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ABSTRACT
We consider the multi-robot task scheduling problem with prece-
dence constraints, and introduce a general algorithm to approxi-
mate a solution to this problem. Our algorithm utilizes an iterated
auction scheme, in which a batch of tasks that are pairwise uncon-
strained is selected in each iteration and scheduled using a modified
sequential single-item auction. This algorithm also gains flexibility
by allowing the use of task prioritization to order the scheduling
process. We demonstrate the effectiveness of this iterated auction
scheme empirically using existing 100- and 1000-task data sets that
we have modified to include precedence constraints.

1. INTRODUCTION
The basic task scheduling problem has been studied in many

variations and in many domains, with applications in operations
research, parallel processing, and robot routing. The last of these
in particular often requires robots to travel to a specified location in
order to complete a task; the resulting problems are typically NP-
hard and therefore intractable in general. As a result, scheduling
heuristics and approximation algorithms are used.

In robot routing, auction-based algorithms have risen to promi-
nence, providing a strong decentralized approach to task schedul-
ing. Auctions have the advantage of being naturally decentralized
(offloading most of the computation into each robot’s calculation of
its bids), as well as being flexible to different team objectives and
problem types.

Here we study the precedence-constrained multi-robot task allo-
cation problem with homogeneous robots (henceforth PC-MRTA),
which is NP-hard (it is shown in [16] that a special case of PC-
MRTA is NP-hard). This problem falls under the XD[ST-SR-TA]
category of the MRTA taxonomy given in [14], since precedence
constraints impose cross-schedule dependencies, robots can exe-
cute at most one task at a time, tasks are assigned to single robots,
and multiple tasks can be assigned to each robot (so the problem is
time-extended). Unlike many other MRTA problems, this problem
(in the general form, allowing arbitrary precedence constraints) has
not been thoroughly studied, perhaps due in part to its complexity
even for approximation.

In this paper, we develop an auction-based algorithm which gives
a decentralized method of approximate solution for PC-MRTA and
generalize this algorithm to make use of methods for task prioritiza-
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tion. We analyze this algorithm’s complexity, prove its soundness
and completeness, and demonstrate its performance empirically us-
ing modified versions of the Solomon [25] and Gehring-Homberger
[5] data sets for the vehicle routing problem with time windows.

2. RELATED WORK

Multiprocessor Scheduling
The problem of task scheduling with precedence constraints is well-
studied within the parallel processing literature. Graham [7] gives a
(2− 1

m
)-approximation algorithm for scheduling under precedence

constraints with the minimum-makespan objective. However, this
problem is substantially simpler than ours, in which robots must
travel between tasks.

Multiprocessor scheduling algorithms often make use of linear
programming (LP) relaxations; in [9], a 7-approximation is given
for precedence-constrained problems with release dates (i.e. ear-
liest start times) using task completion times in the LP-relaxed
schedule to order tasks for simple list scheduling. Chekuri et al. [1]
improve this bound, and it has been shown that using LP midpoints
to order the tasks gives a 4-approximation for the more general con-
straint of precedence delays [22]. This result in particular is entic-
ing; precedence delays specify an amount of time that must elapse
before each task can begin after its predecessors, which evokes a
comparison with travel time. Unfortunately, precedence delays are
not general enough to incorporate travel time, which varies based
on a robot’s prior location.

Another important aspect that is lacking (for our purposes) in
these methods is a decentralized approach. List scheduling algo-
rithms can often be adapted into an auction framework, but in gen-
eral multiprocessor scheduling algorithms are not designed with
this goal in mind. In MRTA, however, auction-based approaches
are desirable due to their flexibility, decentralized nature, and ro-
bustness to failure.

Multi-robot Task Allocation and Scheduling
For the simple case of the MRTA problem in which robots are
homogeneous and need only to visit tasks in order to complete
them, the sequential single-item (SSI) auction from [15] gives a 2-
approximation for the total sum-cost of the resulting schedule and
a 2m-approximation for the makespan [16]. The SSI auction has
been shown both effective and computationally inexpensive com-
pared to other auction schemes [13].

A more general approach using a mixed integer LP (MILP) model
similar to ours was taken by [6], but this model was strictly central-
ized. In [10] a decentralized method is introduced that performs
well, but for a problem variant that is not sufficiently general to
extend to PC-MRTA.
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Luo, Chakraborty, and Sycara [17] recently introduced an auction-
based algorithm for multi-robot assignment of tasks for a particular
special case of PC-MRTA, in which precedence constraints are in
a form called set precedence constraints (SPCs). The SPC prob-
lem partitions tasks into sets with size at most equal to the number
of robots. These sets are strictly ordered, giving a precedence re-
lationship. The resulting problem is similar to ours, but heavily
constrains the space of allowable precedence graphs. In particular,
if we view the precedence graph by layers (described in more detail
later), SPCs require that every task in a layer has a precedence con-
straint between it and every task in the next layer. This is equivalent
to saying that the topological ordering of an SPC precedence graph
is unique up to changing the order of tasks within each set. They
also require that robots complete at most one task per set. This
method is therefore too restrictive to apply to our problem.

In [24], a distributed solution to a problem similar to ours is
presented. However, this solution computes essentially a greedy
schedule initially, and then adapts this schedule during task execu-
tion. Our goal by contrast is to compute the entire schedule initially,
which does not require communication during task execution.

