Reinforcement Learning Algorithms for Regret
Minimization in Structured Markov Decision Processes

(Extended Abstract)

Prabuchandran K. J.
Indian Institute of Science
Bangalore 560012, India

prabu.kj@csa.iisc.ernet.in

ABSTRACT

A recent goal in the Reinforcement Learning (RL) framework is to
choose a sequence of policy to minimize the regret incurred in a
finite time horizon. For several RL problems in operation research
and optimal control, the optimal policy of the underlying Markov
Decision Process (MDP) is characterized by a known structure.
The state of the art algorithms do not utilize this known structure
of the optimal policy while minimizing regret. In this work, we
develop new RL algorithms that exploit the structure of the optimal
policy to minimize regret. Numerical experiments on MDPs with
structured optimal policies show that our algorithms have better
performance and are easy to implement.

Categories and Subject Descriptors
G.3 [Probability & Statistics]: Markov processes, Renewal theory

General Terms

Algorithms, Performance, Experimentation, Theory

Keywords

Multi-arm Bandit, Markov Decision Processes, UCB, Thompson
Sampling, Renewal Reward Processes, Optimal threshold Policy.

1. INTRODUCTION

Optimal sequential decision problems are common in artificial in-

telligence, operation research and various other scientific disciplines.

These problems are modeled using the framework of MDPs where
a goal is to find a policy that maximizes the long run average reward
collected. In an important subclass of these problems, one can char-
acterize the structure of the optimal policy that maximizes this long
run average reward. For example, the multi-period (s, S) policy in
inventory control management [5] and the multi-threshold policies
in queueing systems [3] are MDP problems where the optimal pol-
icy is characterized by a special structure. For such problems, one
can develop efficient algorithms to obtain the optimal policy by re-
stricting the search over such structured policies.

In this paper, our aim is to minimize the cumulative regret in a
finite time horizon for the class of RL problems where the structure
of the optimal policy is known. We provide two algorithms, pUCB

Appears in: Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2016), J.
Thangarajah, K. Tuyls, S. Marsella, C. Jonker (eds.), May 913,
2016, Singapore.

Copyright () 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Tejas Bodas
Indian Institute of Technology
. Mumbai, 400076, India
tejaspbodas@ee.iitb.ac.in

1289

Theja Tulabandhula
Xerox Research Centre India
Bangalore 560103, India
Theja.Tulabandhula@xerox.com

and pThompson, that treat ‘structured policies’ as arms of a corre-
sponding multi-arm bandit (MAB) problem [2] and then compare
their performances with state of the art PSRL [4] algorithm.

2. PRELIMINARIES

Let us consider a finite unichain MDP [5] setting. Let P and R cor-
respond to the transition probabilities and reward functions of the
MBDP. In our setting, we assume reward function is bounded by 1. A
stationary deterministic policy (SDP) 7 specifies the action (7 (%))
that needs to be chosen in state ¢. For each policy 7, the long-run

E [23‘21 R(se,m(st), st+1)] .

average reward is p(7) = lim
T— o0

T
7™ correspond to the optimal policy that maximizes the long-run
average reward among the finite set of SDPs.
In many modern RL settings, the goal is to find a sequence of
policy {m:} that minimizes the expected regret in a given hori-
zon T'. Here, the expected regret when started from state Sstqrt

)T — E]E
represents the policy chosen at tlme t.

In this paper we are concerned with minimizing regret when
there exists some structure for 77*. Such structure exists in a wide
collection of MDPs. Now using this structure in the optimal policy,
one can create a smaller subset of policies that satisfies this struc-
ture. We can search for a policy that minimizes regret using this set
as compared to searching in the complete policy space.

In our algorithms, we directly maintain a belief on the average re-
ward p(7) for each policy. Note that this has the advantage that we
can reuse ideas from the UCB [2] and the Thompson sampling al-
gorithms [1], which are the state-of-the-art algorithms in the multi-
armed bandit setting. Another particularly attractive feature is that
we can work directly with average reward of policies rather than
the underlying transition probabilities and reward function.

One of the key innovations that we provide is the way the beliefs
on the average rewards p(m) will be updated. For this we use the
Renewal-Reward Theorem ([6]). Under a given policy 7, by fixing
the return times to a fixed state ss¢qr+ as renewal times, the MDP
becomes a renewal reward process. Now one can estimate p(7) by
estimating the reward collected in a cycle (starting from Sstqr+ and
returning to Sstqr¢) and the duration of the cycle.

is Rsstart (T) St,ﬂ't St St+1)], where Tt

3. ALGORITHMS

In our algorithms, we consider policies that has same structure
as of the optimal policy. Let K denote the number of such policies.
In pUCB, we maintain an estimate of the long-run average re-
ward obtained under each policy 71 as p(k). At the end of a cycle,

Algorithm 1: pUCB algorithm (pUCB)

I: Input: T\ 11 = {7y, : k=1,..., K}, Sstart, T

2: Output: C Ry (Cumulative reward in 7" rounds)

