
Automating Failure Detection in Cognitive Agent Programs

Vincent J. Koeman
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

v.j.koeman@tudelft.nl

Koen V. Hindriks
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

k.v.hindriks@tudelft.nl

Catholijn M. Jonker
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

c.m.jonker@tudelft.nl

ABSTRACT
Debugging is notoriously difficult and extremely time con-
suming but also essential for ensuring the reliability and
quality of a software system. In order to reduce debugging
effort and enable automated failure detection, we propose an
automated testing framework for detecting failures in cogni-
tive agent programs. Our approach is based on the assump-
tion that modules within such programs are a natural unit
for testing. We identify a minimal set of temporal operators
that enable the specification of test conditions and show that
the test language is sufficiently expressive for detecting all
failures in an existing failure taxonomy. We also introduce
an approach for specifying test templates that supports a
programmer in writing tests. Furthermore, empirical anal-
ysis of agent programs allows us to evaluate whether our
approach using test templates detects all failures.

Keywords
multi-agent systems; testing; verification

1. INTRODUCTION
Debugging is notoriously difficult and extremely time con-

suming [23] but also essential for ensuring the reliability and
quality of a software system. Manual testing, using, for ex-
ample, a debugger for single-step execution to identify dif-
ferences between observed and intended behaviour, however,
is not an efficient failure detection method and heavily relies
on the programmer to identify the failure. In order to reduce
debugging effort and enable automated failure detection, we
propose an automated testing framework for cognitive agent
programs. Automated testing yields a reduction in the ef-
fort needed to detect a failure and is more effective than
code inspection methods [24]. In addition, it also facilitates
running tests repeatedly at no additional costs.

The aim of this paper is to introduce and develop a test
framework that supports automated failure detection for pro-
grams written in rule-based agent programming languages
that use a logic for representing the cognitive state of the
agent, including e.g. its beliefs. A failure is an event in
which a system does not perform a required function within
specified limits [16]. Failures thus are manifestations of un-

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

desired behaviour. They are caused by a fault, an incorrect
step, process, or data definition in a program [16] or mistake
in a program [27]. Upon detecting a failure, a programmer
needs to locate and correct the fault that causes the failure.
Our focus is on automating the detection of failures and on
dynamic analysis, i.e., the process of evaluating a system
or component based on its behaviour during execution [16].
We will see, however, that the test framework introduced
also provides support for fault localization.

The main contribution of this paper is an automated test
framework for cognitive agent programs that provides sup-
port for detecting frequently occurring failure types. As a
first step towards such a framework, we argue that program
modules instead of the top-level agent program are the most
natural unit for testing, and that test conditions should be
associated with modules. Second, we introduce two basic
temporal operators that in practice are sufficient for spec-
ifying test conditions to detect failures. Third, using this
generic framework, we propose test templates for failure
types that have been identified in a previously developed
taxonomy in [27]. Finally, we introduce a test approach for
deriving test templates given some initial functional require-
ments. In order to empirically evaluate and demonstrate
that our framework is expressive enough to detect all failure
types, we verify that we can reproduce and identify all fail-
ures found in the sample used in [27]. The test templates
that we introduce can be considered as a refinement of the
failure taxonomy proposed in [27]. We show that by au-
tomating testing, we are able to identify more failures. We
also show that our work is not biased towards this sample
by demonstrating that the same test approach is also able
to identify all failures in different samples of programs.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 introduces our automated test frame-
work. Section 4 introduces the test templates and approach.
Section 5 evaluates the test framework. Section 6 concludes.

2. RELATED WORK
In general, different techniques for detecting failures of

program code are available, ranging from inspection of source
code and logs to automated testing tools [24]. The need for
debugging techniques and test approaches for agent-oriented
programming has been broadly recognized [2, 9, 10]. Tech-
niques for agent-oriented programming need to be based on
the underlying agent paradigm [21, 28]. However, this is a
significant challenge, as they should for example take into
account that agents execute a specific decision cycle and op-
erate in non-deterministic environments [1, 4, 14].

1237

To facilitate code inspection, a (source-level) debugger
that supports single-step execution of an agent can be used.
[19], for example, provides a useful tool for detecting failures
in a program. Debugging is particularly useful for zooming
in on a bug of which the location is already more or less clear;
it requires a programmer to go through the execution steps
of an agent program one-by-one and to observe any mistakes
in the program manually. This method of code inspection
is not only inefficient, but also subjective, as it depends on
observations made by a programmer. It requires the same
effort repeatedly since, after correcting an identified fault, a
programmer needs to manually evaluate program behaviour
again to verify that a fix does not introduce new defects.
Automated testing offers a method that is complementary
to debugging, able to find different kinds of failures, and
thus increasing the overall number of detected failures [23,
24]. Moreover, debugging techniques that support the lo-
calization of the fault that causes a failure that has been
identified by automated tests are still needed. Such tech-
niques include state inspection, mechanisms for browsing
and searching (historical) agent states, etcetera [7, 19].

Five levels of testing a multi-agent system (MAS) are dis-
tinguished in [20]: unit, agent, integration, system, and ac-
ceptance. In this classification, unit testing targets compo-
nents that are part of an agent. Testing an agent means
to test the integration of these components as well as its
ability to interact with its environment. Integration testing
focuses on agent interaction and communication protocols,
system testing concerns the target operating environment,
and acceptance testing takes the customer’s perspective into
account. The focus of this paper is on unit and agent testing.

