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ABSTRACT
Although minimum quotas are important in many real-world
markets, existing strategyproof mechanisms require an un-
realistic assumption that all students consider all schools
acceptable (and vice-versa). We develop a strategyproof
matching mechanism called Priority-List based Deferred Ac-
ceptance mechanism with Minimum Quotas (PLDA-MQ),
which works under more realistic assumptions: (i) a student
considers (at least) one particular school, which we call her
initial endowment school, acceptable, and vice-versa, and
(ii) the initial endowments satisfy all the minimum quo-
tas. We require a matching to respect initial endowments;
each student must be assigned to a school that is at least
as good as her initial endowment. PLDA-MQ obtains the
student-optimal matching within all matchings that respect
minimum quotas/initial endowments and satisfies a stability
requirement called Priority-List based (PL-) stability.
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•Computing methodologies → Multi-agent systems;
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1. INTRODUCTION
The theory of matching has been extensively developed for

markets in which schools have maximum quotas that can-
not be exceeded [4]. However, in many real-world markets,
minimum quotas are also present [2]. In existing works, to
guarantee that mechanisms obtain feasible matchings (which
respect minimum quotas), it is required that all students
consider all schools acceptable and vice-versa. This require-
ment seems unrealistic in many applications. For example,
in a public school choice program, it is not likely that a
student is willing to attend a public school located very far
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away from her residence, unless the school offers some very
appealing characteristics.

In this paper, we develop a mechanism that works un-
der much more realistic assumptions. We require that a
student considers at least one particular school acceptable,
which we call her initial endowment school. We assume each
school can consider some students unacceptable. However,
we require that each school consider its initial endowment
students acceptable. We also assume that the matching cor-
responds to the initial endowments is feasible, i.e., it satisfies
all minimum/maximum quotas.

In general, fairness and standard nonwastefulness, both of
which compose stability, are incompatible when minimum
quotas are imposed [1]. Thus, in this paper, we introduce
alternative definitions called Priority-List based (PL-) fair-
ness and PL-nonwastefulness. They compose PL-stability.

We set our research goal to develop a strategyproof mecha-
nism that improves students’ welfare while satisfying the re-
quired properties. Our newly developed mechanism obtains
the student-optimal matching within all matchings that sat-
isfy these properties.

2. MODEL
A matching market is given by (S,C,X, ω,≻S ,≻C ,≻PL,

qC , pC). S = {s1, s2, . . . , sn} is a finite set of students. C =
{c1, c2, . . . , cm} is a finite set of schools. X ⊆ S×C is a finite
set of contracts. Contract x = (s, c) ∈ X represents that
student s is assigned to school c. For any X ′ ⊆ X, let X ′

s

denote {(s, c) ∈ X ′ | c ∈ C}. Also, let X ′
c denote {(s, c) ∈

X ′ | s ∈ S}. ω : S → C is an initial endowment function.
ω(s) returns c ∈ C, which is s’s initial endowment. Let
X∗ denote

∪
s∈S{(s, ω(s))}, i.e., X

∗ is the set of contracts,
where each element is a contract between a student and her
initial endowment school.
≻S= (≻s1 ,≻s2 , . . . ,≻sn) is a profile of the students’ pref-

erences. For each student s, ≻s represents the preference
of s over Xs. We assume ≻s is strict for each s. We say
(s, c) ∈ Xs is acceptable for s if (s, c) ≻s (s, ω(s)) or c = ω(s)
holds. ≻C= (≻c1 ,≻c2 , . . . ,≻cm) is a profile of the schools’
priorities. For each school c, ≻c represents the priority of c
over Xc ∪ {(ϕ, c)}, where (ϕ, c) represents an outcome such
that c is unmatched. We assume ≻c is strict for each c. Con-
tract (s, c) is acceptable for c if (s, c) ≻c (ϕ, c) or ω(s) = c
holds. We assume each contract x in Xc is acceptable for c.
This is without loss of generality because if some contract
is unacceptable to a school, we assume it is not included in
X. ≻PL is a serial order over X called priority list (PL),
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which represents a tie-breaking order among contracts. We
assume ≻PL respects the initial endowments, i.e., for each
x ∈ X∗ and x′ ∈ X \ X∗, x ≻PL x′ holds. Also, we as-
sume ≻PL respects ≻C , i.e., for any (s, c), (s′, c) ∈ X \X∗,
(s, c) ≻PL (s′, c) holds iff (s, c) ≻c (s′, c) holds.
qC = (qc1 , qc2 , . . . , qcm) is a vector of the schools’ maxi-

mum quotas. Also, pC = (pc1 , pc2 , . . . , pcm) is a vector of
the schools’ minimum quotas. We assume