3: fork=1to K do

4: pk)=1,nk)=0

5: Rarm(k) = 0 (Running sum of rewards for policy)

6: Turm(k) = 0 (Running sum of number of rounds for 7)
7: end for

8: s = Sstart, t =0,7 =0, k ~ rand(1, K)

9: fort =1to T do

10: if (t # 1and s = Sg¢qr¢) Or t' > 7 then

11: Ra'r'm (k) = Rarm(k) + r, Ta'rm (k) = Tarm (k‘) + tl
120 k) = gERG elk) = /50

13: n(k) =n(k) +1, k‘—argmax{p)+ ey)}

14: t'=0,r=

15: endif

16: Speat ~ P(- | 8,7k(s)), 7 = R(8, a, Snext)

17 ' =t +1, s = Speat

18: end for

19: CRr = Y1 | Rarm(5)

we update p(k) using r and ' as shown in line number 11 in Algo-
rithm 1. This is justified using the renewal-reward theorem as dis-
cussed in Section 2. In the next cycle, we follow the policy that has
the highest values of the sum of the average reward estimate j(k)

2logt
n(k) -
the number of times policy & has been picked by round ¢.

and the confidence bonus Here n(k) tracks the count of

Algorithm 2: pThompson algorithm (pThompson)
I: Input: T\ 11 = {7y, : k=1,..., K}, Sstart, T

2: Output: C Ry (Cumulative reward in 7" rounds)
3: fork=1to K do

4 CRr=0,5k)=0, F(K)=0

5: end for

6: 8 = Sstart, t =0, 7 =0, k ~ rand(1, K)

7: fort =1toT do

8: if (t # 1and s = ss4r¢) Ort' > 7 then

9: CRr=CRr +r

10: S(k)=8(k)+r, F(k)y=Fk)+t —r
11: for k =1to K do

12: 0(k) ~ Beta(S(k), F(k))

13: end for

14: k-argmax{@ }, t'=0,r=0

15: endif

16: Spewt ~ P(-| s,7k(s)), 7 = R(S,a, Snext)
17: ¢ =t +1, $= Sncat

18: end for

In pThompson, we maintain a different set of internal estimates.
In particular, for each policy 7y, it maintains two estimates .S (k)
and F(k). These two estimates parameterize a Beta distribution
that encodes our beliefs on the average reward of policy 7. The
cumulative reward in a cycle is added to the running estimate S (k)
(line 10) of the current policy k£ and an update of the form ¢ — r is
added to F'(k). This update step is critical and ensure that the mean
of the Beta distribution is an unbiased estimate of average reward
p(k). Then for the new policy selection, we draw a realization

1290

4500

4000 -

3500 -

3000 -

2500 -

2000

Regret

1500

1000

500 -

g - bUCB Regret
ol - pThompson Regret

-5005 1 2 3 . 3 5 6 7 8 9
Time elapsed

10
x10°

Figure 1: Regret as a function of number of rounds for the slow
server problem.

for each of the K Beta distributions and pick that policy whose
realization value is the highest.

Note that the PSRL algorithm maintain O(M? N) estimates. This
is significantly higher compared to our algorithms, that typically
maintain O (M) estimates (as seen in many problem instances).

4. NUMERICAL RESULTS

We consider the slow server problem [3] and assume that we do
not know the service rate parameters themselves in this setting but
know that pqn > po. Let the buffer size be B < oco. Note that
for this setting, the optimal policy is of the threshold type. For
our experiment, we chose A = 2,y = 1% and p2 = 5;. The
buffer length of the queue was chosen to be 20 (thus leading to a
number of states equal to 80). We ran 10 Monte Carlo simulations.
As shown in Figure 1, pUCB and pThompson perform much better
than PSRL from the very outset. This clearly illustrates the advan-
tage of using knowledge of the optimal policy structure.

S. CONCLUDING REMARKS

We have built on the well established, easy to use UCB and Thomp-
son sampling algorithms to provide competitive regret minimizing
RL algorithms (making novel modifications for getting unbiased
estimated of the long run average reward p(k) and the number of
rounds that each policy 7 needs to be applied). Such direct use of
structural information is not easily possible for the state of the art
PSRL algorithm. The algorithms presented are simple and better
than state-of-the-art methods for cumulative regret minimization in
RL settings. They have significant advantage in terms of computa-
tion and sampling costs.

REFERENCES

[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the
multi-armed bandit problem. arXiv preprint arXiv:1111.1797,2011.
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235-256,
2002.

W. Lin and P. Kumar. Optimal control of a queuing system with two
heterogeneous servers. IEEE Trans. on Automatic Control,
29:696-703, 1984.

I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement
learning via posterior sampling. pages 3003-3011, 2013.

M. L. Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

S. M. Ross. Stochastic processes, volume 2. John Wiley & Sons New
York, 1996.

(2]

(3]

[4]
[3]
(6]