Testing can target different artifacts [24]. The test frame-
work of [28], for example, targets Prometheus design models.
The paper presents a mechanism for generating suitable test
cases. Similarly, the methodology of [12] is based on specific
‘meta-models’ and ‘protocol descriptions’. Other methods
focus on the interaction between agents specifically, often
using ‘mock agents’ to check if specific interaction has taken
place [6, 18]. The concept of a ‘mock agent’, i.e., a specific
agent that is used for testing, is also used in the work of [5]
to test an agent’s behaviour based on ‘agent stories’. Most
of these approaches consider an agent to be the smallest pos-
sible artifact to test. Other approaches target more specific
artifacts like plans ([22, 25]) or goals ([11]). In this work,
however, we argue that modules are the most suitable target
artifact. This is partly motivated by the work of [15], which
states that techniques that rely heavily on formal methods
or sophisticated program analysis are valuable, but difficult
to apply in practice, and thus not always effective in finding
real bugs. Bug patterns (code idioms that are often errors)
can be used to facilitate the development of simple detectors
(e.g., test templates) that facilitate efficient bug detection in
real applications. Therefore, unlike these existing methods,
we focus on how to create tests that can detect specific bug
patterns in cognitive agents.

3. AUTOMATED TESTING FRAMEWORK
We introduce an automated test framework for rule-based

agent programming languages that use some knowledge rep-
resentation (KR) for representing the cognitive state of an
agent. We aim for a framework that is as generic as possi-
ble, but in order to introduce a concrete framework we need
to make a number of assumptions about these languages.

First, agents have a perception processing component that
they use for processing received percepts, which are sim-
ple facts that we denote by p(~t) (or simply p if parameters
do not matter). We assume that percepts are stored each
agent cycle when received from an environment for further
processing. Second, we assume that the KR used supports
a negation operator, denoted by not. Third, we assume that
the cognitive state includes a belief state that can be queried
and which allows to make percepts persistent. Fourth, we
assume that agents somehow can represent goals that they
want to achieve as part of their state; agents can do this,
for example, by means of events, plans, or declarative goals.
Otherwise, the structure of an agent’s cognitive state de-
pends of the specifics of the agent programming language,
which almost always includes more, e.g., also events, mes-
sages, and/or plans. Fifth, we assume that the language
provides support for aggregating or encapsulating basic lan-
guage elements such as knowledge, goals, plans, and/or rules
in what we call modules in this paper. Finally, we assume
that an agent has a top-level module, which enables associ-
ating test conditions with the agent itself.

Three important design questions need to be addressed
to define an automated test framework for cognitive agent
programs. First, we need to specify what the basic unit or
program component is that tests are performed on or are
associated with. Second, we need to define a test language
for specifying test conditions. And, third, we need to specify
an infrastructure that automates running tests.

3.1 Modules Basic Unit for Testing
An important question that we need to address when set-

ting up a test framework is what the target unit for test-
ing is in an agent-oriented program. We argue that a test
framework for agent programs should not focus on knowl-
edge bases to avoid reinventing the wheel, but developers
should rather re-use existing (unit) test frameworks for the
underlying KR technology of an agent programming lan-
guage. For example, a language that uses SWI Prolog for
KR should aim at re-using the available unit test framework
[26]. We have also found that, in practice, testing at the
level of individual goals, plans, or rules is too fine-grained
and not that useful. Writing tests at the level of individual
rules, for example, would not only result in more test than
source code, but even worse, would not focus on the failures
that need to be detected. A more suitable level is the aggre-
gate level that collects multiple goals, plans, and/or rules
in a single unit. We call such units modules and assume
agent programming languages provide some level of support
for modules. We will therefore associate test conditions with
modules and introduce a test language that supports this.

Modules thus can be perceived of as components in an
agent program that set goals or plans and generate actions
to be executed, much like individual basic actions but at a
higher level of abstraction. A module thus provides an exe-
cution unit smaller than the agent program itself but larger
than other basic language elements. By using modules as
targets for testing, we provide a developer with some addi-
tional control over which behaviour of the agent program is
tested, as only the behaviour generated by the module will
be evaluated. This allows a developer to write tests that
target only specific parts of an agent program.

An agent enters a module when it starts executing the
module and exits the module again when module execu-

1238

test := [timeout] moduletest∗ agenttest+

timeout := timeout = integer .
agenttest := id (, id)∗ { testaction+ }
testaction := do (action | id) [until ψ] .
moduletest := test id with

[pre{ ψ }] [in { χ+ }] [post{ ψ }]
ψ := stateop(φ) | done(action) | ψ ∧ ψ
χ := never ψ | ψ leadsto ψ .

Table 1: Test Language Grammar

tion is finished. These execution points provide two natural
places for introducing test conditions. We will associate pre-
conditions and post-conditions with a module that is evalu-
ated, respectively, when entering and when exiting the mod-
ule. Although useful, in practice pre- and post-conditions
are not sufficient for monitoring the trace, i.e., behaviour
and states, generated while a module is executed. To be
able to evaluate a module’s behaviour, we therefore also in-
troduce so-called in-conditions that are associated with a
module. An in-condition is a temporal property evaluated
on the trace generated by a module. These conditions allow
the detection of failures that occur during module execu-
tion. These conditions also provide better support for fault
localization as a test is terminated upon a failure at the code
location where the failure was detected.

3.2 Test Language
A test language should provide support for two main tasks:

setting up a test and specifying which test conditions should
be evaluated. To this end, we introduce the test language in
Table 1. We have developed a test framework1 that, when
provided with a test program as specified by the grammar,
will initialize and set up the infrastructure for running an
agent system and (external) environment in which test will
be automatically performed. A timeout can be specified
to ensure termination of the test after a specified time. A
timeout is global and specifies how many time (in seconds)
is allowed to pass before the entire test should have been
completed. If a timeout happens, the test is aborted.

Test Setup The agents that are part of a test need to be
referenced explicitly in a test program by means of their
id ’s. These agents are launched when the test is started and
automatically connected to an environment, if available, to
receive percepts from and perform actions in that environ-
ment. The fact that agents are launched, however, does not
mean that the program code of these agents is executed.
Instead, the testactions that are specified in an agenttest
clause (see Table 1) are performed when the test is run.
Test actions can be preparatory actions do action for, e.g.,
initializing an agent’s state, where action can be a sequence
of actions that are available in an agent language. Test ac-
tions can also be instructions do id to execute a module,
with id the module’s name. Note that it is possible to run
an agent itself by executing its top-level module (each agent
is assumed to have one). Finally, an until ψ condition can
be associated with a module (or, less usefully, an action)
that terminates execution when a state condition ψ holds.
An agent test thus determines which actions and modules
are executed and when they should be terminated. An agent
test can be shared by multiple agents, but it is also possi-

1The source and implementation of the test framework are
available at http://goalhub.github.io/eclipse

ble to define different actions for different agents, which will
then be executed in parallel.

