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ABSTRACT
Policy search has been successfully applied to robot motor
learning problems. However, for moderately complex tasks
the necessity of good heuristics or initialization still arises.
One method that has been used to alleviate this problem is
to utilize demonstrations obtained by a human teacher as
a starting point for policy search in the space of trajecto-
ries. In this paper we describe an alternative way of giving
demonstrations as soft via-points and show how they can be
used for initialization as well as for active corrections during
the learning process. With this approach, we restrict the
search space to trajectories that will be close to the taught
via-points at the taught time and thereby significantly re-
duce the number of samples necessary to learn a good policy.
We show with a simulated robot arm that our method can
efficiently learn to insert an object in a hole with just a min-
imal demonstration and evaluate our method further on a
synthetic letter reproduction task.

Keywords
Reinforcement Learning, Learning from Demonstration, Re-
inforcement Learning for Motor Skills, Dynamic Movement
Primitives, Keyframe Demonstrations

1. INTRODUCTION
Robotics research in recent years has been working to-

wards employing robots in unknown and often unstructured
environments. However, controlling a robot in these envi-
ronments poses major difficulties as the robot has to adapt
its actions to the environment and needs to perform tasks
with incomplete knowledge of the domain. Reinforcement
learning and policy search methods in particular have shown
great promise for autonomous learning of motor skills as tra-
jectories. However, due to the high dimensionality and size
of the state-action space, the required amount of samples
can be prohibitive. A prominent approach to overcome this
challenge is to use Learning from Demonstration to obtain
an initial trajectory and to ensure that the learning process
will quickly converge to the right optimum, see e.g. [15, 18,
4]. Unfortunately, this approach suffers from three major
issues: First, providing trajectories as demonstrations can
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be difficult due to the available input modalities. Record-
ing the desired trajectories using teleoperation or kinesthetic
demonstration can be difficult for the user and thus often
leads to undesirable pauses, sprints or imperfections. Sec-
ond, providing full trajectories as demonstrations does not
allow the user to put focus on critical segments and limits
exploration for segments that the user cannot demonstrate
as well as other parts of the trajectory. Third, demonstra-
tions are typically only provided as an initialization of the
policy search process. Refining a learned policy and remov-
ing undesirable effects usually requires a repeated recording
of the entire demonstration and cannot be limited to specific
aspects of the task. This problem is amplified if the policy
search process has already been started as the learned policy
can usually not be combined with new demonstrations.

To address these issues, we propose a method that uses
soft via-points to initialize and interactively shape the policy
search process. Recent research [1] has shown that via-point
based representations can be efficiently obtained by a hu-
man teacher in the form of demonstrations and provide the
teacher with a more natural way of teaching the desired tra-
jectory. This kind of demonstration can achieve smoother
trajectories by separating the act of moving the robot as a
teacher from the intended trajectory that the robot should
follow. Furthermore, it allows the teacher to focus on the
most important aspects of the trajectory. In this paper, we
introduce a method to use demonstrations in this form with
policy search methods based on Dynamic Movement Prim-
itives. More specifically, we look at policy search methods
that can optimize DMP parameters and thereby improve
the policy by evaluating parameters sampled around the
current best estimate of the optimal policy. This class of
policy search algorithms has shown great promise and in-
cludes methods such as PoWER [14], REPS [20], policy
search based on CMA-ES [8, 22] and PI2 [24]. By combining
these two approaches we allow the teacher to demonstrate
the salient points of a trajectory in a natural way while
autonomously learning and improving the shape of the tra-
jectory between those via-points. Our method achieves this
goal by learning a single and smooth trajectory that adheres
to the demonstrated via-points. Furthermore, we introduce
a method to modify existing policy distributions by selecting
the most likely trajectories based on the provided demon-
stration. Modifying the trajectory distribution in this way
allows the user to provide corrections to existing policies and
thereby shape the learning process. These corrections can
be applied to policies learned by demonstration, either con-
tinuous demonstrations or via-point based demonstrations,
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as well as to policies learned during the autonomous learn-
ing process. Finally, we propose to use models of via-points
to handle variations of tasks that differ in parameters such
as the position and orientation of key-objects in a manipula-
tion task. We show that this facilitates efficient contextual
policy search [13, 16] and allows to learn classes of tasks.

