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ABSTRACT
We investigate multi-round team competitions between two
teams, where each team selects one of its players simultane-
ously in each round and each player can play at most once.
The competition defines an extensive-form game with per-
fect recall and can be solved efficiently by standard methods.
We are interested in the properties of the subgame perfect
equilibria of this game.

We first show that uniformly random strategy is a sub-
game perfect equilibrium strategy for both teams when there
are no redundant players (i.e., the number of players in each
team equals to the number of rounds of the competition).
Secondly, a team can safely abandon its weak players if it has
redundant players and the strength of players is transitive.

We then focus on the more interesting case where there are
redundant players and the strength of players is not transi-
tive. In this case, we obtain several counterintuitive results.
First of all, a player might help improve the payoff of it-
s team, even if it is dominated by the entire other team.
We give a necessary condition for a dominated player to be
useful. We also study the extent to which the dominated
players can increase the payoff.

These results bring insights into playing and designing
general team competitions.
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1. INTRODUCTION
We investigate a type of team competitions where there

are two teams, each with a number of players, competing
against each other. The competition proceeds in a fixed
number of rounds. In each round, each team simultaneous-
ly sends out a player to a match. The result of the match
is then revealed according to a probabilistic strength ma-
trix between players. The selected players cannot compete
in the subsequent rounds. The competition proceeds to the
next round if there is one; or terminated otherwise. The
format of the competition and the strength matrix are com-
mon knowledge to both teams. The final payoff of each team
is the number of matches it wins. We also consider another
commonly seen form where each team gets payoff 1 if it wins
strictly more matches than the other team, 0 if ties, and −1
if it wins less matches. Clearly, the competition defines a
standard extensive-form game, or more precisely, a stacked
matrix game ([6]). We are interested in the sub-game perfect
equilibria of the game, i.e., a strategy profile that specifies
for each team which player to play at each round.

We are particularly interested in a situation where at least
one team has more players than the number of rounds in
the competition. As a result, some players will never have
chance to participate in any match. The main agenda of
this paper is to understand to what extent can the presence
of additional players affect the payoff of both teams. In par-
ticular, we ask the following questions: 1. Can the presence
of additional weakest teammate, a teammate whose row in
the strength matrix is strictly dominated by any other row,
help increase the payoff of the team? 2. Can the presence
of additional dominated teammate, a teammate that always
loses to any player in the opponent team, help increase the
payoff of the team?

It might appear intuitive that the answers to both ques-
tions are negative. For the first question, it seems that the
weakest teammate will never have a chance to participate
in any match since one can always replace him by a better
teammate and increase payoff. For the second question, it
might seem more obvious since the dominated teammate will
lose any matches thus must be replaced by a better team-
mate. To our surprise, we find that the answers to both
questions are affirmative.

1.1 Our contributions
We first show that uniformly random strategy is a sub-

game perfect equilibrium strategy for both teams when there
are no redundant players (i.e., the number of players in each
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team equals to the number of rounds of the competition).
The uniformly random strategy always picks the unmatched
player uniformly at random in each round.

Then, we consider the general case where at least one
team has redundant players. We first study the case where
the strength of players is transitive, which means that the
players can be rearranged in a queue so that each of them is
weaker than its successor. We prove that, a team can safely
abandon its weak players if it has redundant players and the
strength of players is transitive. Therefore, this case reduces
to the case where there are no redundant players.

Finally, we focus on the case where there are redundant
players and the strength of players is not transitive. In this
case, we obtain a number of counterintuitive results. Most
importantly, a player might help improve its team’s payoff,
even if it is dominated by the entire opposing team. We give
a necessary condition for a dominated player to be useful,
which alternatively suggest that a particular utility function
(named UE below) is more reasonable in team competition.
Our results imply that a team can increase its utility by
recruiting additional dominated players. We further show
that, the optimal number of dominated players to recruit
can scale with the number of rounds. More precisely, this
number can be Θ(T ) if there are T rounds. Last but not
least, we study the limitation of dominated players.