The environment that agents operate in is not explicitly
referenced in our test language because the specifics of start-
ing an external environment are very different for each agent
language. Here, we simply assume that a language-specific
mechanism is used for connecting agents to an environment.

Test Conditions As explained, test conditions are associ-
ated with modules. Which conditions should be evaluated
when a module is executed is specified by a test id with

statement, where id is a module name. Optionally, a pre-
condition pre{ ψ }, a post-condition post{ ψ }, and an
in-condition in { χ+ } can be associated with the mod-
ule. The pre-condition of a module is a state condition ψ
that should hold when a module is entered (otherwise, the
test fails). Similarly, a post-condition is a state condition
that should hold when a module is exited (terminated). An
in-condition is a temporal condition that specifies which be-
haviour is expected of a module.

A state condition ψ is a condition of the form stateop(φ)
on the cognitive state of an agent, where φ is an expression
in a KR language, or a condition of the form done(α) on
the action α that an agent has just performed. The state
conditions stateop(φ) that are supported will be different for
each agent language, as they each use a specific cognitive
state structure and associated state operators stateop for
inspecting that state. Querying the beliefs of an agent, for
example, may be written as φ? in one language and as bel(φ)
in another.

A temporal property or condition is a statement of the
form never ψ or ψ leadsto ψ. Conditions never ψ can
be used to specify safety conditions, i.e., things that never
should occur. Conditions ψ leadsto ψ can be used to specify
liveness conditions, i.e., things that are supposed to occur
sooner or later after something else has happened [3].

Our test language is based only on the two basic temporal
operators never and leadsto. Most importantly, this is so
because it turns out to be sufficient for detecting failures (as
we show below as well). We also do not want to complicate
our test language more than strictly necessary, as we aim for
our language to be used by trained agent programmers. We
therefore want to minimize the level of acquaintance with
concepts from temporal logic that is needed. In particu-
lar, we want to avoid nesting of temporal operators because
conditions would quickly become difficult to read in that
case. Finally, we note that some temporal operators such
as always ψ can be introduced as syntactic sugar for never

not(ψ). Note that this assumes, however, that the not can
be applied to a state condition or moved inwards into the
KR expressions used in the state condition, which is not the
case in most agent languages. Similarly, eventually ψ can
be introduced as shorthand for true leadsto ψ.

Although it is outside the scope of this paper to provide a
formal semantics of the test conditions, we briefly introduce
the basic semantic model that we assume informally. A run
or trace of an agent program consists of a (finite or poten-
tially infinite) sequence of cognitive states of the agent. Test
conditions associated with a module are evaluated on (par-
tial) traces generated by that module. For testing purposes,
these conditions are assigned one of three values: undeter-
mined, passed, or failed. Initially, all test conditions of a
module have the value undetermined. The pre-condition of
a module, if specified, is evaluated on the current state when

1239

P1: failure to deal with percept
P2: other incorrect percept processing
G1: failure to add a goal that should be added
G2: failure to drop a goal that should be dropped
G3: adding a goal that shouldn’t be added
G4: incorrectly adding a second goal of the same type
G5: dropping a goal that shouldn’t be dropped
A1: selecting the wrong (user-defined) action
A2: beliefs not updated correctly when action performed
A3: action selected when should be doing nothing
A4: action interface mismatch
O: other failure not classified above

Figure 1: Failure Taxonomy of [27]

entering the module and assigned passed when the condition
succeeds, and failed otherwise. Similarly, the post-condition
is evaluated on the current state when a module is exited
or terminated. The value of in-conditions is (re-)evaluated
every time the cognitive state of the agent changes while
the module is being executed. The temporal operator of the
condition determines whether the value is updated:

• never ψ: the value is changed to failed if ψ holds in the
state; the value is changed to passed if the module (or
test) is terminated and the value still is undetermined ;
otherwise, its value remains undetermined.

• ψ leadsto ψ′: if the module (or test) is terminated,
the value is changed to passed if every state where ψ
holds has been followed by a state where ψ′ holds (and
vacuously so if ψ did never hold); otherwise, the value
is changed to failed. If the module (or test) has not
been terminated yet, the value is undetermined.

A test is aborted as soon as a condition is assigned the
value failed. In that case, the entire test is regarded as failed,
indicating that something needs to be fixed. Note that when
a test is terminated (whether aborted or not), all conditions
will have been assigned the value passed or failed. If a test is
terminated because of a timeout, this does not always imply
that the test is a failure; if all conditions are passed, the test
is considered to have passed as well. Finally, our test frame-
work keeps track of the last code instruction in an agent
program that is executed and points at the corresponding
code location when testing is terminated (aborted), which
is useful for fault localization.

4. TESTING FOR FAILURES
In order to verify that we can detect all failures in agent

programs with our framework, we show that we can detect
the same failures that were identified by [27] in a given agent
program sample that was used to define the failure taxonomy
of Figure 1. We provide a systematic approach for detecting
failures by introducing test templates that target specific
types of failures in the taxonomy, and a systematic method
for using these templates for testing.

4.1 Test Templates
A test template consists of one or more templates for in-

dividual test conditions. We provide test templates for each
failure type in the taxonomy, except for A4, which calls for
another detection method and raises a specific design issue
for test frameworks. We note that a test condition specifies
expected behaviour, and a violation indicates a failure.

P1, P2: Failure to process percept (correctly).
In order to define test conditions for percept processing,

we assume a state operator percept(p), indicating that p is
perceived, that can be used to inspect the contents of a
percept store. This does not mean that these conditions
must be supported in the programming language itself, but
only that it should be possible to somehow inspect which
percepts have been received.