Distributed Constraint Optimization
Distributed Constraint Optimization Problem (DCOP) [19] models
and algorithms offer an alternative framework for PC-MRTA. How-
ever, solving DCOP exactly is NP-hard and impractical even for
unconstrained MRTA problems [11]. Thus, approximate methods
such as Max-Sum [4] have been used for task allocation in sensor
networks and in RoboCup Rescue [23].

Various other methods have been proposed for solving varieties
of DCOP [23, 18, 3, 27]. However, despite the wealth of literature
on DCOP models and solutions, we are unaware of any work that
has extended DCOP to handle general precedence constraints.

3. PROBLEM DEFINITION
We are given T , a set of n tasks with precedence constraints. The

precedence constraints can be encoded with a precedence graph,
i.e. a directed graph GP = (T , E), where if t1 ≺ t2 (or equiv-
alently, if (t1, t2) ∈ E), then the task t1 is a predecessor of t2
and must be completed before any robot begins executing t2. It is
straightforward to see that GP must be acyclic for a valid schedule
to exist. We allow any valid precedence constraints on the tasks;
i.e. GP may be any directed acyclic graph (DAG) over the tasks.

Additionally, we have R, a set of m robots, each with an initial
location. This initial location is allowed to differ from robot to
robot, but R is otherwise homogeneous. Each task has a location
associated with it that a robot must be at to execute the task.

A valid schedule for PC-MRTA consists of a partitioning of T
across R (allocation) and a schedule for each robot which speci-
fies the time at which each allocated task is executed. These robot
schedules must collectively respect the precedence constraints on
T . The makespan of a schedule S is defined as the latest finish
time of any task in S, i.e. the maximum robot finish time. Our goal
is to minimize this value, which is similar to the MiniMax team
objective in e.g. [16, 26, 28].

The mathematical model for this problem is described in Fig-
ure 1. The model adds a set of dummy tasks Td at the robots’
initial locations to represent their starting positions. The decision
variables include the continuous and nonnegative start (Stj ) and
finish (Ftj ) time variables for each task, the makespan variable Z,
the binary assignment variables Aritj , Y ritj , and the precedence or-
dering variablesXri

tj ,tk
. The variableAritj is 1 if task tj is allocated

to robot ri, Y ritj is 1 if tj is the last task for ri, and Xri
tj ,tk

is 1 if

minimize: Z (2)
subject to: Z ≥ Ftj , ∀tj ∈ T (3)∑
ri∈R

A
ri
tj

= 1, ∀tj ∈ T ∪ Td (4)

∑
tj∈Td

A
ri
tj

= 1, ∀ri ∈ R (5)

∑
tj∈T

Y
ri
tj

= 1, ∀ri ∈ R (6)

∑
tj∈T ∪Td,tj 6=tk

X
ri
tj ,tk

= A
ri
tj
, ∀tk ∈ T , ri ∈ R (7)

∑
tk∈T ,tj 6=tk

X
ri
tj ,tk

+ Y
ri
tj

= A
ri
tj
, ∀tj ∈ T ∪ Td, ri ∈ R (8)

Ftj + d(tj , tk)−M(1−X
ri
tj ,tk

) ≤ Stk ∀tj , tk ∈ T , ri ∈ R (9)

0 ≤ Stj ≤ ∞, ∀tj ∈ Td (10)

0 ≤ Ftj ≤ ∞, ∀tj ∈ T ∪ Td (11)

Ftj − Stj ≥ dur(tj), ∀tj ∈ T (12)

Stk − Ftj ≥ 0, ∀(tj , tk) ∈ Tprec (13)

A
ri
tj
∈ {0, 1}, ∀tj ∈ T ∪ Td, ri ∈ R (14)

Y
ri
tj
∈ {0, 1}, ∀tj ∈ T , ri ∈ R (15)

X
ri
tj ,tk

∈ {0, 1}, ∀tj , tk ∈ T ∪ Td, ri ∈ R (16)

Figure 1: Mixed Integer Program for PC-MRTA

robot ri performs task tj followed by tk. The model accounts for
the time robots spend traveling between tasks, d(tj , tk), and the
duration of tasks, dur(tj).

The model variable Z is a continuous positive variable that re-
places the optimization objective in Equation 1. We linearize the
optimization objective by making Z the upper bound for all finish
times across all tasks, i.e.

Z = max
tj∈T

Ftj (1)

In this model, constraint (2) defines the makespan as the latest
finish time of any task. Constraints (3-4) ensure that each task is
assigned to exactly one robot, and that each robot has a dummy
task; constraints (5-7) limit the number of final tasks for each robot
to one and ensure that all tasks that are not scheduled first or last
have predecessors or successors respectively. Constraints (8-11)
are temporal constraints that enforce that robots have time to travel
between and execute their tasks, and constraint (12) establishes a
relationship between start times of dependent tasks (Tprec), such
that a task never starts before its predecessors. In constraint (8) M
is a large value, which is part of the big-M formulation for mixed
integer program constraints.

4. THE ITERATED AUCTION ALGORITHM
Our algorithm is in the form of an iterated auction, which re-

peatedly uses a modified version of the sequential single-item (SSI)
auction to schedule tasks in batches. In particular, batches of tasks
are selected such that the tasks are pairwise independent, so that
they can be scheduled without regard for when the other tasks in
the batch are scheduled. This task independence is the main as-
sumption of the SSI auction. The batch selection and auctioning
process is managed by an auctioneer, while robots serve as bidders.
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(a) (b) (c)

(d) (e) (f)

Figure 2: A demonstration of the iterated auction. The number in a square next to each node in (b)-(f) represents that task’s priority.
Priorities have been assigned arbitrarily to illustrate the batch selection process. (a) The initial task precedence graph. (b) The labeling of the
precedence graph by layers. (c) The identification of the critical node, and batch selection for the first iteration of pIA. (d) The new labels for
the precedence graph after the first iteration. (e) Batch selection for the second iteration. (f) The remaining tasks are scheduled in the final
iteration.

