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ABSTRACT
DCOP_MST is an extension of the DCOP framework for repre-
senting and solving dynamic multi-agent applications that include
teams of mobile sensing agents. Local search algorithms, enhanced
with exploration methods were recently found to produce high
quality solutions for DCOP_MST in software simulations. Apply-
ing DCOP_MST to robots with directed sensors (e.g., cameras) re-
quires addressing limitations, which were not part of the original
design of the DCOP_MST model, e.g., limited angle of the field of
vision, collisions between robots etc.

In this paper we contribute to the ongoing effort of applying
DCOPs to real world applications by addressing the challenges one
faces when applying the DCOP_MST model to a team of mobile
sensing robots with directed sensors. We integrate the required ad-
justments into a new model, DCOP_MSTR, which is the modified
version of DCOP_MST for such a real world robot application with
directed sensors. The proposed revised model was implemented
and evaluated both in software simulations and on a team of robots
carrying cameras. Our evaluation of existing algorithms revealed
the need to combine actions that change the location of a robot
with actions that change its sensing direction in order to achieve
effective exploration when solving DCOP_MSTR.

1. INTRODUCTION
Multi-agent systems that include teams of mobile sensing agents

have been previously modeled using the Distributed Constraint
Optimization Problem (DCOP) framework by representing mobile
sensors as agents that need to select locations and their tasks/targets
as constraints [2]. Recently, Zivan et al. [5, 3] proposed a model
(DCOP_MST) and corresponding local search algorithms for rep-
resenting and solving such scenarios, particularly focusing on
teams of mobile sensing agents that need to select a deployment
for the sensors in order to cover a partially unknown environ-
ment. DCOP_MST is an extension of the DCOP model that al-
lows agents to adjust their location in order to adapt to dynamically
changing environments. The local distributed search algorithms
that were proposed for solving DCOP_MST, were adjustments of
standard local search techniques, such as Distributed Stochastic
Algorithm (DSA) [4], to the model, enhanced by specifically de-

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

signed exploration methods [5]. Nevertheless, prior to this work,
the DCOP_MST model and its corresponding algorithms were only
tested on a software simulator and not on a mobile robot team. The
task of designing a distributed model for a team of hardware robots
is most challenging. Thus, there exists only a handful of studies in
which DCOP models were actually used to represent real mobile
robots [1, 2]. Inspired by the pioneering work of [1, 2], our paper
continues the effort to advance the research on realistic implemen-
tations of distributed constraint models and algorithms by applying
the DCOP_MST model to a team of hardware robots carrying cam-
eras. We analyzed the challenges that are raised when shifting to
a hardware simulation, adjusted the existing models to represent
these challenges, designed an algorithm that copes with the adjust-
ments better than existing algorithms and empirically evaluated the
model and algorithm both on hardware and software simulations.

Our results indicate that algorithms that performed best when
solving standard DCOP_MST problems are not as effective for
solving DCOP_MSTR scenarios. Therefore, we designed an al-
gorithm (DSA_PDMRR) with enhanced exploration abilities, in-
spired by the Periodic Double Mobility Range (PDMR) exploration
method proposed by [5]. This algorithm outperformed existing al-
gorithms both in our hardware implementations and in software
simulations of DCOP_MSTR.

2. DCOP_MSTR

In order to face the discrepancies between the DCOP_MST
model and the realistic scenario we discussed above, we propose
the DCOP_MSTR model (R stands for realistic/robots), whose de-
tails are specified next:

• For each agent Ai, Diri is the direction in which its camera
is currently pointing at.

• The assignment of agent Ai is a pair that includes its position
Cur_Posi and the direction Diri.

• The domain of agent A_i includes all possible moves, e.g, a
change of location, or a change of direction.

• For each agent Ai, Angi ∈ (0, 360] defines its angle of vi-
sion. Ai can monitor a target Tj only if the distance of tar-
get Tj from Cur_Posi is not larger than Ai’s sensing range
(SRi) and the angle between the line of sight to Tj and Diri
is smaller than or equal to Angi/2.