In order to support various options for percept processing,
we distinguish four percept types and associate specific test
templates with each type. Although in theory alternatives
can easily be conceived of, we have specified test templates
below based on the assumption that the percept informa-
tion needs to be made persistent in the agent’s belief state,
which worked well in practice. We also assume that test
conditions for percepts can be associated with a percept pro-
cessing module called ppm, and we can write test statements
of the form test ppm with in { χ+ }. Each agent language
provides some kind of support for this, although perhaps
not in the language itself but ‘under the hood’. It is im-
portant that test conditions for percepts are associated with
and evaluated while executing the percept processing mod-
ule. Because this module is executed once each cycle of the
agent, in order to not violate the test conditions, percepts
must have been processed and beliefs updated accordingly
at the end of percept processing.

Template P-once: concerns percepts that are only re-
ceived once, typically when the agent is launched to inform
about static information such as locations on maps. The test
template expects that after receiving the percept, it will be
made persistent such that the agent believes it.

percept(p) leadsto bel(p)

Template P-always: concerns percepts about facts p that
are always received when p is the case, meaning that not
receiving the percept implies that p does not hold. The test
template consists of two test conditions. The first is identical
to the one for P-once; the second condition expects that
not perceiving p, which would indicate that p does not hold,
should lead to removing the belief p (if present).

percept(p) leadsto bel(p)
not(percept(p)) ∧ bel(p) leadsto not(bel(p))

Template P-on-change: concerns percepts that are sent
only when parameters change. A percept loc(place), for ex-
ample, is sent each time when an agent’s location changes.

percept(p(~t)) leadsto bel(p(~t))

percept(p(~t))∧bel(p(~t′)) ∧ ~t 6= ~t′ leadsto not(bel(p(~t′)))

Template P-on-change-with-negation : concerns percepts
p that are received once when p becomes true, and percepts
not(p) that are received once when p becomes false (again).
For example, in(room) is received when an agent enters a
room, and not(in(room)) is received when it leaves again.

percept(p) leadsto bel(p)
percept(not(p)) leadsto not(bel(p))

G1: Failure to add a goal that should be added.
The taxonomy in Fig. 1 includes five failure categories

related to goal handling. We therefore assume that a state

1240

operator goal is available for checking for the presence or
absence of a goal. Each of these failure categories, with the
exception of G4, suggest that a reason for (not) having a
goal has not been adequately taken into account.

Template G-adopted : concerns a goal φ that the agent is
expected to adopt because of some (sufficient) reason ψ.

ψ leadsto goal(φ)

G2: Failure to drop a goal that should be dropped.
The failure to drop a goal is taken here as an indication

that the agent did not adequately reconsider the goals that
it has. As one would expect an agent to reconsider its goals
if the environment has changed outside the control of that
agent, these failures would most likely only occur in dynamic
environments or in a multi-agent context.

Template G-reconsideration : concerns a goal that should
be reconsidered and dropped as a result for some reason ψ.

ψ leadsto not(goal(φ))

G3: Adding a goal that should not be added.
The counterpart of G1, reflected by the fact that we use a

safety (never) instead of liveness (leadsto) condition here.

Template G-incorrect : concerns a situation in which there
is a reason ψ for not adopting (having adopted) the goal.

never goal(φ) ∧ ψ

G4: Adding a second goal of the same type.
Some goals should only occur once and it should never be

the case that the goal is instantiated twice. For example, an
agent might have a goal of visiting a room but should never
have two of those goals simultaneously.

Template G-duplicate: concerns a single-instance goal
that should be instantiated at most once.

never goal(φ(~t)) ∧ goal(φ(~t′)) ∧ ~t 6= ~t′

G5: Dropping a goal that should not be dropped.
Similar to G3, G5 is the counterpart of G2.

Template G-maintain : concerns a situation in which ψ
is a reason why an agent should have a goal, and should
maintain it for that reason.

never not(goal(φ)) ∧ ψ

A1: Failure to select an action.
Fig. 1 includes four failure categories related to actions.

Categories A1 and A3 suggest that a reason for (not) select-
ing an action has not been adequately taken into account.

Template A-selected : concerns an action α that the agent
is expected to have selected because of some reason ψ.

ψ leadsto done(α)

A2, A3: Incorrect action (selection).
We provide one test template for categories A2 and A3,

which both suggest that something happened that should
(never) have happened, and thus can be viewed as the coun-
terpart of A1. A2 indicates that beliefs should not have

been updated the way they are, and A3 indicates there is a
situation in which an action should never have been selected.

Template A-incorrect : concerns an action α that should
never be (immediately) followed by ψ (A2), or a situation ψ
in which an action should never have been selected (A3).

never done(α) ∧ ψ

A4: Action interface mismatch.
This failure concerns an agent that attempts to perform

an action in an environment that is not supported by that
environment. An environment is expected to raise an excep-
tion or use another event-mechanism to indicate this issue.
To detect these failures, rather than providing a test tem-
plate, the test framework should abort testing immediately
after receiving the exception or event. Aborting upon re-
ceiving an exception is a general principle that is supported
in our framework.

4.2 Taxonomy Refinement
The test templates that we have introduced do not offer

a perfect match with the failure categories, but provide a
refinement of the taxonomy in Fig. 1. Instead of two cate-
gories P1,P2 for percept processing failures, we introduced
four templates (P-once, etc.). The main reason for this dif-
ference is that in a test approach we should specify what
kind of percept is expected, instead of indicating that no
processing was done at all (P1) or something went wrong
(P2). For a similar reason, we renamed A1 from ‘select-
ing the wrong action’ to ‘failure to select an action’, which
also highlights the similarity with the template for G1. We
merged A2 and A3 which are covered by a single test tem-
plate; note again the structural similarity with the template
for G-incorrect (G3). As discussed, we do not have a corre-
sponding template for A4, as tests should rather be aborted
when this failure happens. Finally, we have no templates
for the ‘other’ category; our empirical results suggest there
is no need for an additional template, as we show below.

