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ABSTRACT
A repeated game is a formal model for analyzing coopera-
tion in long-term relationships. The case where each player
observes her opponent’s action with some observation er-
rors (imperfect private monitoring) is difficult to analyze,
and existing works show that cooperative relations can be
sustainable only in ideal situations. We deal with a generic
problem that can model both the prisoner’s dilemma and the
team production problem. We examine a situation with an
additional action that is dominated by another action. By
adding this seemingly irrelevant action, players can achieve
sustainable cooperative relations far beyond the ideal situa-
tions. Moreover, for a two-player case, the obtained welfare
matches a theoretical upper bound.
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1. INTRODUCTION
A repeated game, where players repeatedly play the same

stage game over an infinite time horizon, is a formal model
for analyzing cooperation in long-term relationships and has
received considerable attention in MAS and economics lit-
erature. The case of perfect monitoring, where each player
can observe other players’ actions, is now well understood.
There is also a large body of literature on the imperfect
monitoring case, where players’ actions are only imperfectly
observed through some signals. Such imperfect monitoring
cases are further classified into public and private monitoring
cases. If all players observe the same set of signals that im-
perfectly indicate players’ actions, we have an imperfect pub-
lic monitoring case. In contrast, suppose that each player
observes her opponent’s action with some observation errors.
Assume that each player chooses cooperation (C) or defec-
tion (D), and a signal, which determines a player’s outcome,
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can be either good (g) or bad (b). If the opponent plays C,
a player usually observes g, but she may observe b with a
small probability. An important feature of this model is
that a player’s observation is her private information that is
not known to the opponent. This is an example of repeated
games with imperfect private monitoring, where each player
privately receives signals about the actions of other play-
ers. Then, players do not share a common understanding
about whom to punish and when punishment should start
(and end). Hence constructing effective punishment, which
sustains cooperation and is voluntarily followed by players,
is substantially more difficult than in the public monitoring
case. Verifying an equilibrium becomes hard since we need
to check that no player has an incentive to deviate under
any possible belief she might have on the past histories of
other players.

On the other hand, a special type of an equilibrium called
belief-free equilibrium is identified, where checking whether
a profile of strategies forms such an equilibrium is more
tractable [1, 3]. However, these existing works show that
cooperative relations can be sustainable only in ideal cases
where the discount factor (δ) is close to 1 and/or the obser-
vation error rate (ϵ) is close to 0.

We deal with a generic problem that can model both the
repeated Prisoner’s Dilemma (PD) game and the team pro-
duction problem (in which alternating (C,D) and (D,C)
maximizes players’ welfare). Furthermore, we introduce an
additional action that we call C′ as well as an associated
observation g′ for this action. This action is dominated by
another action, and playing it decreases the players’ total
welfare. Thus, adding it is irrelevant in a one-shot game. To
our surprise, it turns out that by adding this action, players
can achieve sustainable cooperative relations far beyond the
ideal cases identified in existing works. More specifically,
we identify a class of strategies called one-shot punishment
strategy that constitutes a belief-free equilibrium in a wide
range of δ and ϵ. Moreover, when the number of players is
two, we show that the sum of the discounted average pay-
offs achieved by the one-shot punishment strategies is actu-
ally theoretically optimal, i.e., it matches a theoretical upper
bound for any belief-free equilibrium.

2. TWO-PLAYER MODEL
Let us explain only the case with two players due to space

limitations, though our results have been generalized to cases
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Table 1: Stage game payoff
a2 = C a2 = D a2 = C′

a1 = C 1 −y 1− α
a1 = D 1 + x 0 1 + x− α
a1 = C′ 1 −y 1− α

with an arbitrary number of players. There exists a set of
players N = {1, 2}. Two players repeatedly play the same
stage game over an infinite horizon t = 0, 1, 2, . . .. In each
period, player i takes an action ai ∈ A = {C,D,C′}, and
her expected payoff in that period is given by stage game
payoff function ui(a), where a = (a1, a2) ∈ A2 is an action
profile in that period.
The stage game payoff is shown in Table 1. Here, we only

show player 1’s payoff since the game is symmetric. We
assume x, y, and α > 0. Here, the payoff for playing C′ is
identical to C for the player who plays it. On the other hand,
the player can hurt the other player (by α) by playing C′

instead of C. Since action C′ is dominated by D, adding it
is irrelevant when the stage game is played only once. When
x < y + 1, this stage game corresponds to the well-known
PD game, where (C,C) is the outcome that maximizes the
total payoff of two players. When x > y+1, this stage game
corresponds to the team production problem [2], where the
outcome that maximizes the total payoff of two players is
either (C,D) or (D,C).
Within each period, player i observes her private signal