Henceforth we will use the term ‘free’ to describe task nodes
with no parents, and for a set of tasks A we let free(A) be the set
of tasks in A which have no predecessors in A. In explaining the
operation of the iterated auction algorithm, it is helpful to visualize
the task precedence graph GP as a DAG with nodes grouped into
layers, as shown in Figure 2b. The first layer, TF , is the set of
tasks with no predecessors, i.e. TF = free(T ). The second layer
is then TL = free(T \ TF ), and so on for successive layers. In our
notation, TH is the set of tasks which are not in TF ∪ TL, i.e. the
‘hidden’ tasks which are not free or second-layer. We refer to TH
as ‘hidden’ tasks because in a given iteration the tasks in TH do not
affect the scheduling process.

It is important to note that no precedence constraints exist be-
tween tasks in any layer of GP . To see this, just consider that if a
constraint did exist within a layer, then the child node would not be
free, which contradicts the layer selection process (see Figure 2b).
This allows us to use the modified SSI auction, since the tasks in
each layer can be scheduled in any order with respect to each other
without violating constraints.

4.1 The Simple Iterated Auction
We will refer to the simplest iterated auction algorithm as the

Simple Iterated Auction (sIA). In sIA, the batches of tasks to be
auctioned are the layers of GP . In each iteration, the auctioneer
selects the top layer of tasks, TF , and sends them to each robot; the
robots then compute and send bids to the auctioneer, which selects
the robot with the lowest bid and assigns the corresponding task
to it (as in an SSI auction; see e.g. [15, 16] for a more detailed
description). The pseudocode for sIA is given in Algorithms 1-4 if
all tasks are taken to have priority zero. Alternatively, one obtains
full pseudocode for sIA by removing line 5 from Algorithm 1 and
replacing line 6 with Tauct = TF (so that the entire first layer is
auctioned). Since the algorithm presented in the next section is
more general than sIA in this sense, we defer the full description of
the process to the following sections.

4.2 The Iterated Auction with Prioritization
The simplicity of sIA is appealing, and allows the iterated auc-

tion process to be easily visualized as peeling layers from the task
precedence graph. By adding a precomputation step in which tasks
are assigned a numerical priority (which we discuss later), we can
guide the scheduling process. Put simply, in each iteration only the
tasks in TF that are high-priority with respect to the tasks in TL
are scheduled, as shown in Figure 2c. This allows less important
first-layer tasks to be delayed so that important tasks not in TF can
be completed sooner. We call this the Iterated Auction with Priori-
tization (pIA).

The pseudocode for the auctioneer’s role in pIA is given in Algo-
rithm 1. In lines 1-2, tasks are partitioned into TS , TF , TL, and TH
based on whether they have been scheduled, are free, are second-
layer, or are ‘hidden’; this is shown in Figure 2b. In line 3, the
arrays F and PC are initialized; F stores the latest finish time of
tasks that have been scheduled, while PC stores the earliest valid
start time for tasks whose preconditions have been scheduled. Note
that the tasks initially in TF can be started at any time, so the values
of zero in PC are appropriate for these tasks.

In each iteration (starting in line 4), the auctioneer finds the ‘crit-
ical value’ c, which is the maximum priority of any second-layer
task (shown in line 5 of Algorithm 1; in this paper, we use the con-
vention that max∅(x) ≡ 0 for all x). We will occasionally refer to
a task in TL with priority c as a critical node in the context of the
task precedence graph. In line 6, the first-layer tasks with priority
at least as high as the critical value (see Figure 2c) are then selected
as Tauct. The tasks in Tauct are then auctioned in line 7 using the
same modified SSI auction as in sIA. The robots’ algorithm for this
auction is shown in Algorithm 3.

In the modified SSI auction, the auctioneer sends Tauct to each
robot along with the earliest start times for the tasks in PC. In
parallel, the robots each find the task in Tauct for which their bid is
lowest and submit this (task, bid) pair to the auctioneer (lines 2-12
of Algorithm 3). The auctioneer then sends the (robot, task) pair
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Algorithm 1 Auctioneer’s algorithm for pIA

Input: Precedence graph GP = (T , E), robotsR
1: TS = ∅, TF = free(T )
2: TL = free(T \ TF ), TH = T \ (TF ∪ TL)
3: Initialize arrays F , PC to zero
4: while |TS | < n do
5: c = maxt∈TL(prio(t))
6: Tauct = {t ∈ TF : prio(t) ≥ c}
7: ModifiedSSI(Tauct, PC)
8: ReceiveFinishTimes(R,F )
9: for all t ∈ Tauct do

10: UpdatePrecGraph(t, PC, GP )
11: end for
12: end while
13: return F

Algorithm 2 UpdatePrecGraph

Input: Task t, array PC, precedence graph GP
1: Move t : TF → TS
2: for all t′ ∈ TL∩ children(t) do
3: if parents(t′) ⊂ TS then
4: Move t′ : TL → TF
5: PC[t′] = maxt′′∈parents(t′)(F [t′′])
6: for all t′′ ∈ TH∩ children(t′) do
7: if parents(t′′) ⊂ TS ∪ TF then
8: Move t′′ : TH → TL
9: end if

10: end for
11: end if
12: end for

with the lowest bid to each robot, shown in line 13 of Algorithm
3. In lines 14-16, the winning robot updates its schedule to include
the new task. The auction continues in this way until all of Tauct
has been scheduled. In line 19 of Algorithm 3, each robot calls
‘TightenSchedule’ (Algorithm 4), which updates the finish times
in F and imposes constraints on the tasks the robot has scheduled
so that they cannot be delayed. This is done to ensure precedence
constraints are satisfied, and is discussed in more detail below.

