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ABSTRACT

Using Multi-Agent Based Simulation (MABS), computing
resources requirements often limit the extent to which a
model could be experimented. As the number of agents and
the size of the environment are constantly growing in these
simulations, using General-Purpose Computing on Graph-
ics Units (GPGPU) appears to be very promising as it al-
lows to use the massively parallel architecture of the GPU
(Graphics Processing Unit) to do High Performance Com-
puting (HPC). Considering the use of GPGPU for develop-
ing MABS, the conclusions of Perumalla and Aaby’s work
[25] in 2008 was twofold: (1) data parallel execution capa-
bilities of GPU can be used effectively in MABS and afford
excellent speedup on models and (2) effective use of data
parallel execution requires resolution of modeling and exe-
cution challenges at the cost of a decrease in modularity,
ease of programmability and reusability. In this paper, we
propose to study through experiments if the conclusions and
issues outlined by Perumalla and Aaby are still true despite
the evolution of GPGPU and MABS. To this end, we use
the GPU environmental delegation principle on four models
in order to compare CPU and GPU implementations. Then,
we discuss and analyze the results from both a conceptual
and a performance point of view.
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1. INTRODUCTION

Multi-Agent Based Simulations (MABS) are used to study

complex systems in many research domains (collective robotics,

biology, economy, urban management, etc.) [20]. Experi-
menting with MABS, performances often represent a major
issue limiting the extent to which an Agent-Based Model
(ABM) could be studied [22]. Especially, it is interesting
to not be too limited by the size of the environment or the
number of agents, which may require a lot of computing
resources.

That is why High Performance Computing (HPC) is more
and more considered as a relevant way of speeding up MABS
thanks to functional solutions that use Central Processing
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Unit (CPU) clusters, computational grids, etc. A flagship
example of this trend is the Repast HPC platform® [7], which
allows to simulate millions of agents using CPU clusters.

Among HPC technologies, Graphics Processing Units (GPU)
have been proved to be excellent computational platforms
able to perform general-purpose computations [21]. General-
Purpose computing on Graphics Processing Units (GPGPU)
is thus a technology which relies on using the massively par-
allel architecture of usual PC graphics cards for accelerating
very significantly the performance of programs (applications
can be up to 100 times faster)? [6]. So, GPGPU is a cheap
HPC solution which could be now used on almost every PC.

In 2008, Perumalla and Aaby’s work [25] (P&A for short)
was one of the first that studied the use of GPGPU in the
context of MABS. The purpose of this work was to evalu-
ate the advantages and drawbacks of this technology by im-
plementing several representative ABM. So, P&A compared
the runtime speed of GPU-based models against CPU-based
implementations and showed that impressive speedup could
be achieved (up to x40 in the paper). However, one major
conclusion of this work was that this increase of performance
could only be done at the expense of programmability, mod-
ularity and reusability. Indeed, it turns out that implement-
ing ABM using GPGPU is very challenging because GPU
programming relies on a highly specialized hardware archi-
tecture. Especially, usual object oriented features, which are
common in ABM, are no longer available using GPGPU.

Since this study, graphic cards and their programming in-
terfaces have dramatically evolved so that GPGPU is now
recognized as a very efficient HPC solution in many do-
mains. Still, considering GPGPU for MABS, it is worth
noting that, despite some important milestones, very few
works have been done: Implementing ABM using GPGPU
remains very challenging and P&A’s conclusions still hold
[17, 10, 28, 2]. Moreover, research works that only focus on
performances are too hard to reuse, which does not ease the
adoption of GPGPU in the MABS community.

Among the few works dealing with accessibility issues and
that do not only focus on performance gains, almost all seek
to hide GPGPU through a transparent use of this technol-
ogy [27, 29, 15]. However, this approach cannot take into
account all the cases and needs that the implementations
of MABS with GPGPU could require. Indeed, it is hard to
create a framework or universal solution because of the wide
variety of models.

In this paper, we present a completely different approach

e.g. http://repast.sourceforge.net/repast_hpc.php
2e.g. https://developer.nvidia.com/about-cuda



to these works: Instead of focusing on accessibility by means
of transparency, we show that it is more interesting to use
a design principle which transforms or adapts a model be-
cause it is thus possible to take into account a wider variety
of models. To this end, we use GPU environmental delega-
tion [18] as a way to implement MABS with GPGPU. Based
on an hybrid approach (the execution is shared between the
CPU and the GPU), this principle put forward reusabil-
ity rather than transparency [12]. The idea is to identify
in the model some computations which can be transformed
into environmental dynamics and then translated into GPU
modules. The purpose of this article is to study the interest
of this principle and show that it helps to address some of
the problems outlined by P&A.

