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ABSTRACT
In this paper, we examine the application of Multi-Agent
Reinforcement Learning (MARL) to a Dynamic Economic
Emissions Dispatch problem. This is a multi-objective prob-
lem domain, where the conflicting objectives of fuel cost and
emissions must be minimised. We evaluate the performance
of several different MARL credit assignment structures in
this domain, and our experimental results show that MARL
can produce comparable solutions to those computed by Ge-
netic Algorithms and Particle Swarm Optimisation.
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1. INTRODUCTION
In a Multi-Agent System (MAS), multiple autonomous

agents act independently in a common environment. The
majority of MAS research focuses on optimising systems
with respect to a single objective, despite the fact that many
real world problems are inherently multi-objective in nature.
This is the issue addressed by multi-objective optimisation
(MOO) approaches: the requirement to make a trade-off
between competing objectives. MOO approaches typically
seek to approximate the true Pareto front of a problem, i.e.
the set of solutions that are incomparable, where each solu-
tion is not dominated by any of the others on every objective.

Multi-Agent Reinforcement Learning (MARL) has proven
to be successful in developing suitable joint policies in nu-
merous complex single-objective problems, but research into
its application to multi-objective problems is still at a very
early stage. MARL problems may be formalised using the
Stochastic Game (SG) framework. A SG is defined as a tu-
ple < S,A1...n, T,R1...n >, where n is the number of agents,
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S is the set of states, Ai is the set of actions for agent i
(and A is the joint action set), T is the transition function,
and Ri is the reward function for agent i. In MARL, agents
learn to maximise the return from R, and thus the design
of R directly affects the joint policies learned. R may be
augmented by an additional shaping reward F , in order to
provide additional feedback to the agents. Reward shaping
has been investigated as a method to improve learning speed
and/or the final joint policy learned in MARL problems [3].
Potential-Based Reward Shaping (PBRS) is a form of re-
ward shaping which has been proven not to alter the set of
Nash equilibria of a MAS [2]. In PBRS the shaping term
is of the form F (s, s′) = γΦ(s′)− Φ(s), where Φ(s) is a po-
tential function which represents preferences for agents to
reach certain system states.

Two typical MARL reward functions exist: local re-
wards (Li) based on the utility of the part of a system
that agent i can observe directly, and global rewards (G)
based on the utility of the entire system. A difference re-
ward (Di) is a shaped reward signal that aims to quantify
each agent’s individual contribution to the system perfor-
mance, with R = G and F = −G(z−i). The global utility
for a theoretical system without the contribution of agent
i is represented by the counterfactual G(z−i). Here z is a
general term that may represent states or state-action pairs.

Counterfactual as Potential (CaP ) [3], is an auto-
mated method of generating multi-agent potential functions
using the same knowledge represented by D. CaP auto-
matically assigns potentials to states using counterfactuals,
so that Φ(s) = G(z−i). Here R = G, and F is calculated
as normal in PBRS. CaP preserves the guarantee of consis-
tent Nash equilibria when using PBRS, while incorporating
knowledge based on D in an automated manner.

2. DYNAMIC ECONOMIC EMISSIONS
DISPATCH (DEED)

In the DEED problem a number of electricity generators
must be scheduled to meet a specified customer demand over
a period of time, while minimising the conflicting objectives
of fuel cost and emissions. Basu [1] analysed DEED as a
multi-dimensional optimisation problem, with each dimen-
sion in the problem space representing the power output of
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a generator at a given time. Approaches such as Genetic Al-
gorithms (GA) [1] and Particle Swarm Optimisation (PSO)
[4] have previously been applied to DEED.

In our MARL approach, each agent i ∈ {2, ..., N} controls
the power output of a generator n ∈ N at each hour m ∈M ,
and the first generator is a slack generator. The local cost
fL
c (n,m) and emissions fL

e (n,m) terms for generator n over
hour m are calculated as:

fL
c (n,m) = an+bnPnm+cn(Pnm)2+|dnsin{en(Pmin

n −Pnm)}|
(1)

fL
e (n,m) = E(αn + βnPnm + γn(Pnm)2 + η exp δPnm) (2)

where an, bn, cn, dn and en are the cost coefficients for each
generator, αn, βn, γn, ηn and δn are the emission coefficients
for each generator, Pnm is the power output from generator
n at time m, Pmin

n is the minimum permissible power output
of generator n, and E = 10 is the emissions scaling factor.