After the modified SSI auction finishes, the auctioneer collects
the finish times for Tauct and updates F , shown in line 8 of Algo-
rithm 1. The last step in each iteration is the call to ‘UpdatePrec-
Graph’, in which the auctioneer maintains the labeling of tasks as
e.g. second-layer. The value PC[t] for each task t that has been
freed in the current iteration is also set during this step to the latest
finish time of any parent of t. This allows robots to enforce that a
task is not begun before its predecessors finish.

4.3 Robot Scheduling and Bidding
We have until now glossed over the mechanisms by which robots

maintain their schedules and compute bids, mainly because it is
more complicated than the rest of the discussion. In the basic SSI
auction, the robots simply receive tasks from the auctioneer, com-
pute the cheapest insertion of each task into their existing schedules
(this is called the insertion heuristic), and place a bid (usually either
the cost of insertion or the makespan after insertion). The winning
robot then inserts the corresponding task into its schedule.

Since our goal is to minimize the makespan, our robots bid the
makespan of the new schedule (which prevents overencumbered
robots from being assigned more tasks if other robots can help).
Note that a robot’s bid is a function only of its current schedule
and the additional task under consideration; robots are not aware of

Algorithm 3 Robot r’s algorithm for each auction

Input: Set of tasks Tauct, earliest start times PC
Output: Vector of finishing times F
1: while |Tauct| > 0 do
2: b =∞
3: tbid = ∅
4: for all t ∈ Tauct do
5: for all positions p in current schedule S do
6: Insert t in S at p to get S′

7: if isValid(S′) and bid(S′) < b then
8: b = bid(S′), tbid = t
9: end if

10: end for
11: end for
12: sendBid(b, tbid)
13: rwin, twin = receiveWinner()
14: if r = rwin then
15: Insert twin in S at best valid position
16: end if
17: Tauct = Tauct \ twin
18: end while
19: TightenSchedule(F )
20: return F

Algorithm 4 TightenSchedule

Input: Vector of finishing times F ,
Vector of robot’s internal constraints on latest finish times, LF

1: for all tasks t in current schedule S do
2: Compute earliest finish time f for task t
3: Set task finish time to return to auctioneer: F [t] = f
4: Introduce temporal constraint on STN: LF [t] = f
5: end for

task prioritization. In the iterated auction scheme, we must intro-
duce additional complexity to ensure that precedence constraints
are not violated. This yields the modified SSI auction described
above, written in Algorithm 1 as ‘ModifiedSSI(Tauct, PC)’. The
auctioneer’s role in this auction is essentially the same as in an
SSI auction. However, instead of inserting tasks arbitrarily into
their schedules, robots instead check for the validity of schedules,
and ‘tighten’ their schedule between iterations. Pseudocode for the
robots’ scheduling process is given in Algorithm 3, and for ‘Tight-
enSchedule’ in Algorithm 4. We will discuss the ‘TightenSchedule’
procedure shortly.

In a robot’s schedule, to represent timing constraints and check
whether a task insertion is valid, we use a Simple Temporal Net-
work [2]. The STN is a graph-like data structure in which events
(task start and finish times in our case) are nodes. Timing con-
straints are represented as edges; an edge between nodes constrains
their relative time of occurrence (e.g. an edge between task start
and task finish enforcing that the duration of the task elapses be-
tween them). Constraints can also be added with respect to absolute
time, so that events occur in a specific time window.

In ‘TightenSchedule’ (Algorithm 4), the robot adds constraints
so that its currently scheduled tasks cannot be delayed by tasks in
a later iteration. This ensures that precedence constraints are not
violated, while maintaining the robots’ privacy, i.e. robots are only
aware of their tasks and the timing constraints on those tasks. The
STN also allows us to check that a schedule is feasible, or can be
completed by the robot without violating any constraints; this is
done via ‘isValid’ in Algorithm 3, which utilizes the tasks’ earliest
start times in PC. See [2] for a more detailed description of man-
aging temporal constraints using STNs, and [21] for an example of
their application in a similar setting.
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The similarity of ‘ModifiedSSI’ to the SSI auction is possible
due to the lack of precedence constraints between tasks in Tauct.
This allows us to, despite the constraints in the overall problem, ap-
proach each iteration with a independent-task scheduling method,
and gain some of the benefit of the insertion heuristic (as discussed
in [25, 16]) in each iteration based on how large Tauct is. In partic-
ular, the finish times in F are not set until the end of the iteration,
since these are malleable until the end of the iteration. This al-
lows tasks to be inserted into schedules in the most efficient manner
possible. When ‘TightenSchedule’ is called additional constraints
are added to each robot’s internal STN to ensure that no currently
scheduled task can be delayed.