2. RELATED WORK
The work presented in this paper is focusing on policy

search for robotics. For a survey of this topic, see Deisen-
roth et al. [6]. Specifically, we are looking at utilizing pol-
icy search methods for learning Dynamic Movement Primi-
tives [10] that share the characteristic that they are sampling
directly from the current estimate of the optimal policy. One
example for this is the Covariance Matrix Adaption Evolu-
tion Strategy (CMA-ES) which has been used in [22] in
order to learn dynamic movement primitives based on a re-
ward signal. In [14], Kober et al. propose Policy Learning
by Weighting Exploration with the Returns (PoWER) which
uses regression weighted by rewards in order to obtain a new
policy. Another method in this class is PI2 [24] which uses
path integrals to improve on the current policy.

In our evaluation, we use Episodic Relative Entropy Pol-
icy Search (REPS) [20] as the underlying policy search
method. Peters et al. derive a sample based approxima-
tion of the optimal distribution of DMP parameters given
trajectory- and reward samples as well as a bound on the
KL-divergence between the optimized distribution and the
distribution from which the trajectories were sampled. Us-
ing this approximation, the mean can iteratively be updated
using weighted linear regression over the sampled DMP pa-
rameters and the variance can be updated by the weighted
sample variance. The proper weights can be calculated by
solving a convex optimization problem based on the bound
on the KL-divergence and the sampled parameters and re-
wards. We refer to [20] for details.

In this paper, we consider an approach based on direct-
ing the policy search with demonstrations obtained by a
human teacher. The field of Learning from Demonstra-
tion(LfD) has been extensively covered in [4] and LfD meth-
ods have successfully been combined with policy search for
Dynamic Movement Primitives [15, 18]. In particular, we
are looking at recording partial demonstrations in the form
of via-points which have a long history in trajectory genera-
tion. Teaching via-points by demonstrations is also known as
keyframe demonstration and has been shown to constitute a
user-friendly and efficient way to obtain demonstrations [1].
Wada et al. extract via-points from a continuous demonstra-
tion and show that these can be used to create a trajectory
that minimizes torque change [25]. Miyamoto et al. extend
this approach and apply it to learning robot motor skills [17].
Bitzer et al. introduce an approach that combines keyframe
demonstrations with reinforcement learning by learning a
lower-dimensional manifold to simplify the state-space for a
non-episodic reinforcement learner [3]. This method differs
from our approach in that it only learns a simpler state-space
representation and does not learn a heuristic for specific tra-
jectories. Utilizing corrections in order to change a policy
learned from demonstration has been introduced by Argall
et al. who propose to use tactile corrections [2]. While this
approach is interesting, it cannot be straight-forwardly in-
tegrated into autonomous policy search algorithms such as
the ones utilized in our approach.

Utilizing feedback from human teachers has been inves-
tigated in the field of interactive reinforcement learning.
Knox and Stone [12] introduce TAMER+RL, a reinforce-
ment learning framework that utilizes a reward signal ob-
tained by a human teacher in order to learn a regression
model that can fulfill a role similar to a Q-function. An-
other example is given by Griffith et al. [7] who have intro-
duced Policy Shaping. Policy shaping is utilizing rewards
obtained by a human teacher in order to learn a separate
policy. This policy can then be combined with the policy
learned by standard reinforcement learning methods. Judah
et al. [11] propose an integrated approach which optimizes a
modified objective function based on the reward as well as
on human feedback in the form of binary labels. All three
methods utilize feedback provided by a human teacher but
are different from our approach in that the feedback takes
the shape of a reward-like signal instead of demonstrations.
One can see both, the learning from demonstration based
approach as well as the interactive reinforcement learning
approach as belonging to a generalized class of algorithms
that utilize insight obtained by a human teacher in order to
improve the policy. In this view, the interactive reinforce-
ment learning is online and less structured whereas the clas-
sical learning from demonstration based approach is offline
and utilizes structured feedback. Our approach is structured
as well but can be used in an offline manner as well as online.

