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ABSTRACT

The success of Stackelberg Security Games (SSGs) in counter-

terrorism domains has inspired researchers’ interest in applying

game-theoretic models to other security domains with frequent in-

teractions between defenders and attackers, e.g., wildlife protec-

tion. Previous research optimizes defenders’ strategies by mod-

eling this problem as a repeated Stackelberg game, capturing the

special property in this domain — frequent interactions between

defenders and attackers. However, this research fails to handle

exploration-exploitation tradeoff in this domain caused by the fact

that defenders only have knowledge of attack activities at targets

they protect. This paper addresses this shortcoming and provides

the following contributions: (i) We formulate the problem as a

restless multi-armed bandit (RMAB) model to address this chal-

lenge. (ii) To use Whittle index policy to plan for patrol strategies

in the RMAB, we provide two sufficient conditions for indexability

and an algorithm to numerically evaluate indexability. (iii) Given

indexability, we propose a binary search based algorithm to find

Whittle index policy efficiently.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms

Security, Algorithms, Performance

Keywords

Exploration-exploitation tradeoff, Restless multi-armed bandit, Whit-
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1. INTRODUCTION
Given the increasing need for security around the globe, opti-

mizing the allocation of a limited number of security resources re-

mains a crucial challenge. The successful applications of Stack-

elberg Security Games (SSGs) for security resource allocation in

counter-terrorism domains [16] have inspired researchers’ interest

in applying game-theoretic models to new “frequent interaction”

security domains with repeated interactions between defenders and

attackers, e.g., wildlife protection domain. However, these two do-

mains are different. In wildlife protection domain, attack (poach-
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ing) happens frequently so that it gives defenders (patrollers) the

opportunity to learn attackers’ (poachers’) behavioral patterns from

their previous actions and then to plan patrol strategies according-

ly; while this learning opportunity does not arise in the counter-

terrorism domain. Previous research [19, 5] has taken advantage of

this opportunity and has modeled the wildlife protection domain as

a repeated Stackelberg game. However, this work assumes that de-

fenders have knowledge of all poaching activities throughout the

wildlife protected area (we will discuss more about this related

work in Section 7). Unfortunately, given vast geographic areas for

wildlife protection, defenders do not have knowledge of poaching

activities in areas they do not protect. Thus, defenders are faced

with the exploration-exploitation tradeoff — whether to protect the

targets that are already known to have a lot of poaching activities

or to explore the targets that haven’t been protected for a long time.

The exploration-exploitation tradeoff here is different from that

in the non-Bayesian stochastic multi-armed bandit problem [2]. In

stochastic multi-armed bandit problems, the rewards of every arm

are random variables with a stationary unknown distribution. How-

ever, in our problem, patrol affects attack activities — more patrol

is likely to decrease attack activities and less patrol is likely to in-

crease attack activities. Thus, the random variable distribution is

changing depending on player’s choice — more selection (patrol)

leads to lower reward (less attack activities) and less selection (pa-

trol) leads to higher reward (more attack activities). On the other

hand, adversarial multi-armed bandit problem [3] is also not an ap-

propriate model for this domain. In adversarial multi-armed bandit

problems, the reward can arbitrarily change while the attack activi-

ties in our problem are unlikely to change rapidly in a short period.

This makes the adversarial multi-armed bandit model inappropriate

for our domain.

In reality, how patrol affects attack activities would be reason-

ably assumed to follow a consistent pattern that can be learned from

historical data (defenders’ historical observations). We model this

pattern as a Markov process and provide the following contribu-

tions in this paper. First, we formulate the problem into a restless

multi-armed bandit (RMAB) model to handle the limited observ-

ability challenge — defenders do not have observations for arms

they do not activate (targets they do not protect). Second, we pro-

pose an EM based learning algorithm to learn the RMAB model

from defenders’ historical observations. Third, we use the solution

concept of Whittle index policy to solve the RMAB model to plan

for defenders’ patrol strategies. However, indexability is required

for the existence of Whittle index, so we provide two sufficient con-

ditions for indexability and an algorithm to numerically evaluate

indexability. Fourth, we propose a binary search based algorithm

to find the Whittle index policy efficiently.
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2. MODEL

2.1 Motivating Domains and their Properties
Our work is mainly motivated by the domain of wildlife pro-

tection such as protecting endangered animals and fish stocks [14,

19, 5]. Other motivating domains include police patrol to catch

fare-evaders in a barrier-free transit system [21], border patrol [7,

8], etc. The model we will describe in this paper is based on

the following assumptions about the nature of interactions between

defenders and attackers in these domains. Except the frequen-

t interactions between defenders (patrollers/police) and attacker-

s (poachers/fare-evaders/smugglers), these domains share anoth-

er two important properties: (i) patrol affects attacking activities

(poaching/fare evasion/smuggling); (ii) limited/partial observabili-

ty. We will next use the wildlife protection domain as the example

to illustrate these two properties.

Poaching activity is a dynamic process affected by patrol. If pa-

trollers patrol in a certain location frequently, it is very likely that

the poachers poaching in this location will switch to other locations

for poaching. On the other hand, if a location hasn’t been patrolled

for a long time, poachers may gradually notice that and switch to

this location for poaching.

In the wildlife protection domain, both patrollers and poachers

do not have perfect observation of their opponents’ actions. This

observation imperfection lies in two aspects: (i) limited observabil-

ity — patrollers/poachers do not know what happens at location-

s they do not patrol/poach; (ii) partial observability — patroller-

s/poachers do not have perfect observation even at locations they

patrol/poach — the location might be large (e.g., a 2km × 2km
area) so that it is possible that patrollers and poachers do not see

each other even if they are at the same location.