4.3 Test Approach
In order to test and use the test templates, we need a sys-

tematic test approach that tells us what to do (steps) and,
more specifically, provides clues on how to instantiate the
templates for a specific application. An important question,
for example, is how to find reasons to instantiate the ψ con-
ditions that occur in the G- and A-templates. Table 2 lists
information resources that are particularly useful for testing.

Source Type of Information
Agent program (comments) Clues for reasons & design
Agent trace (screen, logs) Observable behaviour
Agent design & specification Functional requirements
Environment (documentation) Percepts, actions available

Table 2: Information sources for testing

Step 1: Defining success.
The first step is to identify functional requirements from

available agent design documentation (Table 2). These re-
quirements define success and provide a concrete method
for checking that a program does what it is supposed to
do. A program can be considered free of failures if it meets
requirements. In order to automatically check this, func-
tional requirements must also be specified in the test lan-
guage. Typically, these requirements will be associated with

1241

the top-level module, called main here, that is executed by
the agent, and we can specify them as pre-, post-, or in-
conditions of that module using test main with statements
or by using a statement do main until ψ. The latter is par-
ticularly useful for checking that some overall objective ψ
is realized (and, if so, the test will be automatically termi-
nated; a timeout should be specified to guarantee termina-
tion if this is not the case). For example, the requirement or
objective to pickup and deliver n packages, which was used
in [27] and below will be used to reproduce results, can be
specified by do main until bel(delivered(n)).

Step 2: Testing cognitive state updating.
It is important to test that updating of an agent’s cogni-

tive state works as expected. The state conditions used in
test conditions are evaluated on this state and will fail for un-
clear reasons when state updating has not been implemented
correctly. For example, a condition never done(putDown) ∧
not(bel(in(Room))), which expresses that a package should
never be put down when not in a room, could simply fail
because beliefs about in(Room) were not updated correctly.

Identify percepts, actions, and goals used As a prepa-
ratory step, it is useful to collect and list all percepts, in-
cluding their type (once, etc.), that may be received and the
actions that may be performed from environment documen-
tation (Table 2). Similarly, all goals that an agent may have
should be collected from the agent program code.

Validating percept processing The most basic step is
to instantiate the appropriate test templates P-once, etc.
for each percept according to type. The resulting test condi-
tions should be associated as in-conditions with the percept
processing module, and the test framework used to evaluate
these conditions. Tests should be repeated sufficiently often
as percepts generated will differ per run, if only because en-
vironments are more often than not non-deterministic. To
gain confidence that percepts are correctly handled, it is im-
portant to check against the list of actions created above
whether a sufficient variation of actions has been performed
during runs, as different actions often yield other percepts.

Check single-instance goals Based on design, and in-
tended use of goals in comments in a program (Table 2),
for example, and using the goal list created, the subset of
goals that are single-instance goals should be identified. For
each of these goals, the test template G-duplicate should
be instantiated and associated as an in-condition with the
module where the goal is adopted.

We note that Step 2 can be performed by almost mechan-
ically instantiating templates once relevant information has
been collected. If these initial tests succeed, therefore, this
will give a high level of confidence that cognitive states are
updated correctly. For all templates other than those used
above, however, a state condition ψ needs to be derived using
insights gained from the design and behaviour of an agent.

Step 3: Classifying failures.
After testing state updating and checking that failures still

are present (see Step 1), there are two approaches for clas-
sifying those failures. A bottom-up approach would start
with the action and goal list created and try to instantiate
templates for all these actions and goals, using the agent
program itself as the main source of information. A top-
down approach would rather start by analysing agent traces
(Table 2) and observing agent behaviour in order to iden-

tify which action should (not) have been performed or goal
should (not) have been added. Although a top-down ap-
proach suggests to start with testing goals, this order is not
fixed and testing might just as well proceed with actions.

Failures concerning actions In order to instantiate A-
templates, apart from the action, a state condition should be
identified that provides a reason ψ for (not) selecting it. For
A-selected (resp. A-incorrect), the question is in which
situations ψ an action should (never) be executed. The in-
stantiated conditions should be associated as in-conditions
with the module(s) where the action might (not) be selected.

There are two basic approaches for identifying ψ:
1. By inspecting the agent program, clues may be ob-

tained for useful test conditions ψ. In particular, the trigger-
ing conditions of rules can be useful, as they typically indi-
cate reasons for selecting an action. For example, a condition
bel(in(′DropZone′) ∧ holding(Block)) that triggers execu-
tion of an action putDown suggests that an agent should ex-
ecute putDown when it is holding a block in the ′DropZone′.
By simply using this condition for ψ we can instantiate A-
selected as follows: bel(in(′DropZone′) ∧ holding(Block))
leadsto done(putDown). This simple approach can already
detect failures, e.g., in case the rule order prevents the rule
for putDown to ever be applied. Similarly, by simply negat-
ing conditions found in a program, we can instantiate A-
incorrect . This assumes that the condition must hold for
the action to be selected. Although these assumptions may
be too strong, they provide a useful starting point and can
be weakened or strengthened based on further analysis.

2. If an action failure is suspected because, for example, a
functional requirement is not satisfied, observing an agent’s
behaviour may provide clues for identifying a useful condi-
tion ψ for instantiating a test template for that action. Sup-
pose a requirement bel(in(Room)) leadsto not(bel(in(Room)))
fails, i.e., an agent does not always leave a room after enter-
ing it. By observing that the goTo action is never performed,
a failure to select this action is suggested. To test for this,
the A-selected template can be instantiated by instantiat-
ing ψ with the reason for leaving and α with the goTo ac-
tion, which yields: bel(in(Room) ∧ Room 6= OtherRoom)
leadsto done(goTo(OtherRoom)). This process can be con-
tinued until the root cause has been identified.