5. PRIORITY ASSIGNMENT
The question of how to prioritize tasks is critical to the perfor-

mance of pIA; with the flexibility of controlling the order in which
tasks are scheduled comes the potential to either worsen or improve
the resulting schedule. In this paper, we use a simple heuristic to
assign priorities based on the shape of the precedence graph.

We defineU(t) andL(t) for t ∈ T to be the length of the longest
path in GP rooted at t, respectively with and without travel time
between tasks. More precisely, we let

L(t) = dur(t) + max
t′∈children(t)

(L(t′)) ,

U(t) = dur(t) + max
t′∈children(t)

(d(t, t′) + U(t′)) ,

where we use the convention that max∅(x) ≡ 0, so that L(t) =
U(t) =dur(t) if the task t has no children. Then we let

prioα(t) = (1− α)L(t) + αU(t) , 0 ≤ α ≤ 1.

In this way our priority assignment is a heuristic for the total
length of the precedence graph, or the total time to completion for
the maximum-duration chain of tasks rooted at the given task. The
value U(t) represents the total time this chain would take to be
executed by a single robot (in the absence of other constraints),
while L(t) is the least possible time required to execute these tasks
(since it is the sum of their durations, and the tasks are constrained
and must be completed sequentially).

The parameter α can be thought of roughly as the proportion
of travel time that is accounted for in task priorities. If α is high,
then the priority of a task t is approximately U(t), or the longest
path to completion including travel time. Similarly, α ≈ 0 yields
prioα(t) ≈ L(t), which is the longest path to completion includ-
ing only the duration of the tasks. Since the task nodes along the
longest path to completion may change as α changes, our intuition
for α as the proportion of travel time accounted for should be taken
more as a rough intuition and not as a definition.

Formulating the priorities in this way allows the possibility of
adaptively choosing α for each task based on the structure of the
graph or other factors, or changing the value of α during the iter-
ated auction based on robot locations, etc. Though we do not use
adaptive choices for α in this paper, it is possible that practical use
cases for our algorithm will find this flexibility useful. We will
use α to refer specifically to our method for priority assignment
throughout this paper. In most cases, intuiting it as a proportion of
travel time accounted for is appropriate.

Note that we can compute these priorities in time linear in the
size of the precedence graph GP by using dynamic programming.
This can be achieved by computing priorities bottom-up, beginning
with the tasks that have no children. Thus each task node is iterated
over once when its priority is computed and each edge is iterated

over once when a parent node checks the priority of each of its
children.

This system of prioritization is inspired by critical path schedul-
ing methods, introduced in [12]. These methods identify the longest
task chain in a DAG and schedule tasks so as to minimize delays on
that chain. Adapting this critical path approach to the PC-MRTA
problem is difficult, however. We use the priority system above to
account for the ability of other robots to continue a task chain and
thereby lessen the cost of travel time.

Our method of prioritization is a somewhat naive heuristic, since
it does not always correctly account for travel time and fails to con-
sider the location of future tasks; for example, a robot may ignore
a conveniently located, easy-to-complete task in favor of higher-
priority tasks, and thereby worsen its schedule when it must return
to complete this task. Heuristics which explicitly consider task lo-
cation (and not just the length of a task chain) may be more suc-
cessful.

As an open question, we conjecture that a non-heuristic prioriti-
zation scheme based on an LP relaxation may be very successful in
pIA. It was shown in [22] that using task midpoints from a sched-
ule produced via LP relaxation to order tasks for a list scheduling
algorithm gives a 4-approximation for the general problem of mul-
tiprocessor scheduling with precedence delays; we suspect that a
similar approach for prioritization could outperform many heuris-
tic methods in the pIA scheme for PC-MRTA.

6. ANALYSIS
In this section, we provide arguments for the complexity, sound-

ness, and completeness of the iterated auction.

6.1 Complexity Analysis
Here we provide a sketch for the complexity of the complete

iterated auction procedure. We will assume the average case, in
which tasks are assigned in roughly equal number to the different
robots. This assumption seems strong, but is actually well-founded;
a robot’s bid is the total time taken to complete its current schedule,
so robots with more tasks will tend to make higher bids and be
assigned fewer tasks.

First consider the ‘ModifiedSSI’ procedure called in line 11 of
Algorithm 1. Let nauct = |Tauct| be the number of tasks to be
auctioned. The auctioneer sends Tauct and PC to each robot for
m total messages of size O(nauct). Let npre be the total number
of tasks scheduled in previous iterations. Then in iteration i of
Algorithm 3’s while loop, any given robot will have on average
npre+i

m
positions for insertion of a task in its current schedule. On

average there will therefore be O((nauct − i)(npre+i

m
)) attempted

insertions in any robot’s schedule (line 6 of Algorithm 3). Validity
checking using the robot’s STN has average time complexity of
O((

npre+i

m
)3) [2], and thus the total time taken in a scheduling

iteration is O((nauct − i)(
npre+i

m
)4), along with 2m messages

(one sent and one received by each robot) of size O(1). Since this
procedure is repeated nauct times, this gives us a total complexity

nauct∑
i=1

(nauct − i)(
npre + i

m
)4 = O(

n2
auct

m4
(n4
auct + n4

pre)) .