This paper is organized as follows: Section 2 introduces
the evolution of the GPGPU technology in the MABS do-
main and presents the GPU environmental delegation. Sec-
tion 3 presents the models used for the experimentation
and describes the adaptation process and implementations
of these models using the GPU environmental delegation
principle. Section 4 proposes a performance study and anal-
yses the results of the experimentations while answering the
questions expressed in this paper. Section 5 summarizes the
work we have done and outlines our future researches.

2. GPGPU FOR MABS

2.1 Related Works

In 2008, the implementation made by P&A used graph-
ical features of the card to perform generic computations.
Indeed, at this time, using a specialized programming inter-
face dedicated to GPU programming was not widespread,
due to the youth of these tools. So, the few people inter-
ested by this technology had to divert the primary use of
GPU by tinkering with graphical functions [9, 27].

However, the release of two programming interface dedi-
cated to GPGPU, CUDA? (Compute Unified Device Archi-
tecture, 2007) and OpenCL*(Open Computing Language,
2008), have greatly simplified this technology while offering
better support and improving its accessibility. GPGPU thus
became a very appealing alternative for many domains in
which computation time is critical. Consequently, the num-
ber of MABS using GPGPU has increased and new tools
and frameworks have emerged.

Flame GPU [29] is a flagship example of the possibilities
offered by the rise of specialized GPU programming tools.
However, the majority of the existing works still start from
scratch and put all their attention on acquiring the best
computational gains without considering the accessibility,
reusability and modularity. This is especially true in the
scope of works that address the study of flocking models
[10, 13], crowd [28], traffic simulations [32] or autonomous
navigation and path planning algorithms [5, 8].

However, as pointed out in [2], implementing a model
on GPU does not necessarily imply an increase of perfor-
mances, notably in the field of MABS where many different
and heterogeneous architectures can be conceived. Consid-
ering this issue, [2] clearly shows the influence of implemen-
tation choices on the results and performances. So, despite
the release of frameworks such as CUDA, achieving an effi-

3¢.g. https://developer.nvidia.com/what-cuda
4e.g. http://www.khronos.org/opencl
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cient implementation still requires to take into account the
specific programming model that comes with GPU. That is
why, most of the previous cited works were realized in an ad
hoc way and only offer one-off solutions.

Before 2011, most of works used an approach that con-
sist in executing completely the model on the GPU (all-in-
GPU). This approach is useful when the main objective is to
accelerate the simulation’s execution. But from a software
engineering point of view, this approach is not adapted be-
cause all development efforts are lost. In such a case, the
implementation is designed for a specific model and therefore
cannot be reused in other contexts. There is no possibility
to generalize and reuse the work.

Considering these issues, hybrid systems begin to appear
in 2011 and represent a very attractive alternative because
they consist in sharing the execution of the MABS between
the CPU and the GPU according to the nature of the compu-
tations. Despite the fact that an all-in-GPU implementation
is more efficient than an hybrid implementation, the hybrid
approach has many advantages.

Firstly, hybrid approaches enable a step further toward
the achievement of more complex MAS models because one
can choose what is executed on the GPU. It is thus possible
to use agents with complex and heterogeneous architectures
(e.g. [16]). Moreover, they are inclined toward modularity,
and for instance ease to concretely implement independently
the agents and the environment (e.g. [18] [23]).

So, even if genericness is not necessarily an explicit ob-
jective of hybrid systems, such approaches actualy exhibit a
software architecture promoting modularity and thus reusabil-
ity. The MCMAS library [15] is a recent and good example
of this trend. Moreover, by removing the programming con-
straints related to all-in-GPU systems, hybrid approaches
are by definition more flexible and open to other technolo-
gies so that accessibility is greatly increased [16, 18].

2.2 Analyzing the Evolution of MABS and GPGPU

In their work, P&A concluded that the data parallel exe-
cution capabilities of GPU are very useful to speed up sim-
ulation of agent-based models. The empirical results from
their experiments show that high simulation speeds can be
achieved especially with very large agent populations (mil-
lion of agents). The runtime speeds on the GPU are roughly
two to three orders of magnitude higher than those of exist-
ing ABM toolkits. However, the excellent speedup obtained
on simple models comes at the expense of modularity, ease
of programmability and reusability.