Failures concerning goals The approach for instantiat-
ing G-templates, apart from identifying the goal that might
cause the failure, is similar to that for A-templates. The as-
sociated questions for the templates are, for G-adopted : for
which ψ should the goal be added?; for G-reconsideration :
for which ψ should the goal be dropped?; G-incorrect :
for which ψ should a goal never be added?; and for G-
maintain : for which ψ should a goal never be removed. The
approach for identifying ψ above also applies for goals. The
instantiated conditions should be associated as in-conditions
with the module(s) that are related to the goal.

We illustrate a test for a goal in(Room) that is adopted
in a rule with a triggering condition bel(room(Place)) ∧
not(bel(visited(Place))), i.e., indicating that an agent should
adopt (multiple) in(Room) goals when it knows about a
room that it has not visited before. By simply using this
condition for ψ we can instantiate G-adopted as follows:
bel(room(Place)) ∧ not(bel(visited(Place))) leadsto

goal(in(Place). Again, this simple approach can already
detect failures, e.g., in case the rule order prevents the rule

1242

1. Test

Program

2. Debug

Program

3. Re-test

Program

4. Sum.

Changes

5. Classify

faults & failures

Exclude

Program

Bugs

found?
More

bugs?

Yes Yes

No

No

6. Aggregate

counts

Figure 2: The methodology used in [27]

from ever being applied. Similarly, by simply negating con-
ditions found in a program, we can instantiate G-incorrect .
This assumes that the condition must hold for the goal to
be adopted, e.g., we never want to go to rooms we have
visited before. A similar approach can be used for the G-
reconsideration and the G-maintain templates.

5. EVALUATION
In this section, we first evaluate whether our automated

approach is able to detect all failures in a specific set of agent
programs. Next, we evaluate whether we are able to detect
all failures in a different set of agents operating in the same
environment, but with additional functional requirements.
Finally, we evaluate this for a single agent program sample
that operates in a different environment.

5.1 Comparing the Approaches
To establish the effectiveness of our automated test frame-

work and test approach, we evaluate here whether the auto-
mated test framework, using the test templates introduced
above, is able to detect the failures that were detected by
manual inspection in [27]. We aim to show that our frame-
work can be used to detect failures to obtain failure-free
programs, meaning that functional requirements are met.

Methodology We used the agent program sample and the
methodology for testing, debugging, and classifying failures
of Fig. 2 that was also used by [27]. Only step 1 and 3
were replaced by tests performed using our test framework
instead of manual inspection of logs and traces. We also
used the same ‘success criteria’, i.e., the requirement formu-
lated at the end of Step 1 of our approach. As we want
to demonstrate that failures detected in [27] can also be
detected automatically, we used a bottom-up approach for
writing tests and created test templates for all percepts, ac-
tions, and goals in a program to ensure as large a coverage
as possible. Upon detecting a failure (bug), we applied the
same fixes as [27], which we obtained from the author, and
re-ran our tests. We verified that the same bug was found
by our tests, e.g., by checking that the code location where
the test was terminated corresponds with the code location
where a fix was applied. If we could not match a failure
found by automated testing with one found originally by
manual inspection, this failure was registered separately, the
corresponding test conditions were removed, and the evalu-
ation was continued.

Results We analysed and wrote a large set of test condi-
tions for 20 agent programs. The results in terms of number
of failures found are summarized in Table 3. Each individual
failure found was counted and included in the Table. Note
that we used taxonomy of Fig. 1 for classification, and not
our refinement, to allow for comparison. We were able to re-
produce every failure found by [27] (‘Orig.’ column in Table
3) and often found more (‘Difference’ column). In particu-
lar, we were able to automatically verify that all programs

were failure-free after fixing buggy programs by testing that
they met the requirement, indicating success.

We were able to detect 88% of the original failures by per-
forming automated tests. So even though we were able to
fully automatically establish that a program was failure-free,
detecting some problems that were originally classified as
failures required manual inspection (counts between brack-
ets in Table 3). After analysis, it turned out that all these
failures only occur when agent’s cycles are delayed indef-
initely while an environment may continue running. This
can happen when a developer manually pauses an agent.
As an example, an agent that runs at normal speed and is
connected to the environment BW4T [17], which we used in
our sample, would never simultaneously receive the percepts
not(in(room(a1)) and in(room(a2)). This is because it takes
time to move from a1 to a2, and an agent running at normal
speed would first receive the first and only later receive the
second percept. If an agent is paused, because the environ-
ment continues running both percepts may be queued and
received simultaneously when the agent is resumed. When
we run tests with agents using the automated test frame-
work, we do not detect such ‘failures’ because agents are
never paused. Our finding thus highlights that it is impor-
tant to take timing issues into account. We also note that no
G5 failures were found (confirmed after discussion with the
author of [27]), but we did find such a failure in the sample
we discuss in Section 5.

We identified 24% more failures, most of which (70%) were
detected by means of the percept test templates (P1, P2)
and the template G-duplicate (G4). Interestingly, these
templates are used in Step 2 of our test approach. This
suggests that manual inspection is biased more towards a
top-down approach in Step 3. As we argued, developing
and testing a program is facilitated, however, if confidence is
gained first that state updating is free of failures. One likely
other reason that explains why we found more failures is that
we were able to perform many test runs, as the test frame-
work facilitates performing repeated test runs, and each run
may produce different failures because of non-determinism.

A particularly interesting result is that we found that 63
from the 82 (77%) failures detected by automated tests im-
mediately pointed at the code location of the fault. This,
of course, makes it easier for a developer to fix a bug, and
is a clear indication of the value that automating testing
can have for agent programming. Fault locations are hardly
ever pointed at, however, when a wrong action is performed
(A-selected , A1), suggesting that locating faults for such
failures may require a different approach.

We now show that our approach is also able to detect
all failures in sample programs other than those used to
reproduce the results of [27]. The test templates that we
proposed have been based on the failure taxonomy of [27]
which was derived from an analysis of the sample used in
the previous section. We aim to provide additional support
that shows that our set of test templates is complete and
our approach is not biased towards a particular sample by
looking at other sample programs.