These two properties make it extremely difficult for defenders to

optimally plan their patrol strategies. For example, defenders may

find a target with a large number of attack activities at the beginning

so they may start to protect this target frequently. After a period of

time, attack activities at this target may start to decrease due to

the frequent patrol. At this time, defenders have to decide whether

to keep protecting this target (exploitation) or to switch to other

targets (exploration). However, defenders do not have knowledge

of attack activities at other targets at that moment, which makes this

decision making extremely difficult for defenders.

Fortunately, the frequent interactions between defenders and at-

tackers make it possible for defenders to learn the effect of patrol

on attackers from the historical data. With this learned effect, de-

fenders are able to estimate attack activities at targets they do not

protect. Based on this concept, we model these domains as a rest-

less multi-armed bandit problem and use the solution concept of

Whittle index policy to plan for defenders’ strategies.

2.2 Formal Model
We now formalize the story in Section 2.1 into a mathematical

model that can be formulated as a restless multi-armed bandit prob-

lem. There are n targets that are indexed by N , {1, . . . , n}. De-

fenders have k patrol resources that can be deployed to these n
targets. At every round, defenders choose k targets to protect. Af-

ter that, defenders will have an observation of the number of attack

activities for targets they protect, and no information for targets

they do not protect. The objective for defenders is to decide which

k targets to protect at every round to catch as many attackers as

possible.

Due to the partial observability on defenders’ side — defenders’

observation of attack activities is not perfect even for targets they

protect, we introduce a hidden variable attack intensity, which rep-

resents the true degree of attack intensity at a certain target. Clear-

ly, this hidden variable attack intensity cannot directly be observed

by defenders. Instead, defenders’ observation is a random variable

conditioned on this hidden variable attack intensity, and the larger

the attack intensity is, the more likely it is for defenders to observe

more attack activities during their patrol.

We discretize the hidden variable attack intensity into ns level-

s, denoted by S = {0, 1, . . . , ns − 1}. Lower i represents lower

attack intensity. For a certain target, its attack intensity transitions

after every round. If this target is protected, attack intensity transi-

tions according to a ns×ns transition matrix T 1; if this target is not

protected, attack intensity transitions according to another ns× ns

transition matrix T 0. The transition matrix represents how patrol

affects attack intensity — T 1 tends to reduce attack intensity and

T 0 tends to increase attack intensity. The randomness in the tran-

sition matrix models attackers’ partial observability discussed in

Section 2.1. Note that different targets may have different transition

matrices because some targets may be more attractive to attackers

(for example, some locations may have more animal resources in

the wildlife protection domain) so that it is more difficult for attack

intensity to go down and easier for attack intensity to go up.

We also discretize defenders’ observations of attack activities in-

to no levels, denoted by O = {0, 1, . . . , no − 1}. Lower i repre-

sents less attack activities defenders observe. Note that defenders

will only have observation for targets they protect. A ns × no ob-

servation matrix O determines how the observation depends on the

hidden variable attack intensity. Generally, the larger the attack in-

tensity is, the more likely it is for defenders to observe more attack

activities during their patrol. Similar to transition matrices, differ-

ent target may have different observation matrices.

While defenders get observations of attack activities during their

patrol, they also receive rewards for that — arresting poachers/fare-

evaders/smugglers bring benefit. Clearly, the reward defenders re-

ceive depends on their observation and we thus define the reward

function R(o), o ∈ O — larger i leads to higher reward R(i). For

example, if o = 0 represents finding no attack activity and o = 1
represents finding attack activities, then R(0) = 0, R(1) = 1.

Note that defenders only get rewards for targets they protect.

To summarize, for the targets defenders protect, defenders get an

observation depending on its current attack intensity, get the reward

associated with the observation, and then the attack intensity tran-

sitions according to T 1; for the targets defenders do not protect,

defenders do not have any observation, get reward 0 and the attack

intensity transitions according to T 0. Figure 1 demonstrates this

process. In this model, the state discretization level ns, observation

discretization level no and reward function R(o) are pre-specified

by defenders; the transition matrices T 1 and T 0, observation ma-

trix O and initial belief π can be learned from defenders’ previous

observations. We will briefly discuss the learning algorithm in Sec-

tion 2.3. After those parameters are learned, this model is formulat-

ed into a restless multi-armed bandit model to plan for defenders’

strategies.
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Figure 1: Model Illustration
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2.3 Learning Model From Defenders’ Previ-
ous Observations

Given defenders’ action history {ai} and observation history

{oi}, our objective is to learn the transition matrices T 1 and T 0,

observation matrix O and initial belief π. Due to the existence of

hidden variables {si}, expectation-maximization (EM) algorithm

is used for learning. We show the update steps here and the details

are in the online appendix1.

π
(d+1)
i = P (s1 = i|x; θd)

T
1(d+1)
ij =

∑T−1
t=1:at=1 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=1 P (st = i|x; θd)

T
0(d+1)
ij =

∑T−1
t=1:at=0 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=0 P (st = i|x; θd)

O
(d+1)
ij =

∑T
t=1:at=1 P (st = i|x; θd)I(ot = j)
∑T

t=1:at=1 P (st = i|x; θd)

where θd is the π, T 1, T 0, O last step and P (st = i|x; θd)
and P (st = i, st+1 = j|x; θd) are computed through forward-

backward algorithm.

3. RESTLESS BANDIT FOR PLANNING
In this section, we will formulate the model discussed in Section

2.2 as a restless multi-armed bandit problem and plan defenders’

strategies using the solution concept of Whittle index policy.