From this overview, it is clear that the conclusions set out
by P&A have been taken into account to some extent. But,
research works are still divided into two distinct categories:
(1) Works that are only interested in performance gains and
(2) works that try to answer the issues raised by P&A about
modularity, ease of programmability and reusability. The
works of this second category are mostly based on hybrid
systems, which is clearly the most promising approach to
address such issues. However, these works propose solutions
that only focus on a transparent use of GPGPU in MABS.
But, because of the wide variety of MAS models, making
the use of GPGPU transparent cannot be generic enough
and take into account all the cases and needs that MABS
implementations with GPGPU could require.

So, the stated problems were not clearly resolved and
the lack of reusability, accessibility and modularity are still



present (despite work such as Flame GPU [29] or [16, 15]).
This is especially true considering that the proportion of
works dealing with the use of GPGPU in MABS is still very
small compared to the number of MABS-based publications
and while the need in computing resources is strong and
always increasing.

2.3 GPU Environmental Delegation

The purpose of the work presented in this article is to de-
termine whether the conclusions stated by P&A in 2008 are
still relevant today despite the evolution of GPGPU and its
use in MABS. To this end, the GPU Environmental Delega-
tion principle (GPU delegation for short) is used. Based on
an hybrid approach, this design principle aims at easing the
integration of GPGPU in MABS models rather than mak-
ing its use transparent, in contrary to the works previously
mentioned.

2.3.1 Overview of the Principle

GPU delegation is inspired by an Agent-Oriented Soft-
ware Engineering (AOSE) trend which consists in using the
environment as a first class abstraction in MAS [1]. This
idea is today well accepted and has proved to be a relevant
approach for modeling and developing MAS [33]. Especially,
it could help to enhance the efficiency of agent interactions
or simplify the behavioral process of the agents thanks to
the environment that produce high level percepts. There-
fore, at a high level, such an approach allows to design MAS
with a clear separation of concerns.

So, at the implementation level, GPU delegation has to
be related to other research works that consider the environ-
ment as a core concept of MAS and which reify parts of the
agents’ computations in external structures. Related exam-
ples are EASS (Environment As Active Support for Simula-
tion) [3], IODA (Interaction Oriented Design of Agent simu-
lations) [14], environment-centered approach for MABS [24]
and the artifact approach [26]. In the scope of our work,
considering the environment as a first class entity enables
us to keep the programming accessibility of the agent model
in a GPU context and be able to scale up both the number
of agents and the size of the environment.

Proposed in [18], the GPU delegation principle is based on
the fact that it is very difficult to deport all the behavior of
agents on graphics cards (that is why it is especially reactive
agents who evolve in simulations which use an all-in-GPU
approach [27]). So, this principle consists in making a clear
separation between the agent behaviors, managed by the
CPU, and environmental dynamics, handled by the GPU.
Especially, one major idea underlying this principle is to
identify some computations (such as agent-level perceptions)
which can be transformed into environmental dynamics.

2.3.2 GPU Delegation in Practice

GPU delegation has been used for the first time on a model
of Multi-Level Emergence (MLE) [4] of complex structures
[18]. This very simple model relies on a unique behavior
which allows to generate complex structures which repeat in
a fractal way. The agent behavior is extremely simple and
based on the perception, spread and reaction to pheromones.
So, in this work, GPU modules dedicated to the perception
and the spread of pheromones were proposed.

A second experimentation was proposed in [12] which fur-
ther trials GPU Delegation by testing its feasibility and
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genericness on a classic ABM, namely Reynolds’s boids®.
[12] especially shows that applying GPU delegation not only
speeds up boids simulations but also produces an ABM
which is easy to understand, thanks to a clear separation
of concerns.

For both of these works, the integration of GPU com-
putations was performed in the TurtleKit platform® [19].
TurtleKit is a generic spatial ABM, implemented with Java,
wherein agents evolve in a 2D environment discretized in
cells. The proposed hybrid approach integrated in TurtleKit
focuses on modularity. In this context, this allows to achieve
three objectives: (1) maintaining accessibility in the agent
model while using GPGPU, (2) being able to scale and work
with large number of agents on large environment sizes and
(3) promoting reusability in the particular context of GPU
programming.

2.3.3 Evolution of GPU Delegation

With respect to the underlying hybrid approach, GPU
Delegation is about identifying specific behaviors which can
be turned into environmental dynamics. Especially, GPU
delegation states that agent perception computations that
do not involve the agent’s states could be translated into
environmental dynamics and thus into a GPU module per-
forming the computation.