5.2 Different Agent Program Sample
We selected a new sample of 10 agent programs that were

written for the BW4T environment but by different pro-
grammers. Moreover, these programs were supposed to sat-
isfy several more functional requirements instead of only one.

1243

Failure Manual [27] Automated Difference
P1 14 17 (3) 3
P2 11 16 (1) 5
A1 29 30 (5) 1
A2 3 4 (0) 1
A3 4 5 (0) 1
A4 1 1 (0) 0
G1 5 5 (0) 0
G2 3 3 (0) 0
G3 7 10 (1) 3
G4 5 11 (0) 6
G5 0 0 (0) 0

Totals 82 102 (10) 20

Table 3: Comparison of results (5.1)

Failure Count
P-failure (P1,P2) 10
A-selected (A1) 11
A-incorrect (A2,3) 7
G-adopted (G1) 4
G-reconsideration (G2) 1
G-incorrect (G3) 16
G-duplicate (G4) 3
G-maintain (G5) 1
Total 53

Table 4: Results of the performed evaluation (5.2)

Agents were required, for example, to not do any redundant
tasks: “An agent should go directly to the drop zone when it
is holding a block”, formalized as never done(goTo(Room))
∧ Room 6= ′DropZone′ ∧ bel(holding(Block)), and “An
agent should not go to the drop zone without holding a
block”, formalized as never done(goTo(′DropZone′)) ∧
not(bel(holding(Block))). These additional requirements also
pose a greater challenge for our test approach, as a program
is considered failure-free only if all requirements are satis-
fied, increasing the difficulty of detecting all failures.

All failures found could be classified using our refined tax-
onomy; Table 4 presents counts per type. We did not find
any A4 failures but did find a G-maintain (G5) failure.
Failures that were detected were fixed using the same ap-
proach as [27]. We thus were able to successfully generate
failure-free agents that satisfy all functional requirements.

A larger set of functional requirements facilitated the use
of a top-down approach (Section 4) rather than a bottom-up
approach, as was used for reproduction. An interesting find-
ing is that this lead to a decrease in the amount of test fail-
ures that pointed directly at code locations of corresponding
faults (25%, 13 out of 53, as opposed to 77% before). More
work is needed to explain this finding.

5.3 Different Environment
Finally, we performed an evaluation whether the test frame-

work and approach would detect failures in a single agent
program sample that operates in a different environment.
We chose an environment called the Vacuum World to this
end [8]. In this world, squares in a grid can be either clean,
dusty, or contain an obstacle that the robot should move
around, thus requiring the agent to also successfully navi-
gate the robot over the grid. A robot is able to move to any
neighbouring clean or dusty square and clean up (vacuum)
the square it is currently on (removing the dust).

For the evaluation, we used an agent program sample
that was developed to meet the requirement that all dusty
squares in a grid have been cleaned. This initial agent pro-
gram did not meet the functional requirement specified, and
we thus applied our test approach to detect failures.

Four failures were detected in the agent program, which is
similar to the average of about four or five failures that were
found for all other sample programs. Two percept failures
were detected using the P templates, and two failures re-
lated to action selection were detected using the A-selected
template. After fixes were applied for these failures, the
agent did meet its requirement. Consistent with earlier
results, percept failures indicated code locations for corre-
sponding faults, whereas the action failures required more
debugging effort for fault localization.

6. CONCLUSION
In this paper, we proposed and defined an automated test-

ing framework for cognitive agent programs, facilitating au-
tomated failure detection and reducing debugging effort that
is required from a developer. We argue that modules are a
natural unit for testing, and associate test conditions with
modules of an agent program. We also introduced a test lan-
guage that we used to specify test templates for detecting
failure types. These test templates refine a failure taxonomy
introduced in [27]. A test approach has also been specified
that explains how to instantiate test templates and derive
test conditions for specific failure types. The main steps of
this approach are (i) to define success in terms of functional
requirements, (ii) to test cognitive state updating, and (iii)
to classify failures that concern actions and goals.

The test language proposed is minimal in the sense that
only two temporal operators are provided. We showed by
analysing different agent program samples that the language
is nevertheless sufficient for detecting all failures in these
programs. In particular, we were able to reproduce and de-
tect all failures that were manually identified in [27] using
our automated test framework. Interestingly, in about 77%
of failures found in this reproduction, the test framework
also pointed to the code location of the corresponding fault.
We demonstrated that our approach is not biased towards
a specific sample of agent programs by applying the frame-
work to other sample programs, and in a different environ-
ment. We were able to detect all failures by means of the
automated test framework, i.e., all agents eventually met all
functional requirements after fixing the detected failures.

Our work points to several issues that need more work.
The focus of our work has been on automatically detecting
failures. Even though our results are encouraging in that
fault localization was facilitated by the test framework, more
work is needed for locating faults that correspond with these
failures. In particular, we found that faults related to actions
that are performed but should not have been performed are
difficult to locate. Tools that can explain why these actions
were performed might be useful here [13].

Finally, further evaluation of the test framework is needed
in more environments. Because of non-deterministic envi-
ronments and other agents that act in the same environ-
ment, failures that occur in one run may not occur in the
next. More work is needed to identify how often a test should
be repeated in order to find all failures in an agent program.
Measures of the variation one should expect in a given en-
vironment could be useful here.

1244

Acknowledgments
We would like to thank Michael Winikoff for sharing his ex-
periment data and providing valuable insights on this work.

REFERENCES
[1] R. Bordini, M. Dastani, and M. Winikoff. Current

Issues in Multi-Agent Systems Development. In
Engineering Societies in the Agents World VII,
volume 4457, pages 38–61. 2007.

[2] R. H. Bordini, L. Braubach, J. J. Gomez-sanz, G. O.
Hare, A. Pokahr, and A. Ricci. A survey of
programming languages and platforms for multi-agent
systems. Informatica, 30:33–44, 2006.