3.1 Restless Multi-armed Bandit Problems
In this section, we will briefly introduce the restless multi-armed

bandit problems (RMABs) and their main solution concept Whit-

tle index policy. In RMABs, each arm represents an independent

Markov machine. At every round, the player chooses k out of n
arms (k < n) to activate and receives the reward determined by

the state of the activated arms. After that, the states of all arms

will transition to new states according to certain Markov transition

probabilities. The problem is called “restless” because the states of

passive arms will also transition like active arms. The aim of the

player is to maximize his cumulative reward by choosing which

arms to activate at every round. It has shown by Papadimitriou

and Tsitsiklis that it is PSPACE-hard to find the optimal strategy to

general RMABs [13].

An index policy assigns an index to each state of each arm to

measure how rewarding it is to activate an arm at a particular state.

At every round, the index policy chooses to pick the k arms whose

current states have the highest indices. Since the index of an arm

only depends on the properties of this arm, index policy reduces

an n-dimensional problem to n 1-dimensional problems so that the

complexity is reduced from exponential with n to linear with n.

Whittle proposed a heuristic index policy for RMABs by con-

sidering the Lagrangian relaxation of the problem [18]. It has been

shown that Whittle index policy is asymptotically optimal under

certain conditions as k and n tend to∞ with k/n fixed [17]. When

k and n are finite, extensive empirical studies have also demon-

strated the near-optimal performance of Whittle index policy [1,

6]. Whittle index measures how attractive it is to activate an arm

based on the concept of subsidy for passivity. It gives the subsidy

m to passive action (not activate) and the smallest m that would

make passive action optimal for the current state is defined to be

1http://teamcore.usc.edu/people/yundiqia/web%20page/papers/AA
MAS2016Appendix.pdf

the Whittle index for this arm at this state. Whittle index policy

chooses to activate the k arms with the highest Whittle indices. In-

tuitively, the larger the m is, the larger the gap is between active

action (activate) and passive action, the more attractive it is for the

player to activate this arm. Mathematically, denote Vm(x; a = 0)
(Vm(x; a = 1)) to be the maximum cumulative reward the player

can achieve until the end if he takes passive (active) action at the

first round at the state x with subsidy m. Whittle index I(x) of

state x is then defined to be:

I(x) , inf
m
{m : Vm(x;a = 0) ≥ Vm(x : a = 1)}

However, Whittle index only exists and Whittle index policy can

only be used when the problem satisfies a property known as index-

ability, which we define below. Define Φ(m) to be the set of states

for which passive action is the optimal action given subsidy m:

Φ(m) , {x : Vm(x;a = 0) ≥ Vm(x : a = 1)}

DEFINITION 1. An arm is indexable if Φ(m) monotonically in-

creases from ∅ to the whole state space as m increases from −∞
to +∞. An RMAB is indexable if every arm is indexable.

Intuitively, indexability requires that for a given state, its optimal

action can never switch from passive action to active action with

the increase of m. The indexability of an RMAB is often difficult

to establish and computing Whittle index can be complex.

3.2 Restless Bandit Formulation
It is straightforward to formulation the model discussed in Sec-

tion 2.2 into a restless multi-armed bandit problem. Every target is

viewed as an arm and defenders choose k arms to activate (k tar-

gets to protect) at every round. Consider a single arm (target), it is

associated with ns (hidden) states, no observations, ns×ns transi-

tion matrices T 1 and T 0, ns×no observation matrix O and reward

function R(o), o ∈ O as is described in Section 2.2. For the arm

defenders activate, defenders get an observation, get reward asso-

ciated with the observation, and the state transitions according to

T 1. Note that defenders’ observation is not the state. Instead, it

is a random variable conditioned on the state, and reveals some in-

formation about the state. For the arms defenders do not activate,

defenders do not have any observation, get reward 0 and the state

transitions according to T 0.

Since defenders can not directly observe the state, defenders

maintain a belief b of the states for each target, based on which

defenders make decisions. The belief is updated according to the

Bayesian rules. The following equation shows the belief update

when defenders protect this target (a = 1) and get observation o or

defenders do not protect this target (a = 0).

b′(s′) =

{

η
∑

s∈S
b(s)OsoT

1
ss′ , a = 1

∑

s∈S
b(s)T 0

ss′ , a = 0,
(1)

where η is the normalization factor. When defenders do not pro-

tect this target (a = 0), defenders do not have any observation, so

their belief is updated according to the state transition rule; When

defenders protect this target (a = 1), their belief is firstly updated

according to their observation o (bnew(s) = ηb(s)Oso according

to Bayes’ rule), and then the new belief is then updated accord-

ing to the state transition rule: b′(s′) =
∑

s∈S
bnew(s)T

1
ss′ =

∑

s∈S
ηb(s)OsoT

1
ss′ = η

∑

s∈S
b(s)OsoT

1
ss′

We now present the mathematical definition of Whittle index for

our problem. Denote Vm(b) to be the value function for belief s-

tate b with subsidy m; Vm(b; a = 0) to be the value function for

belief state b with subsidy m and defenders take passive action;
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Vm(b; a = 1) to be the value function for belief state b with sub-

sidy m and defenders take active action. The following equations

show these value functions:

Vm(b; a = 0) = m+ βVm(ba=0)

Vm(b; a = 1) =
∑

s∈S

b(s)
∑

o∈O

OsoR(o)

+ β
∑

o∈O

∑

s∈S

b(s)OsoVm(boa=1)

Vm(b) = max{Vm(b; a = 0), Vm(b;a = 1)}

When defenders take passive action, they get the immediate re-

ward m and the β-discounted future reward — value function at

new belief ba=0, which is updated from b according to the case

a = 0 in Equation 1. When defenders take active action, they get

the expected immediate reward
∑

s∈S
b(s)