Note that this complexity for the ‘ModifiedSSI’ procedure is
(typically) asymptotically dominant in each iteration; the only other
consideration is the nauct calls to ‘UpdatePrecGraph’, which will
on average be relatively inexpensive. To see this, observe that the
total work done during the entire iterated auction by ‘UpdatePrec-
Graph’ is to move all n tasks into TS , layer by layer. This requires
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(a) (b)

Figure 3: A simple worst-case example demonstrating the vulnerability of the iterated auction to certain mistakes. In (a), the example is
defined by three tasks with the precedence graph shown on the top of the figure, and with task locations and initial robot locations shown
below. In (b), the optimal allocation is shown on top, while the iterated auction allocation (for any prioritization) is shown on the bottom.

at most three movements per task (from TH to TL, then to TF ,
then to TS), and thus the total work done by ‘UpdatePrecGraph’
is O(n). The complexity of the modified SSI auction is therefore
asymptotically dominant.

Now consider the complexity of the overall algorithm. Roughly,
we have two extremes - either for each iteration nauct = O(1),
or nauct = Ω(n). In the former case, the above complexity for
each iteration evaluates to O(( i

m
)4) for iteration i, which gives us

a total complexity of

O(n)∑
i=1

(
O(i)

m
)4 = O(

n5

m4
) .

In the latter case, we have O(1) iterations, with total complexity
O( n

6

m4 ). Thus if we assume that tasks are evenly distributed among
robots, the iterated auction algorithm has complexity

O(
n5

m4
) ≤ T (n,m) ≤ O(

n6

m4
) .

It is interesting to note that this result implies that pIA is more
efficient than sIA, since prioritization reduces the average value of
nauct. Note also that this is often a fairly loose upper bound, since
in particular many of the checks made by robots for their schedules’
validity will be resolved more quickly than the asymptotic bound.

6.2 Soundness and Completeness
We will now show that the iterated auction algorithm will always

produce a valid schedule if one exists. Note that we allow general
precedence constraints, and so any set of tasks whose precedence
graph is a DAG is valid. Furthermore, a valid schedule will al-
ways exist in this case, since we can simply assign every task to a
single robot, which can complete the tasks in any topological or-
dering of the precedence graph. For the rest of this section, we will
assume that the problem instance is valid, with a directed acyclic
precedence graph. We therefore only need to show that the iter-
ated auction algorithm produces a valid schedule in this case. We
will prove this for pIA, since sIA is equivalent to pIA for a given
priority assignment. We assume that priorities are nonnegative and
that the priority of every task is at least as high as that of any of its
successors in the precedence graph.

First, we show that pIA will successfully schedule all the tasks
and terminate. The relevant pseudocode is the while loop beginning
on line 4 of Algorithm 1. We will argue that in every iteration
|Tauct| > 0, and therefore that the number of tasks scheduled,
|TS |, increases in every iteration until all tasks are scheduled.

To see this, first suppose for a given iteration that TL, the set of

second-layer tasks, is nonempty. Then the critical value c will be
set to the priority of a task in TL, and by definition of TL that task
must have a parent in the set of free tasks TF . Since the priority of
a task is at least that of its successors, this task in TF has priority at
least c and will be included in Tauct.

Now assume instead that TL is empty. Then c will be set to zero.
If TL is empty there must be at least one task in TF , as otherwise
every task would already have been scheduled. Since we assume
that priorities are nonnegative, every task in TF will be added to
Tauct, and so Tauct will be nonempty. Thus in every iteration at
least one task is scheduled, and so the algorithm terminates.

Next, we must show that the schedule produced by the algorithm
is valid. It is only invalid if precedence constraints are violated.
Consider tasks t1, t2 with t1 ≺ t2. Note that the tasks scheduled in
any given iteration are pairwise independent, so since t1 ≺ t2, t1
must have been scheduled in an earlier iteration than t2.

When t1 was scheduled, the robot to which it was assigned re-
turned t1’s finish time in F (Algorithm 1, line 8 and Algorithm 3,
line 20). This followed the robot’s call to ‘TightenSchedule’, which
set F [t1] as the latest valid finish time for t1. When t2 was moved
into TF by ‘UpdatePrecGraph’ (Algorithm 2) after all of its prede-
cessors were scheduled, PC[t2] was set to the maximum comple-
tion time of any of its predecessors; since t1 ≺ t2, we therefore
know that PC[t2] is at least the finish time of t1. But then when
t2 is auctioned, PC[t2] is passed to each robot as the earliest start
time for t2 (Algorithm 1, line 7). The robot that wins t2 in the auc-
tion adds it to its schedule in line 15 of Algorithm 3; in particular,
t2 is inserted into the robot’s schedule in the best valid position, i.e.
the position which respects all of the earliest start times in PC and
yields the cheapest schedule of all such insertion positions. Validity
is checked using robots’ STNs, the data structure in which timing
constraints are managed (discussed above). Since t2 is inserted into
only valid positions, and no other task insertion is allowed if it re-
sults in t2 beginning before PC[t2], t2 will start no earlier than
PC[t2]. Since the finish time of t1 is at most F [t1] ≤ PC[t2], this
implies that the precedence constraint t1 ≺ t2 is satisfied.

6.3 Weaknesses of the Iterated Auction
In Figure 3, an example problem is shown that the iterated auc-

tion performs poorly for. Refer to Figure 3b. If each task has du-
ration δ, the optimal allocation sends the robots in different direc-
tions, so task t1 is completed at time 1 + δ, task t2 at time 1 + 2δ,
and task t3 at time 1+3δ. However, the iterated auction attempts to
free t3 for scheduling as soon as possible, resulting in both robots
being sent to x = 1. In this case, both t1 and t2 are completed at
time 1 + δ, but t3 is not completed until time 3 + 2δ.
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This example exploits the primary weakness of the iterated auc-
tion. Since pIA does not explicitly consider future task locations,
robots may be mispositioned with respect to future iterations if task
locations oscillate between extremes from iteration to iteration. In
such cases, the entire robot team may be enlisted to help in each
location in consecutive iterations, depending on the lengths of their
partial schedules. This can result in relatively poor performance
with respect to the optimal schedule.