Another representation of distributions over trajectories
that can be restricted to go through specified via points
is called Probabilistic Movement Primitives and has been
proposed in [19]. Probabilistic Movement Primitives define
feed-forward trajectories directly as combination of basis-
functions and define operations on Gaussian distributions
over such trajectories. The conditioning operation defined
in this approach is similar to the operation for distributions
over DMPs introduced in section 3.2. However, while it
is likely that Probabilistic Movement Primitives could also
be used with our approach, we are focusing on Dynamic
Movement Primitives as they are more popular and better
understood.

3. APPROACH
In this paper, we want to utilize a human teacher in order

to provide corrections and suggestions before and during the
learning process. Our goal is to use this information to help
the learning algorithm converge to a better solution after
seeing fewer samples. Specifically, we propose a setup where
the teacher is observing the reinforcement learning process
and can, before starting the learning process or in-between
iterations, inspect the current estimate of the best policy
and provide suggestions by physically or remotely moving
the robot. Suggestions are recorded as soft via-points y∗

that the trajectories have to pass through at a specified time
t∗. In the case of corrections, the time t∗ can be naturally
recorded by having the user stop the robot during an execu-
tion in order to provide the correction. This process is illus-
trated in Algorithm 1. In the case of initial demonstrations,
the time t∗ can be estimated manually based on domain
knowledge. While choosing the right t∗ in this case may
require some thought, we have found that simple heuristics
such as distributing via-points equally in time or choosing
t∗ to be proportional to the spatial distance of the via-point
are usually sufficient.

We base our method on episodic policy search in the space
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of trajectories represented as Dynamic Movement Primitives
(DMPs) [10, 21] which we describe in detail in section 3.1.
These algorithms optimize the parameters of the DMP w.r.t.
a given reward function, often by a weighted average with
weights obtained based on a transformation of the rewards.
The parameters of the DMP uniquely define a policy and
thus, we loosely refer to the parameters θ as policy and
to the distribution over parameters π(θ) as policy distribu-
tion. To incorporate demonstrations and corrections into
this framework, we use the given via-points as a heuristic to
guide the learning process to the solution without directly
modifying the given objective function. To this end, we ob-
tain a modified policy distribution and sample only trajecto-
ries that are close to the demonstrated via-points. By mod-
ifying the policy directly, the effects of demonstrations and
corrections are immediate and the learning process never
samples trajectories that are far from the demonstrated via-
points. This leads to faster convergence and safer samples.
As we modify the policy directly, we require policy search
methods that improve upon the given policy in indepen-
dent iterations based on samples obtained directly from the
policy such as PoWER [14], REPS [20] and CMA-ES [22]
which obtain a new policy based on a weighted average of
the samples obtained from the old policy distribution as well
as PI2 [24].

In many cases it can be desirable to consider parameter-
ized tasks as this allows us to learn variations of a task in-
stead of optimizing for a single trajectory. For example, the
optimal trajectory in a manipulation task may depend on
the location of key objects. One way to solve tasks such as
these is to learn a linear model of the parameters µπ = AπΦ
for some features Φ to serve as the mean of the policy dis-
tribution [16]. To handle parameterized tasks, we generalize
our notion of via-points to models that are linear in Φ, i.e.
y∗ = BΦ where B is either derived from domain knowledge
or learned with linear regression.

Algorithm 1 Policy search with interactive demonstrations

1: Initialize π(0)(θ)← N (θ;µπ(0) ,Σπ(0))
2: Obtain initial via-points y∗, t∗ from demonstration
3: for y∗, t∗ ← y∗, t∗ do
4: π(0)(θ)← p(θ|y∗, t∗, µπ(0) ,Σπ(0)) (see Eqs. 18-21)
5: end for
6: for k ← 1 to N iterations do
7: π(k)(θ)← policy search iteration(π(k))
8: Execute trajectory defined by mean parameters µπ(k)

9: while teacher stops execution do
10: Record stop time t∗

11: Let teacher move the robot, obtain correction y∗

12: π(k)(θ)← p(θ|y∗, t∗, µπ(k) ,Σπ(k))
13: Execute mean trajectory defined by µπ(k)