∑

o∈O
OsoR(o) and

the β-discounted future reward. The future reward is composed of

different observation cases —
∑

s∈S
b(s)Oso is defenders’ proba-

bility to have observation o at belief state b, and Vm(boa=1) is the

value function at new belief boa=1 that is updated from b according

to the case a = 1 with observation o in Equation 1. The value func-

tion Vm(b) is the maximum of Vm(b; a = 0) and Vm(b; a = 1).
Whittle index I(b) of belief state b is then defined to be :

I(b) , inf
m
{m : Vm(b; a = 0) ≥ Vm(b : a = 1)}

The passive action set Φ(m), which is the set of belief states for

which passive action is the optimal action given subsidy m is then

defined to be:

Φ(m) , {b : Vm(b; a = 0) ≥ Vm(b : a = 1)}

3.3 Sufficient Conditions for Indexability
In this section, we provide two sufficient conditions for indexa-

bility when no = 2 and ns = 2. Denote the transition matrices to

be T 0 and T 1, observation matrix to be O. Clearly in our problem,

O11 > O01, O00 > O10 (higher attack intensity leads to higher

probability to see attack activities when patrolling); T 1
11 > T 1

01,

T 1
00 > T 1

10; T 0
11 > T 0

01, T 0
00 > T 0

10 (positively correlated arms).

Define α , max{T 0
11 − T 0

01, T
1
11 − T 1

01}. Since it is a two-state

problem with S = {0, 1}, we use one variable x to represent the

belief state: x , b(s = 1), which is the probability of being in

state 1.

Define Γ1(x) = xT 1
11 + (1− x)T 1

01, which is the belief for the

next round if the belief for the current round is x and the active

action is taken. Similarly, Γ0(x) = xT 0
11 + (1 − x)T 0

01, which is

the belief for the next round if the belief for the current round is x
and the passive action is taken.

We present below two theorems demonstrating two sufficient

conditions for indexability. The proof is in the online appendix.

THEOREM 1. When β ≤ 0.5, the process is indexable, i.e., for

any belief x, if Vm(x;a = 0) ≥ Vm(x;a = 1), then Vm′(x; a =
0) ≥ Vm′(x;a = 1), ∀m′ ≥ m

THEOREM 2. When αβ ≤ 0.5 and Γ1(1) ≤ Γ0(0), the process

is indexable, i.e., for any belief x, if Vm(x; a = 0) ≥ Vm(x;a =
1), then Vm′(x; a = 0) ≥ Vm′(x; a = 1), ∀m′ ≥ m

3.4 Numerical Evaluation of Indexability
For problems other than those that have been proved to be index-

able in Section 3.3, we can numerically evaluate their indexability.

We first provide the following proposition.

PROPOSITION 1. If m < R(0)−βR(no−1)−R(0)
1−β

, Φ(m) = ∅;

if m > R(no − 1), Φ(m) is the whole belief state space.

PROOF. If m < R(0) − βR(no−1)−R(0)
1−β

, denote Vm(b; a =

0) = m + βW0; Vm(b; a = 1) = R(o) + βW1, where W1 and

W0 represent the maximum future reward. Since W0 ≤
R(no−1)

1−β

(achieving reward R(no− 1) at every round), W1 ≥
R(0)
1−β

(achiev-

ing reward R(0) at every round), R(o) ≥ R(0), we have Vm(b; a =
1)− Vm(b; a = 0) = R(o)−m+ β(W1 −W0) ≥ R(0)−m+

βR(0)−R(no−1)
1−β

> 0. Thus, being active is always the optimal

action for any state so that Φ(m) = ∅.
If m > R(no − 1), then the strategy of always being passive

dominates other strategies so Φ(m) is the whole belief state s-

pace.

Thus, we only need to determine whether the set Φ(m) monoton-

ically increases for m ⊆ [R(0)−β R(no−1)−R(0)
1−β

, R(no−1)]. Nu-

merically, we can discretize this limited m range and then evaluate

if Φ(m) monotonically increases with the increase of discretized

m. Given the subsidy m, Φ(m) can be determined by solving a

special POMDP model whose conditional observation probability

is dependent on start state and action. We will discuss the algo-

rithm in detail in Section 4. This algorithm returns a set D which

contains ns-length vectors d1, d2, . . . , d|D|. Every vector di is as-

sociated with an optimal action ei. Given the belief b, the optimal

action is determined by aopt = ei, i = argmaxj b
T dj . Thus,

Φ(m) =
⋃

i:ei=0{b : b
T di ≥ bT dj ,∀j}.

Given m0 < m1, our aim is to check whether Φ(m0) ⊆ Φ(m1).
Use the superscript 0 or 1 for set D, vector d, action e to distinguish

between the returned solutions with subsidy m0 and m1. The fol-

lowing mixed-integer linear program (MILP) can be used to deter-

mine whether Φ(m0) ⊆ Φ(m1).

