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ABSTRACT
We analyze relations between evolution of cooperation on networks
and network structures. Most researchers have used simple net-
works, such as scale-free networks and random networks. We per-
formed decision tree analysis on various networks. The decision
tree is constructed from cooperation degree and five network fea-
ture. Here, these five network features are selected from a lot of
network features. We estimate their cooperation degree by SVR.
As a result, estimation is successful because estimation values are
correlated with measurement values strongly in the correlation co-
efficient of 0.8. Therefore, it is said that cooperation degree can be
explained by five network features. The decision tree is constructed
with cooperation degree and five network features, and then ana-
lyzed. We found that the conditions for achieving cooperation are
having few hub nodes, being not very disassortative, and having a
short average shortest-path length.
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1. INTRODUCTION
Our goal is to understand the relation between network structure

and cooperation. Most researchers approached this problem under
limited conditions, it cannot be said that general knowledge about
it has been obtained so far. For example, Rong et al. [3] studied co-
operation focusing on assortativity. They generated scale-free net-
works with assortativity r = 0.0− 0.3 by the Xulvi-Sokolov algo-
rithm, and observed the relation between assortativity and cooper-
ation. However there is a correlation between assortativity and av-
erage shortest-path length of the networks, and it is unclear which
features affect cooperation degree. From the above reasons, it can-
not be analyzed sufficiently without a compound analysis of the
structure feature.

In this paper, we make clear which network features affect evo-
lution of cooperation by the analysis of a decision tree. We simu-
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late SPD games on various networks, and construct a decision tree.
However, there are not enough guarantees to explain evolution of
cooperation by adopted explanatory variables. Therefore, we esti-
mate the achievement degree of the cooperation (cooperation de-
gree) from explanatory variables. If it is possible to estimate at a
high level, it shows that cooperation degree is explained sufficiently
by these features.

2. NETWORK FEATURES THAT CAN EX-
PLAIN COOPERATION

In this paper, 5 network features adopted as explanatory vari-
ables to exlain cooperation degree. However there are not enough
guarantees to explain their cooperation degree. Then, we estimate
cooperation degree from network structures. If cooperation degree
can be estimated, it can be said that the adopted network features
are sufficient to explain cooperation. In this paper, we employ sup-
port vector regression (SVR).

2.1 Estimation setting
Analyzed features are the following: average shortest-path length

L, cluster coefficient C, assortativity r, α of Beta distribution, β of
Beta distribution. We construct decision trees using five explana-
tory variables.

Cooperation degree Pc is defined as an objective variable of the
decision tree. In this paper, Spatial Prisoner’s dilemma is adopted [3].
Payoff matrix is defined as follows:(

R S
T P

)
=

(
1.0 0.0
1.2 ϵ

)
, (1)

where ϵ is a minimum value.

2.2 DataSet
In this paper, 4,000 networks are generated as the network dataset.

Table 1 shows statistics of the network dataset. It is said values of
each feature are various values. Therefore, the dataset includes net-
works with various network structures.

2.3 Estimation Result
We try to estimate cooperation degree Pc from explanatory vari-

ables by SVR. A gauss kernel is used for the kernel function of
SVR. We perform 8-division cross validation, and the parameters
are optimized by simulated annealing [2].
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Figure 1: Estimation result

Figure 1 shows the estimation values calculated by SVR and
measurement values calculated by the SPD game simulation. It is
said that estimation succeeded because estimation values correlated
with measurement values strongly in the correlation coefficient of
0.824. Therefore, cooperation degree can be estimated from the
adopted network features uniquely; that is, cooperation degree can
be explained with adopted explanatory variables.

3. ANALYSIS OF CONDITION WHERE CO-
OPERATION BECOMES DOMINANT

3.1 Result of Analysis
In this section, we analyze how and which features affect coop-

eration degree. A decision tree is constructed for analyzing them.
The cross validation error of the decision tree is 0.325.

There are three conditions in which the cooperator becomes the
majority, as shown in Table 2. We consider the condition of highest
cooperation degree. It is suggested that the lower average shortest-
path length L leads to high cooperation degree. However, if av-
erage shortest-path length L is high, the cooperation degree can
be high, as shown in the second highest condition. In the second
highest condition, the condition in which α of degree distribution
is low is added instead of the condition in which average shortest-
path length L is low. The networks with high α have a lot of low
degree nodes. Therefore, nodes with small degree are required for
achievement of cooperation.

Next, not so low assortativity r ≥ −0.261 leads to cooperation
achievement. It is common to the second- and third-highest condi-

Table 1: Statistics of network dataset.
Range Average Standard diviation Max Min

L 1 ≤ L 3.49 1.07 6.08 2.23
C 0 ≤ C ≤ 1 0.291 0.201 0.793 0.00357
r −1 ≤ r ≤ 1 0.0647 0.325 0.887 -0.562
α 0 ≤ α 2.14 1.38 7.97 0.723
β 0 ≤ β 21.4 13.4 89.7 4.17

Table 2: Condition in highest and lowest networks
Highest 2nd highest 3rd highest

Pc 0.769 0.621 0.612
L L < 2.65 L ≥ 2.65 -
C - - C < 0.559
r r ≥ −0.261 r ≥ −0.159 −0.146 ≤ r < 0.339
α - α < 2.90 α < 3.05
β β ≥ 24.2 β ≥ 24.2 15.0 ≤ β < 24.2

tion. Therefore, it can be said that disassortative networks cannot
keep cooperators. In addition, in the third-highest condition, very
high assortativity r leads to low cooperation degree. It is suggested
that very disassortative networks and very assortative networks can-
not keep cooperators.

Finally, high β leads to high cooperation degree. It is common
to three conditions. The degree distribution with high β has a long
tail. It is suggested that cooperation degree is affected by a long
tail.

3.2 Discussion
First, we found that not very disassortative and very assortative

networks keep cooperators. Rong et al. [3] showed that disassorta-
tive networks are needed for cooperation. However, they analyzed
the networks with assortativity r ≥ 0. We analyzed the networks
with assortativity r < 0, and we found very disassortative networks
cannot keep cooperators. Therefore, the condition does not contra-
dict their findings.

Second, there is almost no influence by the cluster coefficient in
this research. Assenze et al. [1] showed that the networks with a
high cluster coefficient lead to cooperation achievement. However,
they analyzed only cluster coefficient, and did not analyze the fea-
tures that may correlate with a cluster coefficient. A cluster coeffi-
cient is likely to be correlated with average shortest-path length in
the networks generated by the HK model. It is suggested that aver-
age shortest-path length is related cooperation, and the correlation
between cluster coefficient and cooperation is a spurious correla-
tion.

Finally, it can be said that the distributions with high β and low α
lead to high cooperation. These distributions are power-law distri-
butions. That is, the scale-free networks (those with power-law de-
gree distributions) are required to achieve cooperation. The average
of cooperation degree in R2 ≥ 0.5 is 0.331 and that in R2 ≤ 0.5
is 0.505. It suggests that the power-low distributions lead to higher
cooperation.

4. CONCLUSION
In this paper, we analyzed the relation between cooperation de-

gree and each network feature statistically by simulating the SPD
game on generated networks with various structures. First, we es-
timated the cooperation degree from network features to show that
they are sufficient to explain cooperation. Second, we clarified how
and which features affect cooperation by decision tree analysis.
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