14: end while
15: end for

3.1 Dynamic Movement Primitives
Policy search relies on optimizing the parameters of a

parametric policy representation. One such policy represen-
tation are Dynamic Movement Primitives which have been
introduced by Ijspeert et al. in [10]. DMPs are given as dy-
namical systems that are attracted by a goal position while
following a superimposed trajectory. As such they have the
property that they can adjust the goal position of the tra-

jectory separately from the shape of the trajectory. Further-
more, DMPs have the concept of a phase which is a function
of time which can be adapted by changing the time-scale.
This is meant to reduce the dependency on the time. DMPs
are defined as

ÿ = τ2α

(
β(g − y)− ẏ

τ

)
+ τ2fw(z), (1)

ż = −ταzz. (2)

where τ is the time scaling parameter and αz is a parame-
ter that shapes the phase function. α and β are parameters
that are analogous to the gains of a PD-controller and define
how the system is drawn to the goal of the trajectory which
is defined by g. fw(z) is the forcing function which deter-
mines the shape of the trajectory and is defined as a mixture
of radial basis functions with parameters K ∈ N, c,h ∈ RK

fw(z)
.
=

∑K
i=1 ϕi(z)wi∑K
i=1 ϕi(z)

z, (3)

ϕi(z)
.
= exp

(
−1

2

(z − ci)2

hi

)
. (4)

Commonly, the weights wi; 0 ≤ i < K are taken as the
parameters of the DMP that are learned by demonstration
or autonomously whereas the other parameters are given
as hyper-parameters. However, in some cases the goals are
not known. We therefore include the goal position in the
parameters θ

.
= ( gw ). K then determines the dimension-

ality of the parameter-space. In this paper, we are utiliz-
ing Gaussian distributions over DMP parameters as policy
distributions and optimize this distribution with respect to
the reward. The mean of this distribution π will be given
as a linear function of the features of the task parameters:
π(θ) = N (θ, AπΦ,Σπ).

3.2 Obtaining a Sample Distribution
Assuming that we have via-points obtained from demon-

stration as described above, we derive a modified policy dis-
tribution for the underlying policy search that passes close
to this via-point at the specified time t∗:

πH(θ)
.
= p(θ|t∗, y∗) ∝ p(y∗|t∗, σyI,θ)p(θ|t∗). (5)

The latter distribution over parameters θ denotes the prior
of where we assume that the human teacher would want
the samples to lie. A possible prior is the current policy
N (θ|µπ(k) ,Σπ(k)) where µπ(k) = Aπ(k)Φ. This prior is rea-
sonable as we want our samples to still follow the current
policy where no via points are given. The modified sampling
distribution then depends on the previous policy distribution
and is given by

πH(θ) = p(θ|t∗, y∗, Aπ(k) ,Σπ(k))

∝ p (y∗|t∗, σyI,θ)π(θ|Aπ(k) ,Σπ(k)) .
(6)

The former distribution p(y∗|t∗, σyI,θ) denotes the prob-
ability of a given DMP going through the specified via point
with a specified variance σy. This distribution is dependent
on the trajectory that the DMP is following. As DMPs are
defining accelerations as a linear differential equation, they
can be solved for y given a starting position and velocity in
order to obtain an estimate of the position at any given time.
Note that the solution will not be exact as a real robotic sys-
tem always has noise and the DMP will react to that noise
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(a) (b)

Figure 1: a) Rest position of the robot. The robot has to
find a trajectory that puts the object in the box. b) Via-
point with the key placed in front of the hole, as it was given
to the robot. All trajectories have to be close to this via-
point which gives significant aid for finding the opening in
the box.

as well as inaccuracies in the underlying controller. Only the
goal position is being tracked exactly. However, using this
estimate is reasonable as long as the noise of the estimate is
significantly smaller than the inaccuracies introduced by the
human teacher when recording a demonstration. Assuming
that we start from a rest position where the position y0 and
velocity ẏ0 are zero (we make this assumption for the sake
of simplicity. See the appendix for a derivation of the sam-
pling distribution for arbitrary y0 and ẏ0), the dynamical
system can be solved for the position y using Duhamel’s
principle [23]:( y

ẏ

)
=

∫ t

0

ht(s)
(

0
τ2(αβg+Ψ(z(s))Tw)

)
ds, (7)

where

ht(s)
.
= e

(t−s)
(

0 1
−τ2αβ −τα

)
, (8)

z(t)
.
= e−ταzt, (9)