min
b,z0,z1,ξ0,ξ1

|D0|
∑

i=1

z0i e
0
i −

|D1|
∑

i=1

z1i e
1
i

s.t. bi ∈ [0, 1], ∀i ∈ S,
∑

i∈S

bi = 1

z0i ∈ {0, 1}, ∀i ∈ {1, 2, . . . , |D
0|},

∑

i

z0i = 1

bT d0i ≤ ξ0,∀i ∈ {1, 2, . . . , |D0|}

ξ0 ≤ bT d0i +M(1− z0i ),∀i ∈ {1, 2, . . . , |D
0|}

z1i ∈ {0, 1}, ∀i ∈ {1, 2, . . . , |D
1|}

∑

i

z1i = 1

bT d1i ≤ ξ1,∀i ∈ {1, 2, . . . , |D1|}

ξ1 ≤ bT d1i +M(1− z1i ),∀i ∈ {1, 2, . . . , |D
1|}

If the result of the above MILP is 0 or 1, Φ(m0) ⊆ Φ(m1). In

the MILP, M is a given large number, b is the belief state, z
0/1
i

is a binary variable that indicates whether bT d
0/1
i ≥ bT d

0/1
j ,∀j

(1 indicates yes and 0 indicates no), ξ0/1 is an auxiliary variable

that equals maxi b
Td

0/1
i ,

∑|D0/1|
i=1 z

0/1
i e

0/1
i is the optimal action

for the problem with subsidy m0/1. If the result of this MILP is 0
or 1, it means that there does not exist a belief b under which the

optimal action for the problem with subsidy m0 is passive (0) and

the optimal action for the problem with subsidy m1 is active (1).

This means Φ(m0) ⊆ Φ(m1). On the other hand, if the result of

the above MILP is −1, Φ(m0) * Φ(m1).
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3.5 Computation of Whittle Index Policy
Given the indexability, Whittle index can be found by doing a bi-

nary search within the range m ⊆ [R(0)−βR(no−1)−R(0)
1−β

, R(no−

1)]. Given the upper bound ub and lower bound lb, the problem

with middle point lb+ub
2

as passive subsidy is sent to the special

POMDP solver to find the optimal action for the current belief. If

the optimal action is active, then the Whittle index is greater than

the middle point so lb ← lb+ub
2

; or else ub ← lb+ub
2

. This bina-

ry search algorithm can find Whittle index with arbitrary precision.

Naively, we can compute the Whittle index policy by computing

the ε-precision indices of all arms and then picking the k arms with

the highest indices.

However, since we are actually only interested in which k arms

have the highest Whittle index and we do not care what exactly

their indices are, we can do better than this naive method, which is

demonstrated in Algorithm 1.

Algorithm 1 Algorithm to Compute Whittle Index Policy

1: function FINDWHITTLEINDEXPOLICY

2: lb← R(0)− βR(no−1)−R(0)
1−β

, ub← R(no − 1)

3: A← ∅, S ← {1, 2, . . . , n}
4: while |A| < k do

5: S1 ← ∅, S0 ← ∅
6: for i ∈ S do

7: aopt ← POMDPSOLVE(Pi,
lb+ub

2
)

8: if aopt = 1 then

9: S1 ← S1

⋃

{i}
10: else

11: S0 ← S0

⋃

{i}
12: end if

13: end for

14: if |S1| ≤ k − |A| then

15: A← A
⋃

S1, S ← S − S1

16: ub← lb+ub
2

17: else

18: S ← S − S0

19: lb← lb+ub
2

20: end if

21: end while

22: return A
23: end function

In Algorithm 1, A is Whittle index policy to be returned and is

set to be ∅ at the beginning. S is the set of arms that we have not

known whether belong to A or not and is set to be the whole set of

arms at the beginning. Before it finds top-k arms (the loop between

Line 4 and Line 21), it tests all the arms in S about their optimal

action with subsidy ub+lb
2

. If the optimal action is 1, it means this

arm’s index is higher than ub+lb
2

and we add it to S1; if the optimal

action is 0, it means this arm’s index is lower than ub+lb
2

and we add

it to S0 (Lines 6 − 13). At this moment, we know that all arms in

S1 have higher indices than all arms in S0. If there is enough space

in A to include all arms in S1, we add S1 to A, remove them from

S and set the upper bound to be ub+lb
2

because we already know

that S1 belongs to Whittle index policy set and all the rest arms

have the index lower than ub+lb
2

(Lines 14 − 16). If there is not

enough space in A, we remove S0 from S and set the lower bound

to be ub+lb
2

because we already know that S0 does not belong to

Whittle index policy set and all the rest arms have the index higher

than ub+lb
2

(Lines 17− 19)

4. COMPUTATION OF PASSIVE ACTION

SET
In this section, we will discuss the algorithm to compute the pas-

sive action set Φ(m) with the subsidy m. This problem can be

viewed as solving a special POMDP model whose conditional ob-

servation probability is dependent on start state and action while

the conditional observation probability is dependent on end state

and action in standard POMDPs. Figure 2 demonstrates the dif-

ference. The left figure represents special POMDPs and the right

figure represents standard POMDPs. In both cases, the original s-

tate is s, the agent takes action a, and the state transitions to s′

according to P (s′|s, a). However, the observation o the agent get

during this process is dependent on s and a in our special POMDPs;

while it depends on s′ and a in standard POMDPs.

observation

state

�
a

6

-
P (s′|s, a)s s′

o

P (o|s, a)

�
a

6

-
P (s′|s, a)s s′

o

P (o|s′, a)

Figure 2: Special POMDPs vs Standard POMDPs

Despite this difference, the solution concept of value iteration

algorithm in standard POMDPs can be used to solve our special

POMDP formulations with appropriate modifications. We will dis-

cuss the special POMDP formulation for our problem in Section

4.1 and present the modified value iteration algorithm in Section

4.2.