1.2 Motivations
Our model is first motivated by the Chinese horse race s-

tory described in [11] (see also [15]). It represents one of the
most popular forms of horse races where each team ranks
its horses to match sequentially. Moreover, the Swaythling
Cup, as known as World Table Tennis Championships, fol-
lows the same model described in our paper: each team
adaptively selects a ranking of three players and brings t-
wo additional substitutes. In fact, this has been one of the
most popular formats of team competition in table tennis.
In addition, the card game Goofspeil ([6, 14]) also falls into
nearly the same model as described in our paper.

1.3 Related works
Tang, Shoham and Lin [11, 12] study a team competi-

tion setting where the number of players equals the number
of rounds and both teams must determine the ordering of
players upfront, before the competition starts. They put for-
ward competition rules that are truthful while satisfy oth-
er desirable properties. The main difference between their
work and ours is that we do not design new mechanisms but
study game theoretical properties of commonly used com-
petition rules. The differences also lie in that the strategies
are adaptive in our setting and each team can have more
players than the number of matches.

The strategic aspects of team competition have also been
under scrutiny of computer scientists due to a recent Olympic
scandal in badminton, where several teams deliberately throw
matches in order to avoid a strong opponent in the next
round. The phenomenon has been discussed in depth in a
series of algorithmic game theory blogposts by Kleinberg [3]
and Procaccia [8].

A parallel literature has been concerned with the strategic
aspect of tournament seeding [2, 9, 4, 10, 13, 1]. It is well
known that there are cases where by strategic seeding and
structuring, any player can be winner in knockout tourna-
ment. Various game theoretical questions, such as player-

optimal seeding, complexity of manipulation and incentives
to guarantee strategyproofness, have been investigated in
this literature.

2. THE MODEL
Team 1 has a set of m players {A1, . . . , Am}. Team 2

has a set of n players {B1, . . . , Bn}. A competition between
team 1 and 2 is a tuple G(T, P, U) where,

1. T is the number of rounds.

2. In each round, each team simultaneously selects one of
its players that have not been selected yet.

3. P is a probabilistic matrix that describes the relative
strength between players, with Pi,j denoting the prob-
ability that Ai wins against Bj and 1− Pi,j the prob-
ability for Ai to lose to Bj .

4. U : [T ]→ R denotes the utility function of each team.
The utility function only depends on the number of
rounds t each team wins, i.e., it can be represented by
U(t). This also implies that both teams have the same
utility functions.

5. The parameters n,m, T, P, U are common knowledge
to both teams, and historical plays are perfectly ob-
servable. It is assured that Pi,j ∈ [0, 1] for all i, j and
that m ≥ T and n ≥ T so that there are enough play-
ers to complete the competition.

The following utility functions UE and UM are two com-
monly seen ones:

UE(t) = t− T/2. UM (t) =

 1 t > T/2
0 t = T/2
−1 t < T/2

. (1)

In other words, UE describes a competition where a team’s
utility is exactly the number of rounds it wins (minus some
constant T/2); while UM (t) describes a competition where
a team’s utility is whether it wins more than its opponent.
Notice that, when U = UE or U = UM , we have U(t)+U(T−
t) = 0, hence both utility functions define a zero-sum game.
In this paper we always assume that U(T ) + U(T − t) = 0.

2.1 Example: simultaneous card games
The models above formulates the standard team compe-

titions as commonly seen under the context of sports, but
shall not be limited to sports. The following is an instance
of card games that fall into our framework.

Suppose that Alice and Bob each has a deck of three cards.
In each deck one card is in suit ♥ and two cards are in suit ♠.
They play three rounds; in each round Alice and Bob select
one card and they reveal the cards simultaneously. If they
select cards in same suit (both in ♥ or both in ♠), Alice
wins this round; otherwise Bob wins this round. The one
who wins two or three rounds gets utility 1; the other one
wins zero or one rounds and it gets utility -1.