However, the flocking model experimentation [12] shows
that, according to the model used, GPU delegation could be
extended with the aim at finding more computations to be
delegated. So, the GPU delegation principle has evolved in
order to be applied on a larger number of models and could
be now stated as follows: If computations made within the
behavior of the agent do not involve or do not modify the
agent’s states, they could be translated into environmental
dynamics.

3. MODELS AND IMPLEMENTATIONS

To provide a comparison between the study conducted
by P&A in 2008 and solutions available in 2015, especially
hybrid systems, we use GPU Delegation to adapt and im-
plement four models: Two already done by P&A (Conway’s
Game of Life and Schelling’s segregation) and two taken
from the Netlogo models library [31] (Fire model and DLA
model). In this section, we present the associated technology
and describe the implementation’s process.

3.1 GPGPU Implementation with CUDA

To program on the graphics card and exploit its GPGPU
capabilities, we use CUDA which is the GPGPU program-
ming interface provided by Nvidia. The associated pro-
gramming model relies on the following philosophy”: The
CPU is called the host and plays the role of scheduler. The
host manages data and triggers kernels, which are functions
specifically designed to be executed by the GPU, which is
called the device. The GPU part of the code really differs
from sequential code and has to fit the underlying hardware
architecture. More precisely, the GPU device is programmed
to proceed the parallel execution of the same procedure, the
kernel, by means of numerous threads. These threads are

"http://www.lirmm.fr/ hermellin/Website/Reynolds_
Boids_With_TurtleKit.html

Se.g. http://www.turtlekit.org

"e.g. http://docs.nvidia.com/cuda/



organized in blocks (the parameters blockDim.z, blockDim.y
characterize the size of these blocks), which are themselves
structured in a global grid of blocks. Each thread has unique
3D coordinates (threadldz.x, threadldz.y, threadldz.z) that
specifies its location within a block. Similarly, each block also
has three spatial coordinates (respectively blockldz.x, block-
Idz.y, blockldz.z) that localize it in the global grid. Figure 1
illustrates this organization for the 2D case. So each thread
works with the same kernel but uses different data according
to its spatial location within the grid®. Moreover, each block
has a limited thread capacity according to the hardware in
use.

Global grid: 4x4 blocks Block (2,1) : 3x3 threads Thread (2,0)
blockDim.x = 3 threadidx.x = 2
blockDim.y = 3 threadidx.y = 0
0,0 1,0 2,0 | 3,0 blockidx.x = 2 i=2x3+2=8
blockidx.y = 1 j=1x3+0=3
T—
011121 |31
0,010 20
021212232 01| 11|21
03| 13]|23]33 0212122

Figure 1: Thread, blocks, grid organization

For using GPGPU in the TurtleKit platform, we use the
JCUDA library which allows to use CUDA through Java®.

3.2 Models and Application of GPU Delega-
tion
In this section, the four selected models and their imple-
mentation are introduced. Then, the application of the GPU
delegation on each of these models is described.

3.2.1 Game of Life

The first model, which was also in P&A study, is the Con-
way’s Game of Life [11]. This famous model shows that
complex patterns can emerge from the implementation of
simple rules. While this model does not contain agents (it is
a cellular automaton), it defines an environmental dynamics
which is representative of those encountered in MAS.

The environment of the Game of Life is a cellular automa-
ton made of a two dimensional grid of square cells, each of
which being in one of two possible states: Dead or alive.
Each cell interacts with its eight neighbors according to the
following rules: (1) Any living cell with less than two or
more than three alive neighbors dies, (2) any living cell with
two or three living neighbors stays alive and (3) any dead
cell with exactly three living neighbors becomes alive.

In our experiments, the grid is initialized randomly*®. At
each time step, all the cells are updated according to the
previous rules. Figure 2 illustrates the simulation steps.

Applying GPU Delegation.

The main computational part of the model is located in
step (1) which consists in computing a sequential loop: It
calculates the new state of each cell for the next step of the

8 Thread is similar to the concept of task: A thread may be
considered as an instance of the kernel which is performed
on a restricted portion of the data depending on its location
in the global grid (its identifier).
9 . :

e.g. http://www.jcuda.org
10The probability for the cell to be dead or alive is the same.
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(1) Compute:
The next simulation step

(2) Update:
The grid visualization

Initialize randomly the grid
and states of the cells
I

r 1
For all the cells
compute next simulation step
(according to the transition rules)

Figure 2: Game of Life simulation

simulation. So, the more the environment is large, the more
this computation is long. It may therefore be advantageous
to transform this computation into a GPU module.