The global cost and emissions for hour m may then be
calculated as the summation of fL

c (n,m) and fL
e (n,m) re-

spectively over the N = 10 generators in the system. To
discourage violations of system operating limits, a global
penalty function fG

p is used, which returns the total num-
ber of constraint violations multiplied by 106. The counter-
factual versions of the global cost, emissions and violations
terms for agent i are calculated by assuming that the agent
chose the same action as in the previous timestep.

We combine the reward signals Lo, Go, Do and CaPo for
each objective o ∈ O into single reward signals, using two
different scalarisation techniques: linear scalarisation (+)
and hypervolume scalarisation (λ). The objective weights
used for the linear scalarisation are: wc = 0.45, we = 0.55,
and wp = 1.0. The agents receive one of these scalarised re-
ward signals while learning: L(+), L(λ), G(+), G(λ), D(+),
D(λ), CaP (+) or CaP (λ). Note that all reward signals
given to agents are negative, as this is a minimisation prob-
lem. We apply multiple individual Q-learners with ε-greedy
exploration to DEED, learning using the reward functions
above for 20, 000 episodes. Each episode comprises M = 24
hours. The learning parameters for all agents are: α = 0.10,
γ = 0.75, ε = 0.05. All values for cost coefficients, emission
coefficients, ramp limits, generator capacity limits, power
demands and transmission line loss coefficients can be found
in the work of Basu [1].

3. RESULTS AND DISCUSSION
The average results over 50 statistical runs for the MARL

approaches tested are presented in Table 1. All claims of
statistical significance are supported by two-tailed t-tests
assuming unequal variances, with p = 0.05 selected as the
threshold for significance. As expected, L performs poorly
here, encouraging agents to greedily minimise their own fuel
cost and emissions without considering the utility of the sys-
tem as a whole. D converges to a stable policy most quickly
with both scalarisations, while both variants of G learn good
policies, but at a slower rate than D. CaP initially learns
more quickly than G for both scalarisations; increased learn-
ing speed is a typical characteristic of PBRS. However, the
final joint policies learned by CaP are not as good as those
learned by G or D.

No statistical difference was found between the final per-
formance of the scalarisation approaches for G(+) and G(λ),
or for CaP (+) and CaP (λ). The differences in the means
between D(+) and D(λ) were statistically insignificant for
the cost objective, but were significant for the emissions ob-
jective (p = 1.19× 10−8). The differences in the mean final
performance of D(+) and G(+) were found to be significant
for both the cost objective (p = 5.01×10−22), and the emis-
sions objective (p = 3.20 × 10−10). Overall, D(+) offered
the best performance of all the MARL approaches tested.

GA results reported by Basu [1] and PSO results reported
by Mason [4] are included in Table 1 for comparison pur-
poses. Our experiments show that MARL produces results
that are comparable to those produced by GA and PSO
based approaches, although not quite as good. For exam-
ple, Basu’s NSGA-II [1] has 4.2% lower costs, and 6.8% lower
emissions than D(+) on average in this problem. However,
MAS is arguably a more interesting paradigm to use when
studying these types of optimisation problems, due to the
ability to modify simulation parameters while learning on-
line, and the possibility of modelling system disturbances
(e.g. generator failure). MAS are inherently suited to dis-
tributed control and optimisation problems like DEED, and
we intend to investigate further applications of MAS and
MARL to these types of problems in the future.

Table 1: DEED Average solutions
Cost ($ ×106) Emissions (lb ×105)

L(+) 4.1127 28.8266
L(λ) 4.1149 17.6606
CaP (+) 2.8777 7.4774
CaP (λ) 2.8919 9.6431
G(+) 2.7647 3.9098
G(λ) 2.7607 3.9788
D(+) 2.6641 3.3255
D(λ) 2.6748 3.8980
NSGA-II [1] 2.5226 3.0994
PSO-AWL [4] 2.5463 2.9455
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