ωi ∈ Ω = {g, b, g′} that is related to the opponent’s action.
Here, g (or b, g′) is the “correct” signal for C (or D,C′). Let
a−i denote the opponent’s action, and o(ωi | a−i) denote
the marginal distribution of ωi given a−i. We set o(ωi |
a−i) to 1 − 2ϵ when ωi is the correct signal for a−i, and
otherwise to ϵ. We assume 0 < ϵ < 1/3, i.e., a correct signal
is more likely to be observed. Player i’s realized payoff is
denoted as πi(ai, ωi). Hence, her expected payoff is given by∑

ωi∈Ω πi(ai, ωi) · o(ωi | a−i). This formulation ensures that
realized payoff πi conveys no more information than ai and
ωi. Player i’s expected discounted payoff from a sequence
of action profiles a0,a1, . . . is

∑∞
t=0 δ

tui(a
t), with discount

factor δ ∈ (0, 1). The (expected) discounted average payoff
(payoff per period) is defined as (1− δ)

∑∞
t=0 δ

tui(a
t).

3. ONE-SHOT PUNISHMENT STRATEGY
We define one-shot punishment strategies. The strategy

profile σL∗
is defined by an FSA (Finite-State Automaton).

Here, L∗ ∈ {1, 2} represents the number of players who are
supposed to play C in each period. Each player basically
follows a prescribed cycle of two states. When L∗ = 2, the
actions of both states are C. When L∗ = 1, the action of
one prescribed state is C, and the action of the other state
is D.
Figure 1(a) shows an FSA where L∗ = 2. Player 1 starts

from W1 and player 2 starts from W2. Here, the upper-side
cycle of W1 and W2 is the prescribed cycle. When player 1
is at W1, player 2 should be at W2 (or P2) and should play
C (or C′). If player 1 observes b, she punishes player 2 in the
next period by moving to P2. Then player 2 should be at
W1 (or P1). If player 1 observes b again, she punishes player
2 again in the next period by moving to P1. Otherwise, she
returns to the prescribed cycle, i.e., moves to W1.
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(a) L∗ = 2
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(b) L∗ = 1

Figure 1: One-shot punishment strategy

Figure 1(b) shows an FSA where L∗ = 1. Here, the pre-
scribed cycle has two states: W and R. Therefore, only one
punishment state P exists.

Theorem 1. A one-shot punishment strategy profile σL∗

forms a belief-free equilibrium if and only if the following
Inequality (1) holds:

α ≥ w/[δ(1− 3ϵ)]. (1)

Where w = x for L∗ = 2, and w = y for L∗ = 1.

Note that we can extend the one-shot punishment strategy
for cases with an arbitrary number of players and have suc-
cessfully identified the equilibrium condition.

Let EN (s) denote the sum of all the players’ discounted

average payoffs given by a strategy profile s. Let E∗
N (σL∗

)
denote the maximum of EN by varying α in the range where
Inequality (1) is satisfied. This value is actually optimal for
any belief-free equilibria; the following theorem holds.

Theorem 2. For any given δ, x, y, and ϵ, if a profile of
strategies s forms a belief-free equilibrium, then the following
Inequality (2) holds:

EN (s) ≤ max(E∗
N (σ2), E∗

N (σ1), 0). (2)

4. CONCLUSIONS
We introduced a generic problem that can model both

the repeated PD game and the team production problem,
and examined a situation where seemingly irrelevant action
C′ is added. We identified one-shot punishment strategy,
which can constitute a belief-free equilibrium in a wide range
of parameters. Moreover, when the number of players is
two, we showed that the obtained welfare of this equilibrium
matches the theoretical upper bound.

Our future works include applying a similar idea to dif-
ferent settings, e.g., C′ requires an additional cost, a player
can choose the level of punishment, and so on.
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