To create the GPU module correctly, it is necessary to
focus on the representation of data. Especially, to avoid ex-
pensive transfers between CPU and GPU, the data need to
be sent only once at each step. To this end, each cell write
its state value (1 for alive and 0 for dead) in a 2D array
(matching the size of the environment) according to its po-
sition. Then, this array is sent to the GPU. This module
does the sum of the states (more precisely the sum of the
number of alive cells) of all Moore neighborhood cells for
each cell of the grid and stores the result in the 2D result
array. Thus, each cell of the result array contains a value
between 0 (no cell alive) and 8 (all neighbors are alive). The
result array is then used to update the grid and compute the
next simulation step according to the transition rules. Al-
gorithm 1 presents an implementation of the corresponding
GPU kernel.

Algorithm 1: Alive cells Kernel

input : width, height, statesArray
output: resultArray (the number of alive neighbors)

i = blockldx.x * blockDim.x + threadldx.x ;

7 = blockIdx.y * block Dim.y + threadldz.y ;

sumO fState = 0 ;
if ¢ < width and j < height then

| sumOfState = getNeighborsState(statesArrayli, j]);
end

resultArrayli, j| = sumO f State ;

N O s W=

3.2.2  Schelling’s Segregation

The second model is a variant of the Schelling’s Segrega-
tion model [30]. This project models the behavior of two
types of agents in a neighborhood: Red agents and green
agents. These agents are scattered across a two dimensional
grid. Their purpose is to be happy by staying near like-
colored agents (each red agent wants to live near at least
some red agents, and the same holds for the green agents).
If they are dissatisfied at their position, the agents attempt
to move to a new random vacant location for finding a better
place according to their objective of happiness.

The simulation shows how these individual preferences
ripple through the neighborhood, leading to large-scale pat-
terns. In our experiments, green and red agents are scat-
tered with the same proportion, and distributed randomly
over the environment. Figure 3 illustrates the simulation
steps.

Applying GPU Delegation.
The most intensive computations are in step (2) and (3)
which consist, for each agent, in recovering a neighbor list



Initialize

agents with
random positions ¥
(1) Update: (2) Retrieve: (3) Compute: (4) Live:
The Agents e Neighbors list | The happiness | perform behaviors

I I I
" Al agents retrieve Y agents compute
a list containing their  their hapiness according
Moore neighbors to the neighbers list

r 1
According to his
happiness

Figure 3: Segregation simulation

and then computing its happiness according to the list. So,
many sequential loops have to be done at each time step, and
the required computation time clearly increases depending
on the number of agents. According to the GPU delegation,
the happiness computation can be deported into an environ-
mental dynamics because these computations do not modify
agents’ states.

In the CPU model, the computation of happiness is done
by testing the color of the agents present in the list of neigh-
bors and counting the number of agents in each community
according to their state: 1 for green agents and -1 for red
agents. However, if we want to deport this computation, the
data structure sent to the GPU needs to be adapted. So, at
each time step, agents write in a 2D array (matching the size
of the environment) their states depending on their position.
This table is sent to the GPU that computes the sum of the
neighboring states and returns in a result array the values
for each cell of the environment. This result array thus con-
tains values between -8 (all agents around are red) and 8
(all agents around are green). The agents then recover the
value in the result array with respect to their position and
act accordingly. Algorithm 2 presents an implementation of
the corresponding GPU kernel.

Algorithm 2: Hapiness Kernel

input : width, height, communityArray
output: resultArray (agent’s type around)

1 i = blockldx.x * blockDim.x + threadldz.x ;
2 j = blockldz.y * blockDim.y + threadldz.y ;
3 sumO fCommunityState = 0 ;
4 if i < width and j < height then
5 for agent in getNeighborsCommunity() do
6 agentCommunityState =
communityArrayli, jl;
7 if agentCommunityState == 1 then
8 | sumO fCommunityState 4+ +;
9 end
10 else if agentCommunityState == —1 then
11 ‘ sumO fCommunityState — —;
12 end
13 end
14 end
15 resultArrayli, j] = sumO fCommunityState ;

3.2.3 Fire

Inspired by a model from the Netlogo library, this third
model is called Fire and simulates the spread of a fire through
a forest. It shows that the fire’s chance of affecting the most
possible number of trees in the forest depends critically on
the density of trees.