Ψi(z)
.
=

ϕi(z)z∑K
j=0 ϕj(z)

. (10)

This equation is linear w.r.t the parameters θ and can there-
fore be written as:

y = ( 1 0 )

(∫ t

0

ht(s)
(

0
τ2(αβg+Ψ(z(s))Tw)

)
ds

)
(11)

= ( 1 0 )

(
gαβ

∫ t

0

ht(s)
(

0
τ2

)
ds

N∑
i=0

wi

∫ t

0

Ψi(z(s))ht(s)
(

0
τ2

)
ds

) (12)

= Mtθ, (13)

where

Mt = (m0 m1 ... mN+1 ) , (14)

m0 =

∫ t

0

αβht(s)
(

0
τ2

)
ds, (15)

mi;0<i<N+1 =

∫ t

0

Ψi−1(z(s))ht(s)
(

0
τ2

)
ds. (16)
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Figure 2: Rewards obtained over 20 trials during the learn-
ing process with and without via-points, plotted on a scale
that is linear from -10 to 10 and logarithmic outside of that
span. In 18 out of 20 trials, the learner with the via-point
finds the opening in the box and obtains a reward close to
zero. This results in a low standard deviation (error bars).
Without the via-point the learning process converges to a
local optimum.

Note that this equation is for a single dimension but can
straightforwardly be extended to multiple dimensions by ex-
tending M diagonally and adding rows to θ such that

y =

(
Mt 0 ···
0 Mt ···
...

...
. . .

)(
θ0
θ1

...

)
,

where θj denotes the parameters of the DMP for dimension
j. Therefore for DMPs, we can write the likelihood distri-
bution p(y∗|t∗, σyI,θ) as

p(y∗|t∗, σyI,θ) = N (y∗|Mt∗θ, σyI). (17)

Now we can calculate the sampling distribution as the pos-
terior distribution of the likelihood p(y∗|t∗, σyI,θ), encoding
information about the via-point, and the prior distribution π
which consists of the previously learned policy. For Gaussian
distributions, the sampling distribution is therefore given as

πH(θ) = N (θ|AHΦ,ΣH), (18)

ΣH
.
=
(

Σ−1

π(k) +MT
t∗σ

−1
y IMt∗

)
(19)

= Σπ(k) − Σπ(k)M
T
t∗ (σyI+

Mt∗Σπ(k)M
T
t∗

)−1

Mt∗Σπ(k) ,

(20)

AH
.
= ΣH

(
MT

t∗σ
−1
y IB + Σ−1

π(k)Aπ(k)

)
. (21)

Where the application of the Woodbury matrix identity in
Eq. 20 allows for numerically stable computation of ΣH .
This sampling distribution can then be used in place of the
policy in order to obtain the samples used in the next iter-
ation of the policy search as described in Algorithm 1.

4. EXPERIMENTS
In section 3, we showed how to derive a modified sam-

pling distribution based on via-points with timing informa-
tion that are provided by a human demonstration. In this
section, we first utilize a simulated robot arm to show that

1055



(a) (b)

Figure 3: a) Mean trajectory of initial policy (bottom) de-
rived from via-points (center). The trajectory is smooth
and barely deviates from the desired trajectory (top) even
in-between via-points. b) Mean trajectory (bottom) of ini-
tial policy derived from a continuous demonstration (center).
Especially the last letter shows how the trajectory mimics
imperfections of the demonstration.

such a modified sampling distribution can drastically im-
prove the outcome of a reinforcement learner by having it
learn how to insert an object in a hole while requiring only
minimal information from the user. We then utilize a word
reproduction task in order to provide a comparison to con-
tinuous demonstrations and to exhaustively analyze the key-
properties of our algorithm.

