Local Search on Trees and a Framework for Automated Construction Using Multiple Identical Robots

(Extended Abstract)

Trevor Cai
Computer Science Dept.
Univ. of Southern California
tcai@usc.edu

David Y. Zhang
Google
New York City
dzhang21@gmail.com

T. K. Satish Kumar
Computer Science Dept.
Univ. of Southern California
tkskwork@gmail.com

Sven Koenig
Computer Science Dept.
Univ. of Southern California
skoenig@usc.edu

Nora Ayanian
Computer Science Dept.
Univ. of Southern California
ayanian@usc.edu

ABSTRACT

We present an algorithmic framework for automated construction using multiple identical robots. Our approach is based on the principle of tree-based dynamic programming and a concomitant idea of local search on trees to improve the quality of the generated plans. Inspired by the TERMES project of Harvard University, robots in this domain are required to gather construction blocks from a reservoir and coordinate with each other in building user-specified structures much larger than themselves. While the robots are roughly of the same size as the blocks, they can scale greater heights by using temporarily constructed ramps in the substructures. Our algorithm employs an inner loop in which the planning problem is solved by performing dynamic programming on a tree that spans the footprint of the user-specified structure. The outer loop of the algorithm furnishes a good tree for the inner loop. We show how we can search for a good tree in the outer loop using local search methods that yield significant improvements in plan quality. Synchronization rules are then applied to parallelize the execution of the generated plan for multiple identical robots.

General Terms
Algorithms, Performance, Experimentation

Keywords
Automated Construction, Multiple Identical Robots

1. INTRODUCTION

The Harvard TERMES project is intended to investigate how small reliable robots can cooperate in teams to build user-specified 3D structures much larger than themselves. The hardware system consists of small autonomous mobile robots and a reservoir of passive “building blocks”. The robots and blocks are endowed with mechanical features that make the system very reliable. Moreover, the robots are of roughly the same size as the blocks themselves; and yet, they can manipulate these blocks one at a time to build tall structures by stacking the blocks on each other and building ramps to scale greater heights. Multiple robots should be able to work with each other in a team to build a user-specified structure as cost-effectively and as fast as possible.

In [1], a polynomial-time tree-based algorithm is presented to solve planning problems in the TERMES domain. In particular, given a user-specified structure, the algorithm yields a cost-effective plan that attempts to minimize the number of pickup and drop-off operations on blocks. The inner loop of the algorithm solves the planning problem by conducting dynamic programming on a tree that spans the footprint of the user-specified structure. The outer loop of the algorithm furnishes a good tree for the inner loop. Put together, the algorithm exploits the locality principle: “distant substructures of a building are only loosely related to each other”. While the algorithm in [1] exploits the locality principle, it does not fully explore the space of all trees in the outer loop. Instead, it uses specific trees like the minimum spanning tree (MST) or its reweighted version (RMST). We show how we can search for a good tree in the outer loop using local search methods that yield significant improvements in plan quality. A second problem with the algorithm in [1] is that it generates a sequential plan meant to be executed by a single robot. In this paper, we also show how we can parallelize the generated plan using proper synchronization rules to make it viable for multiple robots. We henceforth use basic concepts and terminology introduced in [1].

2. LOCAL SEARCH ON TREES

Given a spanning tree T, the procedure ‘Compute-Tree-Score’ in Algorithm 1 calculates the cost of the construction plan generated by the inner loop if it conducted dynamic programming on T. Procedure ‘Local-Search-on-Trees’ in Algorithm 2 presents the local search procedure on the space of spanning trees. It takes as input a candidate spanning tree $seedTree$ that acts as the starting point of the local search. Here, the graph G is a graphical representation of
Algorithm 1: Procedure Compute-Tree-Score

Input: a spanning tree T of the workspace graph G
Output: the score of T
(1) Initialize total to 0.
(2) Generate markers on tree T.
(3) For each node N in T:
 (a) Let $L_N = \{m_{N,1}, m_{N,2}, \ldots, m_{N,L_N}\}$ be N’s list of markers.
 (b) For $i = 1, 2, \ldots, |L_N| - 1$:
 (b1) total = total + $|m_{N,i+1} - m_{N,i}|$.
(4) Return total.