To improve performance in such cases, a modified bidding scheme
could be used in which robots place bids that are based in part on
distance traveled. This would result in an optimal solution of the
example in Figure 3: when the robots are bidding for task t2 in
the first iteration, the first robot’s bid (using our bidding scheme)
is its new makespan, 1 + 2δ, while the other robot bids 1 + δ. If
the fact that the latter robot would travel an entire unit is taken into
account, however, its bid would be higher, and the first robot would
complete both t1 and t2. See e.g. [21] for more details on such a
bidding scheme.

7. EXPERIMENTS
Our experiments were conducted via simulation, using an im-

plementation of the pIA algorithm in C++. We utilized existing
data sets from the vehicle routing problem (VRP) literature [25, 5],
using the time windows for task completion in these problems to
loosely order generation of precedence constraints. This was nec-
essary due to the lack of current research on PC-MRTA; we were
unable to find more relevant problem instances.

Each of the above data sets is split into six parts: C1, C2, R1,
R2, RC1, and RC2. The C instances have tasks which are spa-
tially clustered, while the R instances have tasks which are ran-
domly distributed. The RC instances are a mixture of R and C, with
some tasks clustered and others randomly placed. Each Solomon
instance has 100 tasks, while each Gehring-Homberger (G-H) in-
stance has 1000 tasks.

Since these data sets are for research on the VRP with time win-
dows, we must modify them in order to use them for PC-MRTA.
To this end, we use the method of [20] to generate a precedence
graph uniformly at random on the tasks in each instance. In this we
respect the time windows of the original data; if a task’s time win-
dow closes before another’s in the original data, we do not allow
the latter task to precede the former in our precedence structure.

In addition to imposing a loose ordering on the precedence graph,
we also restrict the density of the graph. Without density limits, a
random DAG will have on average n2

4
edges [20], which is over-

constrained for a scheduling problem: a Solomon instance with 100
tasks would have roughly 2500 constraints. To remedy this, we
generate for each original data instance eight random precedence
graphs, four of which are sparse (limited to at most n

2
edges) and

four of which are denser (limited to at most 2n edges). In all cases,
we average across all four of the random graphs for each instance
and level of density to reduce the effects of chance.

For the clustered (C) and partially clustered (RC) data sets, we
reasoned that random constraints on a clustered set of tasks would
de-emphasize the clustered nature of the tasks. We therefore im-
posed additional restrictions on the precedence structure in these
sets. The generation process selects random pairs of nodes and in-
serts an edge between them if it is valid (or removes the edge if
it already exists); for the C and RC data instances, we randomly
decline edges that pass between clusters with a probability of 0.8.
This yields a precedence graph in which the majority of constraints
respect the clustered structure of the original data, and task clusters
are sparsely connected by constraints.

7.1 Results and Discussion
Our results were gathered by running our implementation of pIA

on each of our data sets to get the makespan of the iterated auction
schedule on each instance, using ten robots for the sparse Solomon
data and five for the dense Solomon data, with ten times this num-
ber for the G-H data. We gathered results for sIA and for pIA with
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. For comparison, we also used a sim-
ple greedy algorithm that selects a task at random from TF and allo-
cates it to the robot that can finish it soonest. As mentioned above,
each instance’s result (e.g. Solomon instance C101 with sparse
precedence constraints) is averaged across four random graphs.

Additionally, we used Gurobi [8] with the model in Figure 1 to
compute optimal results for three small instances based on Solomon
data. For all three, pIA (α = 0.5) performed within about 10% of
the optimal, and sIA somewhat worse. The paths for a 16 task, 4
robot problem are shown in Figure 4. For this problem, the optimal
makespan was 109.4, while the pIA and sIA makespans were 121
and 149 respectively.

Our results are shown in Table 1. Each entry is averaged over ap-
proximately 80 trials: there are about 20 instances in the Solomon
and G-H data sets for each problem type, and we generate four ran-
dom precedence graphs for each instance. A distributed implemen-
tation of each algorithm runs in ≈ 0.25 seconds on the Solomon
problems and less than 10 seconds on the 1000-task G-H problems.

First, we see that the iterated auctions significantly outperform
the greedy auction in almost every case. For the Solomon data, sIA
produces schedules that beat the greedy schedule by about 20%
or more for every type of problem and level of sparsity, with pIA
performing slightly worse than sIA in most cases.

For the G-H data, the results are less uniform; on the dense prece-
dence graphs, either sIA or pIA achieve about a 20% improvement
on the greedy schedule. However, on the sparse graphs, this im-
provement is less substantial, with sIA achieving a 12% improve-
ment on the R data, about a 5% improvement on the RC data, and
actually performing slightly worse than the greedy algorithm on the
C data. In each of these cases, there is a value of α such that pIA is
about 12% better than the greedy algorithm, however (α = 0.1 for
the C and RC data, and α = 0.9 for the R data).

We can see that in addition to outperforming the greedy algo-
rithm, sIA also performs as well as or slightly better than pIA in
most cases. The only cases in which pIA offers significant im-
provement over sIA are on the C and RC sets from the G-H data.
This is due to two separate effects: the increasing effectiveness of
prioritization for larger numbers of tasks, and the improving perfor-
mance of our priority assignment scheme for more clustered data.
We will discuss the former effect first.

