
Budget-Constrained Reasoning
in Agent Computational Environments

(Extended Abstract)
Stefania Costantini

DISIM, Università di L’Aquila
Via Vetoio, I-67100 L’Aquila, Italy

stefania.costantini@univaq.it

Andrea Formisano
DMI, Università di Perugia — GNCS-INdAM

via Vanvitelli 1, I-06123 Perugia, Italy
formis@dmi.unipg.it

ABSTRACT
In this paper we consider the software-engineering problem of how
to empower modular agent architectures with the capability to per-
form quantitative reasoning in a uniform and principled way.

Keywords
Multi-Context Systems; Quantitative Reasoning; Agent-Oriented
Software Engineering

1. INTRODUCTION
There are many examples in agent-based applications where data

might be potentially accessible or activities might be performed on
the web, but agents are constrained by the available budget since
access to knowledge bases is subject to costs. The work [8] identi-
fies the problem that an agent faces when it has limited budget and
costly queries to perform, and proposes a special resource-aware
modal logic for deriving possible courses of actions, which how-
ever for complexity reasons can hardly be used in practice.

In this paper we consider the software-engineering problem of
how to practically empower agents with the capability to perform
such kind of reasoning in a uniform and principled way. We con-
sider the adoption of a flexible and reasonably efficient reason-
ing device that enables an agent which has costly objectives: (i)
to establish which are the alternative possibilities within the avail-
able budget; (ii) to select, based upon its preferences, the goals to
achieve and the resources to spend; (iii) to implement its choice.
We illustrate the proposed approach via a realistic case study.

2. RESOURCE-BASED REASONING
In this paper, for quantitative reasoning we adopt RASP

(Resource-based Answer Set Programming) [4, 5], which is an
extension of ASP (Answer Set Programming), a well-established
logic programming paradigm (cf., among many, [7]). RASP has
been proven in [6] to be equivalent to an interesting fragment of
Linear Logic, specifically an Horn fragment empowered however
via the ASP default negation that Linear Logic does not provide.
RASP explicitly introduces in ASP the notion of resource, and sup-
ports both formalization and quantitative reasoning on consump-
tion and production of amounts of resources.

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c⃝ 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

3. ENHANCING THE ACE FRAMEWORK
An enhanced Agent Computational Environment (ACE) [2]

is defined as a tuple ⟨A,M1, . . . ,Mr, C1, . . . , Cs, R1, . . . , Rq⟩
where module A is the “basic agent”, i.e., an agent program written
in any agent-oriented language. The “overall” agent is obtained by
equipping the basic agent with the following facilities. The Mis
are “Event-Action modules”, which are special modules aimed at
Complex Event Processing. The Rjs (new addition w.r.t. [2]) are
“Reasoning modules”, which are specialized in specific reasoning
tasks. The Cks are contexts in the sense of MCSs (Multi-Context
Systems, cf. [1]), i.e., external data/knowledge sources that the
agent is able to locate and to query about some subject, but upon
which it has no further knowledge and no control.

Interaction among ACE’s components occurs via bridge rules,
inspired by those of MCSs. However, here bridge rules become
(via a smooth formal integration into ACE’s semantics) bridge rule
patterns of the following form:
s← (C1 : p1), . . . , (Cj : pj), not (Cj+1 : pj+1), . . . , not (Cm : pm).
where each Ci can be either a constant indicating a context name,
or a term of the form mi(ki) that we call context designator, which
indicates the kind of context (rather than the specific one) to be
queried, to be specified before bridge-rule execution. Such a rule,
once context designators have been instantiated to actual context
names, is applicable (and s can thus be added to the consequences
of a module’s knowledge base) whenever each pr , r ≤ j, belongs
to the consequences of module Cr while instead each pw, j < w ≤
m, does not belong to the consequences of Cw.

In an ACE basic agent we adopt for bridge rules the agent-
oriented modalities of DACMACSs [3]. First, bridge rules are
applied proactively upon specific conditions, via trigger rules of
the form Q enables A(x̂), where: Q is a query to agent’s inter-
nal knowledge-base and A(x̂) is the conclusion of one of agent’s
bridge rules, which is “fired” whenever Q evaluates to true. Sec-
ond, the result returned by a bridge rule with head A(x̂) will be ex-
ploited via a bridge-update rule of the form upon A(x̂) then β(x̂)
where β(x̂) specifies the elaboration to be applied for x̂ to be in-
corporated into the agent’s knowledge base.

4. CASE STUDY
As a case study we consider a student, represented by an agent

which can be seen as her “personal assistant agent”. Upon complet-
ing the secondary school, she wishes to apply for enrollment to an
US university. Each application has a cost, and the tuition fee will
have to be paid in case of admission and enrollment. The student
has an allotted maximum budget for both. The example deals with
two aspect of quantitative reasoning: (i) the cost of knowledge, as
in practical terms a student applies in order to know whether she is

1311



admitted; (ii) reasoning under budget limits, as a student may send
an application only if: she can afford the fees related to the appli-
cation; in case of admission, she can then afford the tuition fees.
The student has a list of preferred universities, and within such list
she would apply only to universities whose ranking is higher than a
threshold. Additionally, since she likes basketball, all other things
being equal (ceteris paribus) she would prefer universities with the
best rankings of the basketball team.