4.1 Special POMDP Formulation
The special POMDP formulation for our problem is straightfor-

ward.

state space The state space is S = {0, 1, . . . , ns − 1}.
action space The action space is A = {0, 1}, where a = 0 rep-

resents passive action (do not protect) and a = 1 represents active

action (protect).

observation space The observation space isO = {−1, 0, 1, . . . , no−
1}. It adds a “fake” observation o = −1 to represent no observa-

tion when taking action a = 0. It’s called “fake” because defenders

have probability 1 to observe o = −1 no matter what the state is

when they take action a = 0, so this observation does not provide

any information. When defenders take action a = 1, they may

observe observations O\{−1}.
conditional transition probability The conditional transition prob-

ability P (s′|s, a) is defined to be: P (s′ = j|s = i, a = 1) = T 1
ij

and P (s′ = j|s = i, a = 0) = T 0
ij .

conditional observation probability The conditional observation

probability P (o|s, a) is defined to be P (o = −1|s, a = 0) =
1, ∀s ∈ S; P (o = j|s = i, a = 1) = Oij . Note that the con-

ditional observation probability here is dependent on the start state

s and action a, while it depends on end state s′ and action a in

standard POMDP models. Intuitively, defenders’ observation of at-

tack activities today depends on the attack intensity today, not the

transitioned attack intensity tomorrow.

reward function The reward function R is

R
(

s, s′, a, o
)

=

{

0, a = 0,

R(o), a = 1.

With the transition probability and observation probability, R(s, a)
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can be computed. Note that this formulation is also slightly differ-

ent due to the different definition of observation probability.

R(s, a) =
∑

s′∈S

P (s′|s, a)
∑

o∈O

P (o|s, a)R(s, s′, a, o)

4.2 Value Iteration for Our Special POMDP
Different from standard POMDP formulation, the belief update

in the special POMDP formulation is

b′(s′) =

∑

s∈S
b(s)P (o|s, a)P (s′|s, a)

P (o|b, a)
(2)

where

P (o|b, a) =
∑

s′∈S

∑

s∈S

b(s)P (o|s, a)P (s′|s, a) =
∑

s∈S

b(s)P (o|s, a)

Note that the belief update process is also consistent with that in

Equation 1. Similar to standard POMDP formulation, we have the

value function

V ′(b) = max
a∈A

(

∑

s∈S

b(s)R(s, a) + β
∑

o∈O

P (o|b, a)V (boa)

)

which can be broken up to simpler combinations of other value

functions:

V ′(b) = max
a∈A

Va(b)

Va(b) =
∑

o∈O

V o
a (b)

V o
a (b) =

∑

s∈S
b(s)R(s, a)

|O|
+ βP (o|b, a)V (boa)

All the value functions can be represented as V (b) = maxα∈D b·α
since the update process maintains this property, so we only need

to update the set D when updating the value function. The set D is

updated according to the following process:

D′ = purge

(

⋃

a∈A

Da

)

Da = purge

(

⊕

o∈O

Do
a

)

Do
a = purge ({τ (α, a, o)|α ∈ D})

where τ (α, a, o) is the |D|-vector given by

τ (α, a, o)(s) = (1/|O|)R(s, a)+βP (o|s, a)
∑

s′∈S

α(s′)P (s′|s, a)

and purge(·) takes a set of vectors and reduces it to its unique min-

imum form (remove redundant vectors that are dominated by other

vectors in the set).
⊕

represents the cross sum of two sets of vec-

tors: A
⊕

B = {α+ β|α ∈ A, β ∈ B}.
The update of D′ and Da is intuitive, so we briefly explain the

update of Do
a

2 here:

P (o|b, a)V (boa) = P (o|b, a)max
α∈D

∑

s′∈S

α(s′)P (s′|b, a, o)

= P (o|b, a)max
α∈D

∑

s′∈S

α(s′)

∑

s∈S
b(s)P (o|s, a)P (s′|s, a)

P (o|b, a)

= max
α∈D

∑

s′∈S

α(s′)
∑

s∈S

b(s)P (o|s, a)P (s′|s, a)

= max
α∈D

∑

s∈S

b(s) ·

(

P (o|s, a)
∑

s′∈S

α(s′)P (s′|s, a)

)

Here, P (s′|b, a, o) is the belief of state s′ in the next round when

the belief in the current round is b, the agent takes action a and get

the observation o, which is the b(s′) in Equation 2.

5. PLANNING FROM POMDP VIEW
We have discussed in Section 4.1 that every single target can be

modeled as a special POMDP model. Given that, we can com-

bine these POMDP models at all targets to form a special POMDP

model that describe the whole problem, and solving this special

POMDP model leads to defenders’ exact optimal strategy. Use the

superscript i to denote target i. Generally, the POMDP model for

the whole problem is the cross product of the single-target POMD-

P models at all targets with the constraint that only k targets are

protected at every round.

state space The state space is S = S
1×S

2× . . .×S
n. Denote

s = (s1, s2, . . . , sn)
action space The action space is A = {(a1, a2, . . . , an)|aj ∈
{0, 1}, ∀j ∈ N,

∑

j∈N
aj = k}, which represents that only k tar-

gets can be protected at a round. Denote a = (a1, a2, . . . , an)
observation space The observation space is O = O

1 ×O
2 ×

. . .×O
n. Denote o = (o1, o2, . . . , on)

conditional transition probability The conditional transition

probability is P (s′|s, a) =
∏

j∈N
P j(s′j |sj , aj).

conditional observation probability The conditional observa-

tion probability is P (o|s, a) =
∏

j∈N
P j(oj |sj , aj).

reward function The reward function is R(s, s′, a, o) =
∑

j∈N

R(sj , s′j , aj , oj)
Naively, the modified value iteration algorithm discussed in Sec-

tion 4.2 can be used to solve this special POMDP formulation.

However, this POMDP formulation suffers from curse of dimen-

sionality — the problem size increases exponentially with the num-

ber of targets. Thus, the computational cost of value iteration algo-

rithm will soon become unaffordable as the problem size grows.

