between trajectories (Fig. 3(c)).
The latter may occur if the fugitive is tracked in different regions of
the theater that exhibit differing forest cover. Notice that MaxEnt
IRL performs much worse now due to occlusion and its ILE remains
significantly above 0 whereas the ILE of both IRL∗ and Hidden
Data EM eventually reaches zero. The difference between Hidden
Data EM and MaxEnt IRL is now statistically significant (paired
Student’s t-test, p < 0.001). For randomly varying levels of occlu-
sion, neither MaxEnt IRL nor IRL∗ are applicable as both require
the occluded state space to be the same across all trajectories. How-
ever, the EM-based IRL completes each trajectory with expected
information and uses it in the inverse learning thereby showing a
robust performance even for this pathological case.

Our second experiment involved sorting 24 balls of four types into
two bins using a Phantom Pincher arm. 1 Each of the three methods
learned a reward function from a single run (24 balls sorted) of the
ball sorting task performed by a human subject. As we mentioned
previously, the type of grasp employed by the human (gentle or
default grasp) is hidden from the learner’s view. Additionally, we
utilized a control method that used the MaxEnt IRL on trajectory
data in which the type of grasp was made explicit. Hence, there was
no occlusion; we refer to this method as Occlusion-free control
and it provides an upper bound performance for all other methods.
For a deeper analysis of the learned reward function, we show the
weights of the 12 feature functions learned by all four methods in
the Appendix.

Table 1 shows the performance of all four methods on the task
of sorting the 24 balls into two bins. Unable to infer the occluded
action, MaxEnt IRL utilized the default grasp while sorting the
balls thereby deforming 11 of the 24 balls. Nevertheless, it did sort
most of the balls correctly. IRL∗ correctly inferred that one type of
clay ball should be grasped gently but failed to arrive at a similar
conclusion for the second set of soft balls and incorrectly found that
the hard balls should also receive gentle handling. As a result, it
damaged 5 and dropped 3. On the other hand, Hidden Data EM
correctly learns a reward function – in 4 EM iterations – that has

1We replaced ping-pong balls with smaller balls because the former
were overly large for the Phantom’s small gripper.

Ball correctly Balls Balls
Method sorted dropped damaged
MaxEnt IRL 23 1 11
IRL∗ 21 3 5
Hidden Data EM 23 1 0
Occlusion-free control 23 1 0

Table 1: Performance of the various methods on the Phantom
Pincher arm on the ball sorting task. Notice that the EM-based
IRL did not damage any balls and dropped just one ball while
sorting. It’s performance is similar to our control method that
provides an upper bound.

the arm grasp gently all the balls of clay with the two colors. As a
result, none of the balls were damaged while one ball was dropped
during the sorting. All balls were correctly sorted into the two bins
by color. This strong performance by Hidden Data EM matches
that of the Occlusion-free control method.

We show a series of snapshots in Fig. 4 of an example run of
sorting the balls by the robotic arm. The right-most two snapshots
compare a deformed and nondeformed clay ball for reference. Notice
that most of the balls are correctly sorted at the end. A video of the
sort is available for viewing at https://www.youtube.com/
channel/UC0IivL24ibPm18FJwdN3ITw.

In summary, our generalized formulation of maximum entropy IRL
presents a plausible method for inversely learning from data that
suffers from occlusion. Experiments on two domains provide con-
vincing evidence that the method can operate in the context of
varying amount and type of occlusion – of state and components
of action. The EM converges quickly to a reward function that
accurately reflects that of the expert.

5. RELATED WORK
Ng and Russell [3] introduced IRL as a problem involving a

single subject agent learning from a single expert modeled as a MDP.
Inverse optimal control [13] generalizes IRL by allowing for control
frameworks other than MDPs as well. Previous improvements to
IRL include modeling the reward function as a linear combination
of features [14] and learning with noisy feature functions [15].

In this paper, we relax the key assumption that the entire trajectory
of the expert is fully observable, which has significant implications
toward making IRL more pragmatic. Bogert and Doshi [10] also
investigates maximum entropy IRL under occlusion. However, key
differences exist in its method and treatment of occlusion. It seeks
to maximize the entropy over all possible policies as introduced by

1040

Ball sorting task
Method φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 φ12

MaxEnt IRL 0.2213 0.2456 0 0 0 0 0.27 0.259 0 0 0 0
IRL∗ 0.8331 1.697 -0.4020 -0.44 0.25 0.26 1.08 1.07 1.08 1.06 0.61 -0.78
Hidden Data EM 0.1622 0.1033 0 0 0 0 0.1879 0.1647 0 0.37 0 0.0109
Occlusion-free control 0.0002 0.0001 0 0 0 0 0.0002 0.00006 0 0.5 0 0.4991

Table 2: Feature weights learned by all four methods from ball sorting data. φ1 - φ4: reward for sorting ball types 1-4 into bin 1, φ5 -
φ8: reward for sorting ball types 1-4 into bin 2, and φ9 - φ12: reward for handling ball types 1-4 gently.