4.1 Object Insertion with a Robot Arm
In our first experiment, we are evaluating the influence

of a small number of demonstrated via-points on the rein-
forcement learning process and show that it can drastically
improve the convergence of the policy search. To this end,
we are utilizing a simulated 7 DoF robot arm and have it
learn how to insert an object into a hole without any knowl-
edge about the environment. We provide a single via-point
(see Figure 1b) and show that this is sufficient to lead the
learning process to the right solution which cannot reliably
be found without a demonstration. To learn this task, we
are utilizing our method with REPS as the underlying pol-
icy search algorithm to optimize the distribution over tra-
jectories. These trajectories are represented by 7 Dynamic
Movement Primitives with 6-dimensional weights leading to
a 49-dimensional action vector θ. For evaluation, the out-
come of the learning process is averaged over 20 trials with
30 policy search iterations per trial and 150 samples for each
iterations. As can be seen in Figure 2, the reward curve ob-
served by using the via-point is converging to a value close
to 0 and therefore the distance of the trajectory to the goal
position is converging to 0 as well. The learning process
initialized with a zero mean policy, on the other hand, is
converging to different values. This can easily be explained
by the local optima that arise around the box, i.e. the robot
is converging to solutions where the end-effector is pressing
against the middle of other the sides of the box in order to
get closer to the goal position. As a consequence, it stops
exploring the box and does not find the opening. Note that
the learning process always exceeds the initial reward ob-
tained by our approach as the reinforcement learner always
finds at least the closest points outside of the box which
cannot be derived by the provided via-point alone, i.e. the
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Figure 4: Comparison of reward obtained within 2000 sam-
ples, averaged over 30 trials. Error bars are showing the
standard deviation. The reward function is defined as the
minimum squared distance to the goal position. Learn-
ing initialized with via-points consistently outperforms the
learning process initialized with a continuous demonstration.

provided via-point is further away from the box than the
local optima.

4.2 Letter Writing
To further investigate the properties of this algorithm we

are evaluating our approach on a letter reproduction task as
well. Variations of this task have been used in the past to
evaluate different properties of Dynamic Movement Prim-
itives as it has many similarities with learning trajectories
for robot arms while allowing for intuitive visualization, easy
recording of demonstrations and thus good conditions for a
comparison to conventional demonstrations as well as fast
execution [10, 9]. The objective of the letter reproduction
task is to learn trajectories for both dimensions which, when
followed by a simulated pen, can accurately reproduce a se-
quence of letters. We are representing those trajectories as
DMPs with a 60 dimensional weight-vector for each dimen-
sion and initialize the policy by a continuous demonstration
or via-points before optimizing it using REPS. For the pol-
icy search, we defined the reward function as the number of

overlapping black pixels: − 104

#IntersectingPixels+1
. Note that

solving this task requires the learning algorithm to learn tra-
jectories that are far more complex than in the previous task
while utilizing a sparser reward signal. First, we will com-
pare our algorithm to learning trajectories from continuous
demonstrations as a baseline, then we will evaluate the use
of corrections after the learning process has started and fi-
nally we will show that linear models of via-points can be
used to learn policies that can reproduce trajectories with
different rotation and scaling factors.

4.2.1 Comparison to Continuous Demonstrations
The first instance of the letter reproduction task compares

learning initialized with a normal distribution around a con-
tinuous demonstration to learning initialized on a fixed set
of via-points at equi-distant points in time. In this experi-
ment we show that despite the lack of information between
via-points, our approach will converge to a more accurate
solution in fewer iterations. To obtain an initial policy from
a continuous demonstration, we use standard least squares
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(a) (b)

Figure 5: a) Mean trajectory of the initial policy (bottom)
derived by using only every second via-point (center). This
trajectory omits whole letters when compared to the desired
trajectory (top). b) Trajectory after 3 iterations (bottom),
when the second half of the via-points have been added (cen-
ter). The policy now shows the desired word and can be
improved in future iterations. The “r” is not fully formed
immediately after the correction due to learned behavior.