Silver and Veness [15] have proposed POMCP algorithm, which

provides high quality solutions and is scalable to large POMDP-

s. The POMCP algorithm only requires a simulator of the prob-

lem so it also applies to our special POMDPs. At a high level, the

POMCP algorithm is composed of two parts: (i) it uses a particle

filter to maintain an approximation of the belief state; (ii) it draw s-

tate samples from the particle filter and then use MCTS to simulate

what will happen next to find the best action. It uses a particle filter

to approximate the belief state because it is even computationally

impossible in many problems to update belief state due to the ex-

treme large size of the state space. However, in our problem, the

all-target POMDP model is the cross product of the single-target

POMDP models at all targets. The single-state POMDP model is

2Actually the only difference of value iteration algorithm for the
special POMDP formulation compared with that for the standard
POMDP formulation is the different update of Do

a.
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small so that it is computationally inexpensive to maintain its be-

lief state. Thus, we can easily sample the state si at target i from its

belief state and then compose them together to get the state sample

s = (s1, s2, . . . , sn) for the all-target POMDP model.

The details of MCTS in POMDP are available in [15] so we omit

it here. Although the POMCP algorithm shows better scalability

than the exact POMDP algorithm, its scalability is also limited be-

cause the action space and observation space are also exponential

with k in our problem. Consider the problem instance of n = 10,

k = 3 and no = 2, the number of actions is
(

10
3

)

= 10∗9∗8
1∗2∗3

= 120

and the number of observations is
(

10
3

)

∗ 23 = 960. Since actions

and observations are the branches in the MCTS, the tree size will

soon become extremely large when planning more rounds ahead.

This leads to two problems: (i) it will soon run out of memory when

planning more rounds ahead; (ii) a huge number of state samples is

needed to establish the convergence. Thus, the POMCP algorithm

only applies to problem instances with small k. Our experimen-

tal evaluation shows that the POMCP algorithm is unable to plan

3 horizons forward (runs out of memory) for the problem instance

of n = 10, k = 3 and no = 2. It means that for large problem

instances, the POMCP algorithm is reduced to myopic policy (only

look one round ahead when planning).

6. EXPERIMENTAL EVALUATION
In this section, we will firstly evaluate the Whittle Index Policy

in Section 6.1 and then evaluate the RMAB model in Section 6.2.

The performance is evaluated in terms of the cumulative reward

received within the first 20 rounds with discounting factor β = 0.9.

All results are averaged over 500 simulation runs.

6.1 Evaluation of Whittle Index Policy
We will compare the Whittle Index policy with four baseline al-

gorithms:

Random: The defenders randomly choose k targets to protect at

every round.

Myopic: The defenders choose k targets with the highest imme-

diate reward to protect at every round.

Exact POMDP: The defenders uses the modified value itera-

tion algorithm to solve the special POMDP problem discussed in

Section 5 to plan for patrol strategies at every round. Note that it

only works for small-scale problems and is the exact optimal patrol

strategy defenders may take

POMCP: The defenders uses POMCP algorithm to solve the

special POMDP problem discussed in Section 5 to plan for patrol

strategies at every round.

The computation of Whittle Index policy and exact POMDP al-

gorithm involve solving special POMDPs using the modified value

iteration algorithm as is discussed in Section 4.2. We implement

the modified value iteration algorithm by modifying the POMDP

solver written by Anthony R. Cassandra3. The detailed algorithm

we use for value iteration is the incremental pruning algorithm [4].

There are two parameters in the POMCP algorithm: the number

of state samples and the depth of the tree, i.e., the number of rounds

we look ahead when planning. With the increase of the number of

state samples, the performance of the POMCP algorithm improves;

while the runtime also increases at the same time. Thus, for a fair

comparison, during our experiment, we choose the number of state

samples so that its runtime is similar to that of Whittle index pol-

icy. For the depth of the tree, we choose the one with the largest

cumulative reward.

3http://pomdp.org/code/

Small Scale: Compare with Exact POMDP Algorithm We

then evaluate these five planning algorithms in a small problem in-

stance with n = 2, k = 1, ns = 2 and no = 2. The result is shown

in Table 1. From the table, we can see that our Whittle index poli-

cy and POMCP algorithm perform very close to the optimal Exact

POMDP solution and are much better than the myopic optimal pol-

icy and random policy, demonstrating their high solution quality.

Table 1: Planning Algorithm Evaluation in Solution Quality for

Small-scale Problem Instances

Random Myopic Optimal POMCP Exact POMDP Whittle Index

2.6534 3.1384 3.1694 3.1798 3.1740

Large Scale: We then evaluate our planning algorithms in a larg-

er problem instance with n = 10. Figure 3(a) shows the solution

quality comparison when ns = 2 and no = 2. The x-axis shows

the number of defenders (k) and the y-axis shows the cumulative

reward. From this figure, we can see that Whittle index policy per-

forms better than the POMCP algorithm and myopic optimal poli-

cy, and all of these three algorithms perform much better than the

random policy. One thing to note is that the POMCP algorithm

shows poor scalability with regard to k — it is unable to plan 3
horizons forward (runs out of memory) with k = 3. Figure 3(b)

shows the solution quality comparison when ns = 3 and no = 3,

and demonstrates similar patterns as Figure 3(a).
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Figure 3: Planning Algorithm Evaluation in Solution Quality

for Large-scale Problem Instances

An Example When Myopic Policy Fails We can see from Fig-

ures 3(a) and 3(b) that the myopic policy performs only slightly

worse compared with the Whittle index policy. Here we provide

an example where the myopic policy performs significantly worse.