∑
c∈C pc ≤ n ≤∑

c∈C qc holds.
X ′ is feasible if it satisfies the following conditions: (i)

for all s ∈ S, X ′
s = {x} and x is acceptable for s, and (ii)

for all c ∈ C, pc ≤ |X ′
c| ≤ qc holds. We call a feasible set

of contracts a matching. We assume X∗ is feasible, i.e., for
each c ∈ C, pc ≤ |X∗

c | ≤ qc holds.
For set of matchings X , X ′ ∈ X is student-optimal within
X if it satisfies the following condition: for all X ′′ ∈ X and
for all s ∈ S, where X ′

s = {x′} and X ′′
s = {x′′}, either

x′ ≻s x′′ or x′ = x′′. There is a chance that no student-
optimal matching exists in X . If a student-optimal matching
does exist in X , it must be unique.
A mechanism is a function that takes a profile of stu-

dents’ preferences as input and returns a matching. We say
a mechanism is strategyproof if no student ever has any in-
centive to misreport her preference, regardless of what the
other students report.
We say student s has justified envy toward s′ ̸= s in

matching X ′, where (s, c) ∈ X ′, (s′, c′) ∈ X ′ \ X∗, and
(s, c′) ∈ X \ X ′, if (s, c′) ≻s (s, c) and (s, c′) ≻c′ (s′, c′)
hold. We say student s has justified envy toward s′ ̸= s
in matching X ′ based on PL, where (s, c), (s′, c′) ∈ X ′ and
(s, c′′) ∈ X \X ′, if (s, c′′) ≻s (s, c), |X ′

c′′ | < qc′′ , |X ′
c′ | > pc′ ,

and (s, c′′) ≻PL (s′, c′) hold. Matching X ′ is PL-fair if no
student has justified envy or justified envy based on PL.
Student s claims an empty seat of c′ in matching X ′

based on PL, where (s, c) ∈ X ′ and (s, c′) ∈ X \ X ′, if
(s, c′) ≻s (s, c), |X ′

c′ | < qc′ , |X ′
c| > pc and (s, c′) ≻PL (s, c)

hold. Matching X ′ is PL-nonwasteful if no student claims
an empty seat based on PL.
We say a matching is PL-stable if it is PL-fair and PL-

nonwasteful. We say a mechanism is PL-stable if it always
gives a PL-stable matching.

3. PRIORITY-LISTBASEDDEFERREDAC-
CEPTANCE MECHANISMWITH MINI-
MUM QUOTAS (PLDA-MQ)

PLDA-MQ is built upon choice functions ChS : 2X → 2X

and ChC : 2X → 2X . ChS is a choice function of stu-
dents S, which is a union of individual choice functions, i.e.,

ChS(X
′) :=

∪
s∈S Chs(X

′). Let X̂ ′
s denote {x ∈ X ′

s | x
is acceptable for s}. Chs(X

′) returns {(s, c)}, where (s, c)

is s’s most preferred contract in X̂ ′
s (or ∅ if X̂ ′

s is ∅).
ChC is a choice function of schools C, which is defined as

follows.

Definition 1 (Choice function of schools C).
ChC(X

′) is defined as follows:

1. Y ← ∅.
2. Remove (s, c) from X ′ such that (s, c) has the highest

priority based on PL in X ′. If there exists no such
contract, terminate the procedure and return Y . Oth-
erwise, Z ← Y ∪ {(s, c)}.

3. If |Zc| ≤ qc and
∑

c′∈C max(|Zc′ |, pc′) ≤ n, then Y ←
Z. Go to 2.

The PLDA-MQ is one instance of the generalized Deferred
Acceptance mechanism presented in [3], which is defined as
follows.

Definition 2 (PLDA-MQ).

Step 1 Re← ∅.
Step 2 X ′ ← ChS(X \Re), X ′′ ← ChC(X

′).

Step 3 If X ′ = X ′′, then return X ′, otherwise, Re← Re∪
(X ′ \ ChC(X

′)), go to Step 2.

Here Re represents the rejected contracts. A student cannot
choose a contract in Re. First, students propose a set of
contracts X ′ that are most preferred and not rejected so
far. Then schools choose X ′′, which is a subset of X ′. If no
contract is rejected, the mechanism terminates. Otherwise,
the rejected contracts are added to Re, and the mechanism
repeats the same procedure.

From Definition 1, it is clear that PLDA-MQ respects qC .
Also, since n −

∑
c′ ̸=c |Zc′ | ≥ pc holds, at least pc students

will be allocated to c. Furthermore, a student is never re-
jected by her initial endowment school. Thus, the outcome
of PLDA-MQ is always feasible.

About PLDA-MQ, the following theorems hold.

Theorem 1. PLDA-MQ obtains a feasible set of contracts.

Theorem 2. PLDA-MQ is strategyproof, PL-stable, and
obtains the student-optimal matching within all the PL-stable
matchings.

4. CONCLUSIONS
In this paper, we developed a new strategyproof mecha-

nism called PLDA-MQ that can work under more realistic
assumptions than existing mechanisms. PLDA-MQ satis-
fies required properties (respecting minimum quotas/initial
endowments, PL-stability), and obtains the student-optimal
matching within all matchings that satisfy the required prop-
erties. Our future works include developing a mechanism
that respects minimum quotas/initial endowments and is
more efficient than PLDA-MQ, although it may not be fair.
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