[3] T. Bosse, C. M. Jonker, L. van der Meij, and J. Treur.
Leadsto: A language and environment for analysis of
dynamics by simulation. In T. Eymann, F. Klügl,
W. Lamersdorf, M. Klusch, and M. N. Huhns, editors,
Multiagent System Technologies, volume 3550 of
Lecture Notes in Computer Science, pages 165–178.
Springer Berlin Heidelberg, 2005.

[4] G. Caire, M. Cossentino, and A. Negri. Multi-agent
systems implementation and testing. In Proc. of the
4th From Agent Theory to Agent Implementation
Symposium, AT2AI-4, 2004.

[5] A. Carrera, C. A. Iglesias, and M. Garijo. Beast
methodology: An agile testing methodology for
multi-agent systems based on behaviour driven
development. Information Systems Frontiers, pages
1–14, July 2013.

[6] R. Coelho, U. Kulesza, A. von Staa, and C. Lucena.
Unit testing in multi-agent systems using mock agents
and aspects. In Proceedings of the 2006 international
workshop on Software engineering for large-scale
multi-agent systems - SELMAS ’06, page 83, New
York, New York, USA, 2006. ACM Press.

[7] R. Collier. Debugging agents in agent factory. In R. H.
Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Programming
Multi-Agent Systems, volume 4411 of Lecture Notes in
Computer Science, pages 229–248. Springer Berlin
Heidelberg, 2007.

[8] R. Collier and J. Howell. Vacuum world.
https://github.com/eishub/vacuumworld. Accessed:
2015-11-17.

[9] M. Dastani. Programming multi-agent systems. The
Knowledge Engineering Review, 30:394–418, 9 2015.

[10] J. Dix, K. V. Hindriks, B. Logan, and W. Wobcke.
Engineering Multi-Agent Systems (Dagstuhl Seminar
12342). Dagstuhl Reports, 2(8):74–98, 2012.

[11] E. Ekinci, A. Tiryaki, v. Çetin, and O. Dikenelli.
Goal-oriented agent testing revisited. In M. Luck and
J. J. Gomez-Sanz, editors, Agent-Oriented Software
Engineering IX, volume 5386 of Lecture Notes in
Computer Science, pages 173–186. Springer Berlin
Heidelberg, 2009.

[12] J. Gómez-Sanz, J. Bot́ıa, E. Serrano, and J. Pavón.
Testing and debugging of MAS interactions with
INGENIAS. In Agent-Oriented Software Engineering
IX, pages 199–212, 2009.

[13] K. V. Hindriks. Debugging is explaining. In I. Rahwan,
W. Wobcke, S. Sen, and T. Sugawara, editors, PRIMA

2012: Principles and Practice of Multi-Agent Systems,
volume 7455 of Lecture Notes in Computer Science,
pages 31–45. Springer Berlin Heidelberg, 2012.

[14] Z. Houhamdi. Multi-Agent System Testing: A Survey.
International Journal of Advanced Computer Science
and Applications, 2(6):135–141, 2011.

[15] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92–106, Dec. 2004.

[16] ISO. ISO/IEC/IEEE 24765:2010 systems and software
engineering - vocabulary. Technical report, Institute of
Electrical and Electronics Engineers, Inc., 2010.

[17] M. Johnson, C. Jonker, B. van Riemsdijk, P. J.
Feltovich, and J. M. Bradshaw. Joint activity testbed:
Blocks world for teams (bw4t). In H. Aldewereld,
V. Dignum, and G. Picard, editors, Engineering
Societies in the Agents World X, volume 5881 of
Lecture Notes in Computer Science, pages 254–256.
Springer Berlin Heidelberg, 2009.

[18] M. A. Khamis and K. Nagi. Designing multi-agent
unit tests using systematic test design
patterns-(extended version). Engineering Applications
of Artificial Intelligence, 26(9):2128–2142, Oct. 2013.

[19] V. J. Koeman and K. V. Hindriks. Designing a
source-level debugger for cognitive agent programs. In
Q. Chen, P. Torroni, S. Villata, J. Hsu, and
A. Omicini, editors, PRIMA 2015: Principles and
Practice of Multi-Agent Systems, volume 9387 of
Lecture Notes in Computer Science, pages 335–350.
Springer International Publishing, 2015.

[20] M. Moreno, J. Pavón, and A. Rosete. Testing in agent
oriented methodologies. In S. Omatu, M. P. Rocha,
J. Bravo, F. Fernández, E. Corchado, A. Bustillo, and
J. M. Corchado, editors, Distributed Computing,
Artificial Intelligence, Bioinformatics, Soft
Computing, and Ambient Assisted Living, volume 5518
of Lecture Notes in Computer Science, pages 138–145.
Springer Berlin Heidelberg, 2009.

[21] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and
J. Thangarajah. Testing in Multi-Agent Systems. In
Agent-Oriented Software Engineering X, volume 6038,
pages 180–190. Springer Berlin Heidelberg, 2011.

[22] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. Software Engineering, IEEE
Transactions on, 39(9):1230–1244, Sept 2013.

[23] C. Parnin and A. Orso. Are automated debugging
techniques actually helping programmers? In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages
199–209, New York, NY, USA, 2011. ACM.

[24] P. Runeson, C. Andersson, T. Thelin, A. Andrews,
and T. Berling. What do we know about defect
detection methods? Software, IEEE, 23(3):82–90, May
2006.

[25] A. M. Tiryaki, S. Öztuna, O. Dikenelli, and R. C.
Erdur. SUnit: a unit testing framework for test driven
development of multi-agent systems. In Proceedings of
the 7th international conference on Agent-oriented
software engineering VII, pages 156–173, 2007.

[26] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager.
Swi-prolog. Theory and Practice of Logic
Programming, 12:67–96, 2012.

1245

[27] M. Winikoff. Novice programmers’ faults & failures in
goal programs. In Proceedings of the 2014
International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14, pages 301–308,

Richland, SC, 2014. International Foundation for
Autonomous Agents and Multiagent Systems.

[28] Z. Zhang, J. Thangarajah, and L. Padgham. Model
based testing for agent systems. Software and Data
Technologies, 22:399–413, 2008.

1246