In our model, all the trees are agents placed randomly
in the environment (a two dimensional grid). Trees can be
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alive, burned or dead. When it burns, a tree releases heat
which spreads in the environment. This heat can ignite other
trees around: A tree ignites when the temperature is above a
defined threshold. The threshold of each agent is randomly
set within a range of values. A tree dies when its life reaches
zero: The life of the tree decreases when it burns. Figure 4
illustrates the simulation steps.

¥

(1) Update:
The environment

Initialize agents with
a random position

[2) Update:
The agents

T T
For all the cells | All the agents perform
compute the diffusion their behaviors:
of the heat Live , burn, die

1
Initialize randomly
the heat source

Figure 4: Fire simulation

Applying GPU Delegation.

The most greedy computation loop of this model is in
step (1). Indeed, the environment must compute the heat
diffusion which requires making a global sequential loop over
all the cells. Thus, the computation time increases very
quickly according to the size of the environment. Because
the heat diffusion is already an environmental dynamics, the
delegation of this computation is very easy because it can
be directly translated into a GPU module.

So, in the GPU model, the heat diffusion is done as follows:
At each time step, agents add in a 2D array (matching the
size of the environment) the heat that they release according
to their state (alive, burn or dead). Then, this array is sent
to the GPU module that compute the sum of heat values
from neighboring cells (Moore neighborhood here) for each
cell of the environment. More preciselly, the sum consists
in adding the heat values already present in the environ-
ment (from the previous steps) and the heat generated by
the agents, all modulated by a diffusion variable. Once the
computation performed, the agents recover the heat value in
the array with respect to their position and act accordingly.
Algorithm 3 presents an implementation of the correspond-
ing GPU kernel.

Algorithm 3: Heat diffusion Kernel

input : width, height, heat Array, radius
output: resultArray (the quantity of heat)
i = blockIdx.x * blockDim.x + threadldz.x ;
j = blocklIdz.y * blockDim.y + threadldx.y ;
sumO fHeat =0 ;
if ¢ < width and j < height then
sumO fHeat =
getNeighborsHeat(heat Arrayli, j], radius);
end
result Arrayli, j] = sumO f Heat * heat Adjustment ;

G WN

N o

324 DLA

The last model is also inspired from a Netlogo model and
is called DLA. DLA demonstrates diffusion-limited aggrega-
tion, in which randomly moving particles stick together to
form beautiful treelike branching fractal structures. There
are many patterns found in nature that resemble the pat-
terns produced by this model: Crystals, coral, fungi, light-
ning, and so on.



In this model, particles are agents (initialy red), that move
in a random way over the all environment (a two dimen-
sional grid). Randomly, one of the agents stops and stays
at the same position and in turn changes its color to green.
Then, when a moving red agent encounters a motionless
green agent, it stops and changes its color to green while
the other agents continue to move in a random way. Figure
5 illustrates the simulation steps.

nitialize agents with
a random paosition

' ¥
L (1) Initialize: (2) Evolve: 3 (3) Update: J
The motionless agent The agents The agents

Randomly | Update the role of |

take one agent and all the agents (according
do play the role "stay" to the neighborhood)

T I
All agents play their role
"move" or "stay"

Figure 5: DLA simulation

Applying GPU Delegation.

The most greedy computations are in step (2) and (3)
which consist for each agent in recovering a neighbor list and
then searching within this list the nearest neighbors. So, the
computation time of this model greatly increases according
to the number of agents. According to GPU delegation, the
agent action which consists in checking if one of the neighbor
agents is green (motionless) can be converted into an envi-
ronmental dynamics and then performed by a GPU kernel
because this computation do not modify agents’ states.

However, it is necessary to adapt the data structure to en-
able this transformation. Thus, all agents report, according
to their position, their presence in a 2D array (matching the
size of the environment): 1 if an agent occupies the cell, 0
otherwise. This array is sent to the GPU that calculates for
each cell if there are agents around it. All the cells of the
result array thus contain a value representing the number of
neighbor agents (0 for an empty cell, 1 or more means there
are neighbors around). So, the agents only have to recover
the result value in the array and adjust their behavior ac-
cordingly. Algorithm 4 presents an implementation of the
corresponding GPU kernel.