Consider the case with 2 targets and 1 defender.

For target 0:

T 0 =

[

0.95 0.05
0.05 0.95

]

T 1 =

[

0.99 0.01
0.1 0.9

]

O =

[

0.9 0.1
0.2 0.8

]

For target 1:

T 0 =

[

0.4 0.6
0.1 0.9

]

T 1 =

[

0.7 0.3
0.4 0.6

]

O =

[

0.7 0.3
0.3 0.7

]

Figure 4 shows the performance of different algorithms. In this

case, the myopic policy performs similar to the random policy, and

is much worse compared with Whittle Index policy.

Runtime Analysis of Whittle Index Policy: Figure 5 analyzes

the runtime of Whittle index policy. The x-axis shows the num-

ber of targets (n) and the y-axis shows the average runtime. From

the figure, we can see that the runtime increases linearly with the

number of targets. This is because Whittle index policy reduces

an n-dimensional problem to n 1-dimensional problems so that the

complexity is linear with n. Another observation is that the number

of defenders (k) does not affect the runtime a lot for a given n.
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6.2 Evaluation of RMAB Modeling
In this section, we will compare our RMAB model with the algo-

rithms (UCB, SWUCB, EXP3) used in [7] with a group of simulat-

ed attackers. The performance is evaluated in terms of the cumula-

tive reward received within the first 20 rounds after several rounds

learning (β = 0.9).

Figure 6(a) demonstrates how the performance changes with d-

ifferent learning rounds and ns(no). It shows that when learning

rounds is smaller (100), the model with ns = no = 2 perform-

s the best. This is because the model with higher ns(no) suffers

overfitting with limited data at this time. When the data is rela-

tively abundant (learning rounds = 1000), the model with higher

ns(no) performs better. However, we noticed that the difference is

not significantly large.

Figure 6(b) shows that comparison of our RMAB model with the

Random/UCB/SWUCB/EXP3 algorithms. When learning rounds

is smaller (100), our RMAB model performs similar to UCB algo-

rithm, and is better than other algorithms. When learning round-

s becomes larger, our RMAB model shows significant advantage

over other algorithms.
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Figure 6: Evaluation of RMAB Modeling

7. RELATED WORK
Previous research in Green Security Games [19, 5, 14] suffers

from two major limitations. First, this research fails to capture the

defender’s lack of observation of attacks — in the real world, given

a large area to patrol, the defender only has observations of attacks

on the limited set of targets she patrolled in any given round. She

does not have full knowledge of all of attackers’ actions as assumed

in [19, 5, 14], leading to an unaddressed exploration-exploitation

tradeoff for defenders: informally, should the defender allocate re-

sources to protect targets that have already been visited and have

been observed to have suffered a lot of attacks or should she al-

locate resources to protect targets that have not visited for a long

time and hence where there are no observations of attacks. Second,

while significant work in security games has focused on uncertain-

ty over attackers’ observations of defender actions [20], the reverse

problem has received little attention. Specifically, given frequent

interactions with multiple attackers, the defender herself faces ob-

servation uncertainty in observing all of the attacker actions even

in the targets she does patrol. Addressing this uncertainty in the

defender’s observation is important when estimating attacks on tar-

gets and addressing the exploration-exploitation tradeoff.

The limited observability property and exploration-exploitation

tradeoff is also noticed by Klíma in the domain of border patrol

where the border is large area [7, 8]. They model the problem as a s-

tochastic/adversarial multi-armed bandit problem and use (sliding-

window) UCB algorithm [2]/EXP3 algorithm [3] to plan for pa-

trollers’ strategies. However, the stochastic bandit formulation fails

to model patrol’s effect on attackers’ actions while the adversarial

bandit formulation fails to capture attackers’ behavioral pattern.

Zhang et al. [22] focus on deterring crimes in urban areas by po-

lice patrol. They use Dynamic Bayesian Network (DBN) to model

criminals’ response to police patrol. They learn the DBN model

from real-world crime data and then plan police patrol according

to the DBN model. Their work does not deal with the exploration-

exploitation tradeoff since victims would mostly report crimes to

police so the police does not suffer from limited/partial observabil-

ity issue in this domain.

There is a rich literature on indexability of restless multi-armed

bandit problem. Glazebrook et al. [6] provide some indexable fam-

ilies of restless multi-armed bandit problems. Nino-Mora [11] pro-

pose PCL-indexability and GCL-indexability and show that they

are sufficient conditions for indexability. Liu and Zhao [9] apply

the concept of RMABs in dynamic multichannel access. In their

model, every arm is a two-state Markov chain and the player only

knows the state of the arm he chooses to activate. They prove the

indexability of their problem and find the closed-form solution for

the Whittle index. In [12], Ny et al. also consider the same class

of RMABs but motivated by the application of UAV routing. This

problem shares some similarity with our problem but our problem

is more difficult in the following aspects: (i) we cannot directly ob-

serve the states (POMDP vs. MDP); (ii) different actions lead to

different transition matrices in our model; (iii) we allow for more

states and observations. A further extension to this work discusses

the case with probing errors where the player’s observation about

the state might be incorrect [10]. This concept is similar to what

we assume in our model, but the detailed settings are different.

8. CONCLUSION
This paper presents a new solution framework for security do-

mains with frequent interactions and limited/partial observability.

The motivating domains include wildlife protection domain, police

patrol to catch fare-evaders, border patrol, etc. We model these

domains as an RMAB to handle the limited/partial observability

challenge. We provide an EM based learning algorithm to learn the

RMAB model and use the solution concept of Whittle index policy

to solve the RMAB model for planning optimal patrol strategies.
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