This game can be conveniently represented in our model
using the following parameters:

m = n = T = 3, P =

 1 0 0
0 1 1
0 1 1

 , U = UM .
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For this game, according to our first theorem, a (subgame
perfect) equilibrium strategy for both players exists, and it
is to just to play uniformly random. It follows that Alice
has expected utility −1/3 and Bob has +1/3.

2.2 Extensive-form game with perfect recall
Any particular instance G(T, P, U) of our team competi-

tion is an extensive-form game. In this game, a history can
be described by a tuple (k,a,b, c) where:

• k indicates the number of rounds that has been played;

• a is a k-dimensional vector which stores the players
selected by Team 1 in the past k rounds;

• b stores the players selected by Team 2;

• c is a k-dimensional 0−1 vector which stores the results
in the first k rounds, where 0 corresponds to a lose by
Team 1 and 1 corresponds to a win by Team 1.

A behavioral strategy in this game is a mapping from ev-
ery history to a probability distribution over actions. That
is, at each history, the strategy of each team is to pick the
next player according to a probability distribution. By Kuh-
n’ Theorem ([7, 5]), there is a subgame perfect equilibrium
(SPE), in which both teams use behavioral strategies. Ac-
cording to the SPE, a value V (H) can be defined for each
history H, which indicates the expected utility that Team 1
would get at the end of the game if it is now at history H.
Note that each history is the root of a subgame and so the
value of a history is the same as the value of the subgame.

2.3 Computing SPE
By backward induction, one can easily get

Lemma 1. Two histories have the same value if they have
selected the same players to play (but may be in different
orders) and Team 1 won the same number of rounds.

Based on the above lemma, the histories can be parti-
tioned to equivalence classes, such that each equivalence
class corresponds to a four-tuple (k,X, Y,w): k is a num-
ber in [T ] which denotes the number of past rounds; X is
a subset of A of size k; Y is a subset of B of size k; X,Y
denote the players that have played; w is a number in [k]
which denotes how many rounds Team 1 has won so far.

In the following, we show in detail how to compute the
value of each equivalence class via dynamic programming.

Let V [k,X, Y,w] denote the expected utility of Team 1
when the history belongs to class (k,X, Y,w).

Clearly, we have V [k,X, Y,w] = U(w) when k = T .
When k < T , computing V [k,X, Y,w] reduces to comput-

ing the value of the matrix game M(k,X, Y,w) where the
matrix M(k,X, Y,w) is defined as follows.

It consists of m−k rows and n−k columns. Each row cor-
responds to a player in A−X, and each column corresponds
to a player in B−Y . The cell corresponding to Ai, Bj equals
to the expect utility of Team 1 when Team 1 and Team 2
respectively make action Ai and Bj on the current state
(k,X, Y,w), which equals

V [k + 1, X + {Ai}, Y + {Bj}, w + 1] · Pi,j+
V [k + 1, X + {Ai}, Y + {Bj}, w] · (1− Pi,j).

The reason behind the above definition of M(k,X, Y,w)
is as follows. If the two teams select Ai, Bj in this round,
Team 1 has probability Pi,j to win this round and hence the
history becomes (k+ 1, X+ {Ai}, Y + {Bj}, w+ 1); besides,
Team 1 has probability (1 − Pi,j) to lose this round and
hence the history becomes (k + 1, X + {Ai}, Y + {Bj}, w).

We can compute the value of all equivalent classes of his-
tories according to the above induction. In fact, by com-
puting these values, we also find a subgame perfect behav-
iorial strategy for both players. To see this, suppose that
(k,X, Y,w) is a non-terminal equivalent class of history. On
solving the matrix game M [k,X, Y,w] we find the strategies
for all the histories in the history class (k,X, Y,w).

3. UNIFORMLY RANDOM STRATEGIES
The next theorem states that, if there are no redundant

players, uniformly random is an equilibrium strategy for the
teams. It holds for arbitrary utility function including UE
and UM .

Definition 1. The uniformly random strategy is a behav-
ioral strategy, in which a team always selects from the re-
maining players uniformly at random in each round.