• The reduction in credibility resulting from the distance be-
tween the agent Ai and target Tj is determined by the Linear
Credibility Reduction Function (lini,j).
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Figure 1: A team of mobile robots with directional sensing equip-
ment covering targets (orange cons).

• Similarly, the reduction in credibility as a result of the angle
between the direction the sensor is pointed at and the line
of sight between agent Ai and target Tj is specified by the
Lateral Credibility Reduction Function (lati,j).

• Agents sense a target only if there is no other agent or target
in the line of sight between them.

• The effective credibility of agent Ai to target Tj ,
Credi,j = Credi · lini,j · lati,j
• Agents are not allowed to be located at the same position.

3. ALGORITHMIC ADJUSTMENTS
The most effective exploration method found in software sim-

ulations for DCOP_MST was Periodic Increment of Largest Re-
duction (PILR), which allows agents to periodically choose a sub-
optimal assignment, escape local minima and achieve better cov-
erage [5]. Our empirical results indicate that this method does not
perform as well when used to solve DCOP_MSTR. The reasons for
this difference partly stem from the difference in the domains’ con-
tent. In DCOP_MSTR a single move changes a relatively smaller
part of the local environment. In addition, due to the dependency
on the direction, the exploration must be more accurate. Finally,
the discretization of turn angles requires a combination of action to
be taken to achieve optimal coverage in certain cases.

Thus, we propose an adjusted version of the PDMR explo-
ration method described in [5] for DCOP_MSTR. In DCOP_MST,
PDMR allows agents to periodically consider assignments within
twice their mobility range (MR). In DCOP_MSTR we adjust
PDMR so that agents consider a combination of up to two actions
e.g., a move forward and a turn assignment.

4. EXPERIMENTAL SECTION
We conducted experiments both on a team of hardware robots

and on a software simulation of the model. The robots chosen
for this system were iRobot Creates mounted with Asus laptops
equipped with PrimeSense sensors (Figure 1). The setting for the
hardware experiment included 6 agents. The agents along with 3
targets were randomly located on a 10 by 10 grid. The targets had
importance of 100 and the agents had credibility of 60. The al-
gorithms ran for 15 iterations while at the 7th iteration we sim-
ulated a target movement. Each reported result in the graphs in
Figure 2 is an average over 10 runs of the algorithm on different
randomly generated problems. The results in Figure 2 indicate
clearly that DSA_PILR does not have the same level of success as
it had when solving standard DCOP_MST [5]. On the other hand
DSA_PDMRR offers a significant improvement over both DSA
and DSA_PILR.
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Figure 2: A comparison of the algorithms’ performance on the
robots. 3 targets, 6 robots.
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Figure 3: A comparison of the algorithms’ performance on the sim-
ulator. 10 target, 20 agents.

Software simulations allowed the investigation of larger scenar-
ios. The experiments in Figure 3 included 20 agents and 10 targets
that were randomly located on a 20 by 20 grid. Each reported result
is an average over 50 runs of the algorithm on different randomly
generated problems. it is apparent that, like in the hardware ex-
periment, DSA_PILR offers a very small improvement over DSA
for DCOP_MSTR. The DSA_PDMRR version that we proposed
in this paper offers a more significant improvement.

Acknowledgments
The research was partially supported by the Helmsley Charitable
Trust through the Agricultural, Biological and Cognitive Robotics
Initiative of Ben-Gurion University of the Negev.

REFERENCES
[1] M. Jain, M. E. Taylor, M. Yokoo, and M. Tambe. Dcops meet

the real world: Exploring unknown reward matrices with
applications to mobile sensor networks. In IJCAI, 2009.

[2] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralised coordination of mobile sensors using the
max-sum algorithm. In IJCAI, 2009.

[3] H. Yedidsion, R. Zivan, and A. Farinelli. Explorative max-sum
for teams of mobile sensing agents. In AAMAS, 2014.

[4] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparishon and applications to constraints optimization
problems in sensor networks. Artificial Intelligence, 2005.

[5] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. P.
Sycara. Distributed constraint optimization for teams of
mobile sensing agents. JAAMAS, 29, 2015.

1358


	1 Introduction
	2 DCOP_MSTR 
	3 Algorithmic Adjustments 
	4 Experimental Section