With any reasonable priority assignment scheme, we expect pIA
to become more effective on larger problems. This is because sIA
puts the maximum number of tasks into each auction, making ex-
tensive use of the insertion heuristic to order the tasks and exploit
pathing synergies between them. Prioritization attempts to ensure
that high-priority tasks are completed sooner, but sacrifices this
full-sized auction and reduces use of the insertion heuristic. For the
1000-task G-H problems, there are still enough tasks in the auction
to benefit from the insertion heuristic, and using the task informa-
tion encoded in the priorities becomes relatively more valuable.

Second, we see that our method of priority assignment tends to
perform much better for clustered data. For the Solomon problems,
pIA performs marginally better than sIA only on the C instances,
while on the G-H problems, pIA performs much better than sIA on
the C instances and somewhat better on the RC instances. This re-
flects on our particular priority assignment scheme; on the R data,
priorities are assigned based on the random positions of the tasks,
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Data Set Problem Type Sparsity Greedy sIA pIA
α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

Solomon

R
Sparse µ 376.80 295.23 306.66 303.39 302.34 302.38 301.35

σ 9.72 6.82 8.24 6.36 7.33 5.50 6.89

Dense µ 812.47 645.85 666.70 655.49 652.45 652.77 651.68
σ 13.89 12.01 10.49 13.59 11.40 13.78 15.37

C
Sparse µ 440.12 349.76 341.84 339.24 345.96 344.09 342.79

σ 12.80 8.41 8.67 9.02 13.88 10.34 14.26

Dense µ 946.56 743.04 741.84 739.31 739.79 743.91 749.10
σ 21.57 19.13 25.54 21.03 26.96 23.36 20.87

RC
Sparse µ 455.44 346.70 358.06 355.80 356.72 355.16 358.23

σ 9.49 8.51 6.07 8.02 11.24 9.12 9.24

Dense µ 1001.6 770.19 798.95 789.41 791.75 786.75 792.64
σ 17.17 23.16 17.06 20.95 16.75 14.08 16.83

G-H

R
Sparse µ 868.13 761.15 784.51 782.10 776.05 771.19 765.85

σ 14.68 10.01 32.31 39.38 27.90 29.39 22.66

Dense µ 1777.0 1407.6 1463.6 1468.2 1473.2 1490.7 1488.7
σ 17.99 26.84 24.55 31.49 28.17 27.70 26.02

C
Sparse µ 763.04 789.66 674.84 688.01 686.43 687.31 689.08

σ 22.83 19.91 41.95 40.13 37.06 44.44 46.30

Dense µ 1498.5 1305.9 1208.1 1236.7 1237.7 1252.5 1239.3
σ 54.85 31.24 43.17 46.74 40.12 38.92 39.70

RC
Sparse µ 828.24 788.23 722.53 726.16 726.09 729.70 725.48

σ 11.69 13.67 36.27 37.48 34.92 38.58 38.53

Dense µ 1628.1 1354.8 1297.4 1311.3 1315.9 1333.7 1332.8
σ 35.87 22.54 40.96 45.84 38.62 49.55 45.50

Table 1: Makespan results for sparse and dense precedence graphs comparing the pIA and sIA auctions, and a greedy method.

Figure 4: Routes produced by the optimal (left; makespan 109.4), pIA (middle; makespan 121) and sIA (right; makespan 149) methods for
a Solomon instance with 16 tasks and four robots.

and may not accurately reflect the proper ordering of the tasks,
as discussed above. For clustered data, low priority tasks that are
available for scheduling are likely to be located in clusters that have
lower average priority; since the task is free, it has no parents within
the cluster and is therefore topologically highest, limiting the pri-
ority of its children. Due to the higher density of constraints within
clusters, this provides a strong indication that the entire cluster is of
lower priority. This shows that heuristic priority assignments can
exploit synergies within data sets, which is desirable; in general we
expect precedence-constrained data to be nonrandom, and to have
some type of relationship between task constraints and locations.
We expect that in specific applications, prioritization methods may
be tailored to exploit the relationships between task locations and
constraints for further improvement.

8. CONCLUSIONS AND FUTURE WORK
We introduced the iterated auction scheme for PC-MRTA and

demonstrated substantial improvements over simple greedy schedul-
ing. Our results indicate that at least for some problem types, pri-
ority assignment can improve on the performance of sIA. In par-

ticular, pIA performs well for large problem sizes with clustered
or semi-clustered task groups. We also found that pIA performed
within 10% of optimal for several small problems.

Since we used simple methods of prioritization, we expect that
more sophisticated methods might yield further improvements. As
mentioned previously, in practice precedence constraints are of-
ten related somehow to task location, so for a specific application
certain priority schemes might provide strong performance by ex-
ploiting the specific structure of the problem. For example, if con-
strained tasks are always east of their parent tasks, a priority scheme
that assigns more priority to western tasks may be successful by
preventing robots from backtracking.

As we discussed in the section on priority assignment, we be-
lieve that using priorities derived from an LP relaxation as in [22]
may provide excellent performance for a wide variety of problem
types. This method of prioritization may work well in more general
settings, when relationships between task locations and precedence
constraints are not well understood. It may be also be that low-
priority tasks are easier to identify than high-priority tasks; another
approach to approximating PC-MRTA might use the sIA method
and prune low-priority tasks in each iteration.
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