Theorem 1. When both teams have no redundant players
(i.e. n = m = T ), then it is a SPE when both teams apply
the uniformly random strategy. 1

We apply the following lemma for proving Theorem 1.

Lemma 2. Suppose that there are no redundant players.
Let S denote the set of all matchings between {A1, . . . , AT }
and {B1, . . . , BT }. If Team 1 or Team 2 applies the uni-
formly random strategy, then the probability that the compe-
tition ends with any fixed matching in S is exactly 1/(T !).

Proof of Lemma 2. First, suppose that Team 1 applies
the uniformly random strategy while Team 2 applies an arbi-
trary pure strategy. In this case, we claim that the probabil-
ity that competition ends with any fixed matching is exactly
1/(T !). This can be proved by induction on the number of
players as the following. Assume that Team 2 selects Bi in
the first stage, then the probability that it meets Aj is 1/T
for any j. By induction hypothesis, any matching has equal
probability to appear. Then, since that any mixed strate-
gy is a linear combination of the pure strategies, the above
claim implies the statement given in Lemma 2.

Proof of Theorem 1. Let S denote the same set as in
Lemma 2. Since there are no redundant players, a game
will always end with some matching in S. For a matching
s ∈ S, let Zs denote the event that the game ends with this
matching. According to the lemma, if Team 1 applies the
uniformly random strategy, it will get expected utility∑

s∈S

E(the utility of Team 1 | Zs)/(T !)

Similarly, if Team 2 applies the uniformly random strategy,
it will get ∑

s∈S

E(the utility of Team 2 | Zs)/(T !)

=
∑
s∈S

−E(the utility of Team 1 | Zs)/(T !)

1Note that there could be other SPEs. For example, when
players in Team 1 always lose, any strategies for the two
teams form a SPE.
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Therefore, it is a Nash Equilibrium if both teams apply the
uniformly random strategy. The argument can be similarly
extended to show that it is SPE.

In the remainder of this paper, we focus on the case where
there are redundant players.

Claim 1. If there are redundant players, then the uni-
formly random strategy may not be a SPE strategy.

This claim is obvious for a team with redundant players;
but less obvious for a team without redundant players. Here
we give an example in which the uniformly random strategy
is not a SPE strategy for a team with no redundant players.

Example 1. Let m = T = 2, n = 3, U = UE = UM (note

that UE = UM when T = 2), P =

(
0 0 1
1 1 0

)
.

According to method given in Subsection 2.3, we can com-

pute that M(0,∅,∅, 0) =

(
−1 −1 1
0 0 −1

)
. Therefore, in

the SPE, the behavior for Team 1 on the initial state should
be select A1 with probability 1/3 and select A2 with prob-
ability 2/3. This guarantees (expected) utility −1/3. If to
the contrary that Team 1 adopts the uniformly random s-
trategy, it should select A1, A2 with probability 1/2, which
would only guarantees (expected) utility −1/2.

3.1 Transitive strength

Definition 2. Player Ai is weaker than its teammate Aj ,
denoted by Ai ≤ Aj , if for any opponent Bk, the proba-
bility of “Ai wins against Bk” is less than or equal to the
probability of “Aj wins against Bk”. Similar for Team 2.

Team 1 {A1, . . . , Am} are transitive if there is a permuta-
tion π of 1, . . . ,m, such that Aπ(1) ≤ . . . ≤ Aπ(m). Similar
for Team 2.

Definition 3. A utility function U is monotone if U(t +
1) ≥ U(t) for t ∈ 0, . . . T − 1.

Theorem 2. Assume the utility function is monotone.
We have that, (1) If Am ≤ . . . ≤ A1, Team 1 has a SPE
strategy which only selects A1, . . . , AT . (2) Symmetrically,
if Bn ≤ . . . ≤ B1, Team 2 has a SPE strategy which only
selects B1, . . . , BT .