to learn the mean and then add an initial variance of 103 for
the weights and 5 for the goals of the DMPs. We have found
these values to yield the best result in the continuous case.
For policy search initialized with via-points, we start with a
multivariate normal distribution with mean 0 and a variance
of 105 for the weights and 500 for the goal positions. Note
that the higher initial variance is necessary as conditioning
on the via-points will otherwise lead to an overly narrow
distribution with each added via-point decreasing the vari-
ance of the policy. This initial distribution is then used
as the prior distribution to obtain a modified initial policy
based on the via-points that can be seen in Figure 3a. In
Figures 3a and b, it can be seen that the initial policy de-
rived from the via-points is very smooth whereas the initial
policy derived from a continuous demonstration mirrors the
imperfections of that demonstration. Note that these imper-
fections are often much larger in practice as policy search is
unnecessary in domains where given demonstrations already
solve the task perfectly. Furthermore, the figures show that
the errors introduced by missing information between the
via-points is of the same order as the errors that can be
introduced by linear regression and that the mean of the
initial policy is already describing a good trajectory which
leads to a fast learning process. Finally, Figure 4 shows
that our approach yields both, higher initial reward as well
as higher final reward and therefore better trajectories be-
fore and after the learning process, when compared to the
baseline. Note that the higher initial reward is tied to the
amount of exploration that is necessary in the beginning and
can, in many cases, be a desirable property when it comes to
safe exploration. While our approach only explores the areas
in-between the via-points, a reinforcement learner that has
been initialized with a continuous demonstration has to ex-
plore around the full trajectory. It is possible to reduce the
exploration around the continuous demonstrations; however
this would also reduce the final reward that can be obtained.

4.2.2 Active Corrections
One important aspect of the approach presented in this

paper is that via-points can be provided at any time and can
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Figure 6: Comparison of rewards obtained with the rest
of the via-points added after different numbers of samples.
Early demonstrations are clearly better than late demon-
strations but late demonstrations can still be effective.

be used to modify an already trained policy. This is espe-
cially useful in situations where the optimal trajectory is not
immediately apparent to the user. To investigate the impact
of providing via-points at later iterations we are looking at a
variation of the letter writing task where only every second
of the initial via-points are provided from the start. Figure
5a shows that this constitutes a far worse initial policy and
that we would expect large gains by providing the second
half of the via-points. As can be seen in Figure 5b as well
as in the reward curve in Figure 6, via-points provided at a
later point can indeed improve the policy significantly.

However, while giving the via-points after some number
of iterations can still cause a significant jump in reward, the
size of this jump decreases for later iterations. After some
time, the modified sample distribution will even decrease
the performance of the learning process. This effect can be
attributed to a mismatch of the chosen prior distribution,
i.e. the current policy, with the optimal prior distribution
which is the unknown policy according to which the human
teacher is sampling his via-points. As the learning process
converges to a sub optimal policy, it is impossible to sam-
ple trajectories that adhere to both, the learned policy as
well as the specified via-points. Depending on the value of
the variance parameter, the learner can then either sam-

(a) (b)

Figure 7: Example of giving via-points interactively. a)
Original policy in comparison to the desired trajectory (top)
and the via-point that has been provided as a correction
(bottom). b) Mean of the modified policy. The trajectory
goes through the via-point (top) and thereby matches the
desired trajectory more closely (bottom).
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Figure 8: Reward obtained by contextual REPS shows that
via-point models are an effective initialization. Rewards on
the non-parametric task are displayed for comparison. The
initial reward is identical due to the linear model and is
improved upon significantly in both cases.

ple degenerate trajectories from low-probability areas of the
current policy or ignore the given suggestion. The variance
parameter is thus a measure of safety and specified how far
the new policy can stray from the learned policy in order
to adhere to the correction. To avoid this effect, via-points
should always be given while the uncertainty in the current
policy is relatively high in comparison to the deviation of
the via-points from this policy. Note that in this experi-
ment, the via-points are already known from the start even
if the agent doesn’t utilize them. This allowed us to ana-
lyze the effect of giving late demonstrations without having
to account for the human factor. However, in practice, late
demonstrations should be given depending on trajectories
sampled from the current policy. This way, the user can
actively shape the trajectory and guide the learning process
to the right solution. We illustrate the process of providing
via-points interactively and show the impact of a correction
in Figure 7.