Algorithm 4: Presence detection Kernel

[S SNV I VI

N o0

input : width, height, presenceArray

output: resultArray (the number of neighbors around)

i = blockldz.x * blockDim.x + threadldx.x ;

j = blockIdx.y * blockDim.y + threadldz.y ;

sumO fAgents =0 ;

if i < width and j < height then
sumO f Agents =
getNeighborsPresence(presence Arrayli, j);

end

resultArrayli, j| = sumO fAgents ;

4. EXPERIMENTATIONS AND ANALYSIS

In this section, the main idea is not only to evaluate the
performance of the experiments but to reflect on the acces-
sibility, modularity and ease of use of the GPU delegation
principle (the conceptual part of these implementations).
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Figure 6: Results for the Game of Life model
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Figure 7: Results for the Segregation model

4.1 Experimentations

The GPU delegation principle produces implementations
which are very different from those made by P&A. More-
over, the hardware and associated tools have also greatly
evolved since P&A’s work. So, we cannot directly compare
the performance results of P&A with the experiences that
we conduct here.

To test the performance of our implementations, each
model is simulated in its CPU and hybrid (CPU 4+ GPU)
versions. Moreover, each model is simulated for different en-
vironment sizes and various densities of agents. Each simu-
lation is executed several times over a period of 10,000 time
steps. We average then the execution time for an iteration
(lower execution time is better) allowing to compare the ex-
ecution performance of each implementation.

For those tests, the configuration is composed of an Intel
i7-4770 processor (Haswell generation, 3.40 GHz) and an
Nvidia K4000 graphics card (Kepler architecture, 768 CUDA
cores). Here is the list of experimentations (with setup)
conducted and their results:

e Game Of Life (Figure 6): Environment size 256, 512,
1 024, 2 048; Fixed density of agents: 50%.

e Segregation (Figure 7): Environment size 256, 512, 1
024, 2 048; Fixed density of agents: 90%.

e Fire (Figure 8): Environment size 256, 512, 1 024, 2
048; Density of agents ranging from 10% to 100%.

e DLA (Figure 9): Environment size 256, 512, 1 024, 2
048; Density of agents ranging from 10% to 90%.
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4.2 Analysis

In this section, we analyze the results from both a perfor-
mance and a conceptual perspective by taking into account
accessibility, genericness and ease of use of GPU delegation.

4.2.1 Performances

From Figure 10, we notice that performance gains vary
significantly depending on the simulated model and the size
of the environment. With GPU delegation, the gain can
reach x14 but is more likely between x2 and x5 which is still
a good result. Concerning the DLA model, the performance
decreases when increasing the size of the environment (which
is the opposite of what can be seen with the other models).
This decrease is explained by the consumption of resource
by the agents that slows the simulation.

P& A’s implementations are much more efficient and allow
to have greater performance gains that can reach x40 (par-
ticularly for the Game of Life model) but generally the gain
is around x15 [25]. The differences are huge but must be
put in perspective because we have no informations about
how the models and CPU implementations were created.
Nonetheless, the order of magnitude of performance gains
cannot be ignored. This difference is explained by the im-
plementation technique used by P&A. Indeed, they used an
all-in-GPU approach that consists in running entirely the
model on the GPU with the objective of obtaining maxi-
mum performances. GPU delegation offers less impressive
performances but brings other significant benefits.

4.2.2 Genericness, Modularity and Reusability

GPU delegation brings more genericness thanks to its hy-
brid conception. Especially, the created GPU modules can
be reused in other simulations. That is the case here: The
module created for the Game of Life model was reused in the
DLA model. Only the data sent have been adapted. This is
a major difference compared to the work and implementa-
tions of P&A, and more generally with works using an all-
in-GPU approach. Indeed, with such works, the model used
is completely redesigned and reprogrammed to run entirely
on the GPU and thus cannot be easily reused. Therefore,
the solution created is only punctual, which is not satisfying
from a software engineering perspective.

On the contrary, more genericness could be obtained with
an hybrid approach. This is especially the case with GPU
delegation because it allows to reuse the created GPU mod-
ules, thus saving a lot of development time.



From an accessibility perspective, GPU delegation increases
GPGPU accessibility because it promotes a modular design
of the model that produces very simple kernels requiring
only very little GPGPU knowledge. Moreover, by deporting
only a specific part of the agent computations, it is thus pos-
sible to take advantage of the computing power of GPGPU
without changing the agent model.

Finally, this modular design allows to choose what is run
on the CPU and executed by the GPU. The strategy put
forward by GPU delegation is to identify in the model the
computations that can be transformed into environmental
dynamics and thus translated into GPU modules. Consid-
ering the difficulties faced when implementing the behavior
of agent on GPU or providing generic tools to do it, this ap-
proach greatly eases the use of GPGPU in MABS context.