Algorithm 2: Procedure Local-Search-on-Trees

Input: a starting tree $seedTree$ spanning G; the maximum number of flips $maxFlips$; the cycle length filter c
Output: an improved tree based on conducting local search on the space of spanning trees of G within the parameters $maxFlips$ and c
(1) Set $currentTree$ to $seedTree$.
(2) Set $minScore$ to Compute-Tree-Score($currentTree$).
(3) Set flips to 0.
(4) While flips < $maxFlips$:
 (a) Let (u, v) be an edge in $G \setminus currentTree$ such that
 \[dist_{currentTree}(u, v) < c. \]
 (b) Let graph H be currentTree $\cup \{(u, v), \}$.
 (c) Let C be a cycle in H.
 (d) Set lists improvedList and equalsList to empty lists.
 (e) For each edge $e \neq (u, v)$ in C:
 (e1) Let T be the tree $H \setminus \{e\}$.
 (e2) If Compute-Tree-Score(T) < $minScore$, add e to list improvedList.
 (e3) If Compute-Tree-Score(T) == $minScore$, add e to list equalsList.
 (f) If improvedList is not empty, select an edge $e’$ randomly from improvedList.
 (g) Else if equalsList is not empty, select the least recently used
 edge $e’$ from equalsList breaking ties randomly.
 (h) Else with probability $0.5e^{-\frac{1}{2000}}$, select a random edge $e’ \neq (u, v)$ in C.
 (i) If $e’$ is still not defined from (f), (g) or (h), continue.
 (j) $currentTree = currentTree \cup \{(u, v) \cup \{e’\}\}$.
 (k) Set $minScore$ to Compute-Tree-Score($currentTree$).
 (l) Mark (u, v) and $e’$ as being used in iteration number $flips$.
 (m) Increment flips.
(5) Return $currentTree$.

the workspace matrix with nodes corresponding to cells in the matrix and edges corresponding to adjacent cells. The procedure outputs an improved spanning tree that has a lower score than the starting tree.

Table 1 shows the significant benefits of our local search algorithm. Rows with 0 iterations indicate that no local search was done. The other rows indicate the score of the tree returned after 10000 ($maxFlips$) iterations starting from the specified $seedTree$ with no cycle length filter. The ‘%Empty’ column indicates the percentage of empty cells—cells where no towers stand—in the input matrix. We report only on the 30% empty and 70% empty cases due to space restrictions. We ran our experiments on input matrices of different sizes. Due to space restrictions, we report only on a 100 15 × 15 input matrices each with a maximum height of 15. The same trends are also observed in more elaborate data.

3. MULTIPLE IDENTICAL ROBOTS

The sequential plan generated by the algorithm in [1] is in the form of waves. Every odd numbered wave adds blocks and every even numbered wave removes blocks. After the successful parallelization of a set of steps $s_{i+1}, s_{i+2}, \ldots, s_{i+l_1}$ in the plan, the next set of steps $s_{i+l_1+1}, s_{i+l_1+2}, \ldots, s_{i+l_1+l_2}$ for parallelization is heuristically chosen by examining the steps $s_{i+l_1+1}, s_{i+l_1+2}, \ldots, s_{i+l_1+l_2}$ one at a time and stopping when one of three rules for synchronization becomes effective. Here, $s_{i+l_1+l_2+1}$ is the first step after s_{i+l_1+1} such that either: (a) it belongs to a different wave compared to s_{i+l_1+1}, or (b) l_2 is equal to the maximum number of available robots, or (c) it is causally dependent on s_{i+l_1+j} for some $1 \leq j \leq l_2$. An action(step) a_2 with target node n_2 depends on an action a_1 with target node n_1 for its precondition in the plan only if a_1 occurs before a_2 and n_1 is an ancestor of n_2 in the tree along which the dynamic programming is carried out. Robots executing parallel actions traverse the spanning tree from the root to their target nodes (or vice versa) in parallel with the robot having to traverse the longest path starting first and all robots waiting until the last one is done.

Table 2 shows the number of parallel time steps needed for plan completion by different numbers of identical TER-MES robots on models of world-famous buildings used in [1]. Experiments on random instances show similar patterns.

REFERENCES