4.2.3 Evaluation of Learning with Linear Models
For the third experiment, we investigated the properties

of learning a parametric generalization of the above task
with a linear via-point model. We are looking at learning
a model that can recreate words with respect to rotation
and scaling of the target image. Note that similar kinds of
parametric tasks can be found in practice, where the pa-
rameters often denote the location and orientation of an
object. We are assuming that good features are known as
this would be a necessity for obtaining a via-point model
in practice. In this case we are using the feature vector
(sxcos(θ), sycos(θ), sxsin(θ), sysin(θ), 1) with sx and sy rep-
resenting the scaling and lie between 0.6 and 1.4 whereas θ
represents the rotation of the target image which lies be-
tween -45 and 45 degrees. The linear via-point models are
then given w.r.t. these features and are used for learning a
linear Gaussian policy using locally linear weighted regres-
sion and contextual REPS. Figure 8 shows that the initial
policy adapts to the task parameters and that it can be used
in conjunction with contextual REPS to obtain a similar re-
ward curve for arbitrary rotations and scaling as for a single
instance of the task.

5. CONCLUSION
In this paper we introduced an approach to utilize par-

tial demonstrations to interactively guide the policy search
process. We have shown that our approach of using soft via-
points significantly outperforms continuous demonstrations
when used to initialize the learning process. Furthermore,
our results show that our approach can be used to guide the
learning process in an interactive way, utilizing the knowl-
edge gained from observing the robot to change specific as-
pects of the policy. Finally, we have shown that we can use
linear models of via-points to generalize over variations of a
task.

One key insight is that when applying our method dur-
ing the learning process, the results are largely dependent on
the covariance of the already learned policy. While sampling
completely new trajectories ensures that the robot contin-
ues exploration and does not return to the original trajectory
after reaching the via-point, it also requires a prior distri-
bution that specifies sensible trajectories. In our approach,
this distribution is given by the policy search. In the fu-
ture, we plan to investigate other prior distributions based
on different models of how humans give via-points to allow
providing corrections to already converged policies. Further-
more, for each via-point the user is required to specify an
exact point in time. We plan to relax this assumption and
allow the user to specify distributions in time as the impor-
tance of preserving the timing is heavily dependent on the
task. Finally, the method presented in this paper is based on
the assumption that the policy is a Gaussian distribution.
While this can be a reasonable assumption, there are cases
where other distributions would be preferable. Multi-modal
policies, for example, can be used to learn tasks with mul-
tiple solutions [5]. In the future, we would like to explore
this avenue and extend our approach to different types of
policies.

Acknowledgments
This work was conducted as a part of the OpenLabs project
1436618 sponsored by PSA Peugeot and partially funded
under ONR grant number N000141410003.

APPENDIX
A. DERIVING πH(θ) FOR ARBITRARY INI-

TIAL POSITIONS AND VELOCITIES
In section 3, we derived a sampling distribution under the

assumption that y0 = 0 and ẏ0 = 0. However, while y0 = 0
can be assumed w.l.o.g., ẏ0 = 0 is only true for trajectories
that start from a rest position. Here, we derive an equivalent
sampling distribution for the general case. In the general
case, the closed form for dynamic movement primitives is
given by

( y
ẏ

)
=

∫ t

0

e
(t−s)

(
0 1

−τ2αβ −τα

) (
0

τ2(αβg+Ψ(z(s))Tw)

)
ds

+ e
t

(
0 1

−τ2αβ −τα

) ( y0
ẏ0

)
. (22)

And therefore

y = Mtθ + c (23)

1058



where

c
.
= ( 1 0 ) e

t

(
0 1

−τ2αβ −τα

) ( y0
ẏ0

)
. (24)

The sampling distribution p(θ|t∗, y∗) = N (θ|AHΦ,ΣH) is
then computed with the modified likelihood distribution

p(y∗|t∗,θ) = N (y∗|Mt∗θ + c, σyI). (25)

The mean of this distribution differs slightly from the dis-
tribution derived in section 3 so that

AHΦ = ΣH
(
MT

t∗σ
−1
y I (BΦ− c) + Σ−1

π(k)Aπ(k)Φ
)
. (26)

Note that we can assume w.l.o.g. that Φ is of the form
Φ = ( Φ1 Φ2 ··· 1 )T . The sampling distribution is then de-
fined by

ΣH
.
= Σπ(k) − Σπ(k)M

T
t∗(

σyI +Mt∗Σπ(k)M
T
t∗

)−1

Mt∗Σπ(k) ,

(27)

AH
.
= ΣH

(
MT

t∗σ
−1
y I (B − ( 0 ... 0 c )) + Σ−1

π(k)Aπ(k)

)
.

(28)
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