Without any pretension to precision, we consider the following
steps a student has to undergo: pass the general SAT test; pass the
specific SAT test for the subject of interest; in case of foreign stu-
dents, pass the TOEFL test; fill the general application on the ap-
plication website (that we call collegeorg); send the SAT results to
the universities of interest; complete the application for such uni-
versities. All steps are subject to the payment of fees, which are
fixed (independent of the university where one applies) for the first
four steps and depend upon each university for the last two steps.

In the case study, the agent will activate the following bridge
rule, where rasp_mod is a RASP quantitative reasoning module
which computes the list Sel_UnivL of the universities where it is
possible to apply given the available budget:
chooseU (Universities,Budget ,Sel_UnivL)←

chooseU (Universities,Budget ,Sel_UnivL) : rasp_mod
The corresponding bridge-update rule will, given the preferred

subject, instantiate and trigger a bridge rule pattern to perform the
general tests, among which, if needed, the TOEFL test, and fill
the general part of the application. It will then, given Sel_UnivL,
generate for each element an instance of the following bridge rule
pattern, to send test results and complete the application:
apply(Univ ,ResponseUniv)← test_res(R1 ,R2 ,R3 ),

send_test_results(R1 ,R2 ,R3 ) : myuniv(Univ),
complete_application(ResponseUniv) : myuniv(Univ)

Finally, the student will choose where to enroll among the uni-
versities that return a positive answer (code not shown here).

5. RASP IMPLEMENTATION
Below we shortly illustrate the main features of the RASP mod-

ule rasp_mod . (The full code and the RASP solver for its execu-
tion can be found at www.dmi.unipg.it/formis/raspberry/)
As facts, we have the universities to which the students is inter-
ested, the SAT subjects (in general), and the SAT subjects available
at each university.

% Universities

university(theBigUni). university(theSmallUni).

university(thePinkUni). university(theBlueUni).

% SAT subjects

sat_subject(mathematics). ...

% SAT subjects in each University

availableSubject(theBigUni, S) :- sat_subject(S).

availableSubject(theSmallUni, mathematics).

...

Then we have: the tuition fees and the maximum fee allowed;
the university rankings and the minimum required; the basketball
team ranking, and the budget available for the applications (where
notation “#” indicates a resource quantity, here money).

% Tuition fees

tuitionFee(theBigUni, 21000). ...

% Tuition fee cannot exceed this threshold

maxTuition(22000).

% University reputation ranking R

reputation(theBigUni, 100). ...

% Reputation must be higher than this threshold

reputationThrs(70).

% BasketballTeam Ranking

extraRank(theSmallUni, 10). ...

% Budget for the application procedure

dollar#1500.

Then, the subject(s) of interest and (if applicable) the status as
foreign student are indicated. The universities where to potentially
apply (canApply(Univ,Subject)) are derived according to the
preferred subject (canApplyForSubject(Subject)) and to the
constraints concerning the university ranking and tuition fee. If
any is found, then canApply becomes true. The RASP rules be-
low perform quantitative reasoning, by considering the fees for the
different kinds of tests.
% 1) General SAT test, fee1 fixed

testSATfeeGen :- dollar#300, canApply.

% 2) Disciplinary SAT test, fee2 fixed

testSATfeeSbj(mathematics) :-

dollar#170, canApplyForSubject(mathematics).

...

% 3) For foreign student, TOEFL fee3 fixed

testTOEFLfee :- dollar#200, foreign, canApply.

% 4) Collegeorg application, fee4 fixed

testCollegeOrg :- dollar#130, canApply.

If the available budget is too low, no applications can be issued.
Otherwise, the costs related to potential applications and the re-
maining amount (if any) are computed. Clearly, this code performs
a quantitative evaluation and does not execute actual actions, which
are left to the agent (and to the user). The RASP solver can com-
pute all solutions which maximize the number of applications given
the constraints. Here, the best-preferred solution involves applying
to thePinkUni and theBigUni, with a second-best solution which
involves applying to thePinkUni and theSmallUni.

6. CONCLUDING REMARKS
In this paper we have demonstrated by means of a practical ex-

ample how quantitative reasoning can be performed in modular
agent-based frameworks. The approach of this paper is fairly gen-
eral and novel, as no significant related work can be found so far.

REFERENCES
[1] G. Brewka, T. Eiter, and M. Fink. Nonmonotonic multi-context

systems. In Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning, Springer LNCS 6565, 2011.

[2] S. Costantini. ACE: a flexible environment for complex event
processing in logical agents. In Post-Proceedings of EMAS
2015 (Revised Selected Papers), Springer LNCS 9318, 2015.

[3] S. Costantini. Knowledge acquisition via non-monotonic
reasoning in distributed heterogeneous environments. In Proc.
of LPNMR 2015, Springer LNCS 9345, 2015.

[4] S. Costantini and A. Formisano. Modeling preferences and
conditional preferences on resource consumption and
production in ASP. J. of Algorithms in Cognition, Informatics
and Logic, 64(1), 2009.

[5] S. Costantini and A. Formisano. Answer set programming
with resources. J. of Logic and Computation, 20(2), 2010.

[6] S. Costantini and A. Formisano. RASP and ASP as a fragment
of linear logic. J. of Applied Non-Class. Logics, 23(1-2), 2013.

[7] M. Gelfond. Answer sets. In Handbook of Knowledge
Representation. Chapter 7. Elsevier, 2008.

[8] P. Naumov and J. Tao. Budget-constrained knowledge in
multiagent systems. In Proc. of AAMAS 2015. ACM, 2015.

1312