Method Ball type hard and black Ball type soft and red Ball type hard and white Ball type soft and green
MaxEnt IRL To Bin 1 firmly To Bin 1 firmly To Bin 2 firmly To Bin 2 firmly
IRL∗ To Bin 1 gently To Bin 1 gently To Bin 2 gently To Bin 2 firmly
Hidden Data EM To Bin 1 firmly To Bin 1 gently To Bin 2 firmly To Bin 2 gently
Occlusion-free control To Bin 1 firmly To Bin 1 gently To Bin 2 firmly To Bin 2 gently

Table 3: Optimal policies learned by all four methods from the ball sorting data with hidden variables. While the state consists of
multiple variables, we show the robot’s action map for the main state variable of ball type here. Underlined actions are erroneous.

Boularias et al. [15] rather than over trajectories. More importantly,
it limits the optimization to the observed portions of the trajectories
only. Consequently, the Lagrangian gradient becomes undefined and
the method resorts to performing optimization using a technique
that does not utilize the gradient. In comparison, we seek to infer
expected data for portions of the trajectory that are occluded and the
use of EM allows us to continue using the Lagrangian gradient for
descent as shown by Wang et al. [7].

Few approaches investigate relaxing other knowledge require-
ments of IRL. Boularias et al. [16] propose model-free IRL with
a single expert, learning the reward function by minimizing the
relative entropy between distributions over trajectories generated by
a baseline and target policies. Importance sampling is used for com-
puting the relative entropy and the reward function reflects greedy
maximization at each state in the absence of a transition function.
In contrast, Bogert and Doshi [11] present a method that explic-
itly first learns the transition function under occlusion, making it a
semi-model based method, before moving to IRL.

6. CONCLUDING REMARKS
Motivated by real-world applications in robotics, we focused on

inverse reinforcement learning with partially occluded trajectories
by treating the missing data as hidden variables. We developed an
expectation-maximization based method to solve this problem and
examined its performance in a UAV reconnaissance domain. Our
approach improves on existing methods, which simply ignored the
missing information, by enabling learning in the presence of oc-
clusion that may even be dynamic; this is critical for real-world
scenarios where the learner or environment is dynamic. Addition-
ally, we demonstrated the value of our approach in an apprenticeship
learning from demonstration application in which a critical compo-
nent of the task being demonstrated is naturally hidden from the
learner. In future work we will continue relaxing the data require-
ments of IRL, such as focusing on noisy-data scenarios where the
learner observes the subject’s state or action with sensor noise; this
is common with robots.

Acknowledgments
This research is supported in part by a grant from NSF IIS-0845036
and a grant from ONR N000141310870. This paper benefited from
conversations with Brian Ziebart.

APPENDIX
All four methods utilized the data collected from the experiment that
involved humans sorting the balls. Recall that I’s reward function
contained 12 feature functions as described in Section 4.1. We show
the weights learned for these 12 feature functions by all four methods
in Table 2. Weights of features that should be minimized are φ3 to
φ6, φ9 and φ11. All methods give low weights to these. Among
the rest, φ10 and φ12 are most important and the reference method
Occlusion-free control gives high weight to these.

In Table 3 we also show broadly the policies obtained from the
MDPs with the reward functions learned by all four methods. It
provides key insight into the observed performances of the various
methods.

1041

REFERENCES
[1] Stuart Russell. Learning agents for uncertain environments

(extended abstract). In Conference on Learning Theory
(COLT), pages 101–103, 1998.

[2] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57(5):469–483, May
2009.

[3] Andrew Ng and Stuart Russell. Algorithms for inverse
reinforcement learning. In International Conference on
Machine Learning (ICML), pages 663–670, 2000.

[4] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In Twenty-Second Conference on Artificial
Intelligence (AAAI), pages 1433–1438, 2008.

[5] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse
optimal control with linearly-solvable MDPs. In International
Conference on Machine Learning (ICML), pages 335–342,
2010.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Ser. B, 39(1):1–38,
1977.

[7] Shaojun Wang, Dale Schuurmans, and Yunxin Zhao. The
latent maximum entropy principle. ACM Transactions on
Knowledge Discovery from Data (TKDD), 6(2):8:1–8:42,
2012.

[8] Henryk Gzyl. The Method of Maximum Entropy. World
Scientific, 1995.

[9] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated
gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63, 1997.

[10] Kenneth Bogert and Prashant Doshi. Multirobot inverse
reinforcement learning with interactions under occlusion. In
Autonomous Agents and Multi-Agent Systems Conference
(AAMAS), pages 173–180, 2014.

[11] Kenneth Bogert and Prashant Doshi. Toward estimating
others’ transition models under occlusion for multi-robot irl.
In 24th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1867–1873, 2015.

[12] J Choi and Kee-eung Kim. Inverse reinforcement learning in
partially observable environments. Machine Learning
Research, 12:691–730, 2011.

[13] RW Obermayer and Frederick A Muckler. On the inverse
optimal control problem in manual control systems, volume
208. NASA, 1965.

[14] Pieter Abbeel and AY Ng. Apprenticeship learning via inverse
reinforcement learning. In International Conference on
Machine Learning (ICML), page 1, 2004.

[15] Abdeslam Boularias, O Krömer, and J Peters. Structured
apprenticeship learning. Machine Learning and Knowledge
Discovery in Databases, pages 227–242, 2012.

[16] A Boularias, Jens Kober, and J Peters. Relative entropy
inverse reinforcement learning. In International Conference
on AI and Statistics (AISTATS), pages 182–189, 2011.

1042