4.2.3 Toward a Dedicated Methodology

The application of GPU delegation as generic approach
for using GPU programming in MABS has shown many ad-
vantages whether in [18] or [12]. The experiment conducted
in this article confirms it. However, in view of these stud-
ies, there are still some open questions such as the difficulty
of implementation for a new GPGPU user and the types of
models on which GPU delegation could be applied.

Indeed, for now, we have only tested GPU delegation on
models that we know compatible. This type of model has the
following features: The agents are reactive and operate in
a discretized environment. These agents communicate and
exchange informations through the environment. Next step
will be to consider models with continuous environments or
agents having cognitive abilities.

About the implementation difficulties, GPU delegation
aims at easing the integration of GPGPU in MABS mod-
els by promoting a real delegation strategy that ends with
very simple kernels wich are easy to implement and require
only very little GPGPU knowledge. However, it will be nec-
essary to improve the support around this approach.

But more generally, our objective is to offer a generic ap-
proach which can be applied on a wide variety of models
and that eases the use of GPGPU. An approach that is also
able to define if the model can benefit from GPGPU power
before starting the adaptation process and could determine
whether there is an interest in applying the GPGPU dele-
gation on the selected model.

From the previous experiment, a recurring process has
appeared during the application of GPU delegation. We
have indeed followed an iterative process that allows us to
apply our approach on each model. Once formalized, we
believe that this process can become a methodology ded-
icated to GPGPU for MABS. A methodology that would
(1) help potential users to decide if they could benefit from
GPGPU considering their models and (2) support the trans-
lation of MABS model into GPU programming without hid-
ing the underlying technology. And finally such a method-
ology would help to spread the GPGPU in the MABS com-

munity.

5. SUMMARY AND FUTUR WORKS

In this paper, we proposed to study through experiments
if the conclusions and issues outlined by P&A in 2008 are
still true despite the evolution of GPGPU and MABS. This
paper was motivated by the fact that there are actually only
very few publications dealing with the use of GPGPU in
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a MABS context, despite the computing power that these
simulations require.

To address some of the challenges that remains when us-
ing GPGPU for MABS, we apply GPU delegation on four
models and show that it helps to solve some of the prob-
lems outlined by P&A. Based on a hybrid approach, GPU
delegation proposes to identify in the model what are the
computations that can be transformed into environmental
dynamics and then translated into GPU modules.

Instead of focusing on accessibility by hiding the use of
GPGPU, GPU delegation aims at easing the direct inte-
gration of GPU programming in MABS models. So, GPU
delegation helps he user during the adaptation process con-
trary to some solutions which seek to make transparent the
use of GPGPU.

This principle was applied on four models and an exper-
imentation which compares the GPU-based runtime speed
with the speed of equivalent CPU-based models was con-
ducted. The results of experiments and analysis were then
proposed.

From a performance perspective, GPU delegation offers
less significant performance gains compared to all-in-GPU
solutions. As highlighted by P& A, this performance gap can
only be obtained at the expense of the accessibility, modu-
larity and genericity and reflects of a totally different use of
the GPU architecture.

From a conceptual point of view, we have seen that GPU
delegation improves genericity (reusability of the created
GPU modules), provides a more modular design (with the
hybrid approach) and enhances accessibility thanks to the
fact that we are no longer using an all-in-GPU approach.
More precisely, its reusability and design ease the direct use
of GPGPU in a MABS context. Given that GPU does not
run the entire simulation but only some parts, the adapta-
tion of the model is more simple and the knowledge required
is less important. Indeed, the reusability allows to save the
time invested and the efforts done to use this technology
because it concretely relies on an AOSE perspective thate
promotes a clear separation of concerns, and thus modular-
ity and reusability.

Thanks to the evolution of both the GPGPU field and
associated tools, GPU delegation shows that it can be easy
to implement and efficient while providing significant con-
ceptual advantages. The next step is to develop the user
support so that GPU delegation can be simple to use. To
this end, it is now necessary to formalize its use and all
conception steps.

Especially, during implementation of the four models, we
identified some repetitions in the application of the principle.
Moreover, some patterns and similarities in the source code
can be observed. So, an iterative process begin to appear:
A list of the steps necessary to transform the model in order
to use GPGPU through GPU delegation.

Based on this work, our next objective is to create a com-
prehensive design methodology for GPGPU in a MABS con-
text based on the GPU delegation principle. This method-
ology will allow to take a model and then will help in every
step necessary in the translation process in order to let the
model takes advantage of GPGPU power. Such a methodol-
ogy should allow to use GPU programming on a wide variety
of models and spread this technology in the MABS commu-
nity.
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