By combining Theorem 1 and Theorem 2, we can imme-
diately get the following

Corollary 1. When players in each team are transitive
and U is monotone, there is a simple SPE strategy for both
teams as follows. Assume that Am ≤ . . . ≤ A1 and Bn ≤
. . . ≤ B1. Then, the SPE strategy for Team 1 is to select
an unused player in A1, . . . , AT uniformly random in each
round; a SPE strategy for Team 2 is to select an unused
player in B1, . . . , BT uniformly random in each round.

Theorem 2 and Corollary 1 have many applications. In the
real word, the utility function is monotone and moreover, in
many situations such as in board games or some sport games,
it is indeed the case that the players are transitive.

We prove Theorem 2 (1) in the next; the claim (2) is
symmetric.

We first provide two basic terminologies which are nec-
essary for understanding the subsequent proof. Suppose
that Am ≤ . . . ≤ A1 and that A′ is a subset of A and
A′ = (Ai[1], . . . Ai[|A′|]), where i[1] < . . . < i[|A′|]. Then,
for any 0 ≤ C ≤ |A′|, the top C players of A′ refers to
{Ai[1], . . . , Ai[C]}, and the rank C player of A′ refers to Ai[C].

Lemma 3. Suppose that U() is monotone.

1. Consider a pair of history classes H1 = (k,X1, Y, w1)
and H2 = (k,X2, Y, w2). We claim that, if the top
T − k players of A − X1 and the top T − k players
of A −X2 are the same and w1 ≥ w2, then V (H1) ≥
V (H2).

2. Let H = (k,X, Y,w) be a non-terminal history class.
Let Au be the rank T − k player in A−X, and let Av
be any player in A−X that is not a top T − k player.
Then, the row in M(k,X, Y,w) that corresponds to Au
dominates the row that corresponds to Av. It further
implies that, there is an equilibrium strategy at histo-
ry H (for Team 1) which only selects the top T − k
unmatched players to play.

Proof. We prove it by backward induction. When k =
T , Claim 1 holds according to the monotone property of U();
and Claim 2 naturally holds since it is a terminal history.

Now, we argue that, for 0 ≤ k < T , if the lemma holds
for k + 1, it also holds for k.

First, we prove Claim 2. Let us compare the two rows
corresponding to Au and Av. Let us fix a column, say the
one corresponding to Br. The cell corresponding to (Au, Br)
is

M [u, r] =V (k + 1, X + {Au}, Y + {Br}, w + 1)︸ ︷︷ ︸
a

·Pu,r

+ V (k + 1, X + {Au}, Y + {Br}, w)︸ ︷︷ ︸
b

·(1− Pu,r)

The cell corresponding to (Av, Br) is

M [v, r] =V (k + 1, X + {Av}, Y + {Br}, w + 1)︸ ︷︷ ︸
a′

·Pv,r

+ V (k + 1, X + {Au}, Y + {Br}, w)︸ ︷︷ ︸
b′

·(1− Pv,r)

Notice that the top T − k − 1 players in A − X − {Au}
and A − X − {Av} are the same. So, from the induction
hypothesis, a′ ≥ a ≥ a′ ≥ b ≥ b′ ≥ b, i.e. a = a′ ≥ b = b′.

Since that Au is the top T − k player while Av is not,
player Av is weaker than Au, which means that Pu,r ≥ Pv,r.

Combining the above arguments, we get that

M [u, r]−M [v, r] = (a− b) · (Pu,r − Pv,r) ≥ 0.

Therefore, M [u, r] ≥M [v, r], and thus Claim 2 holds.

Then, we prove Claim 1. Let M1 denote M(k,X1, Y, w1)
and M2 denote M(k,X2, Y, w2) for short. Suppose that Au
is a top T − k player in A −X1 (which is also a top T − k
player in A−X2) and that Br is any player in B − Y .

We know

M1[u, r] =V (k + 1, X1 + {Au}, Y + {Br}, w1 + 1) · Pu,r+
V (k + 1, X1 + {Au}, Y + {Br}, w1) · (1− Pu,r)

M2[u, r] =V (k + 1, X2 + {Au}, Y + {Br}, w2 + 1) · Pu,r+
V (k + 1, X2 + {Au}, Y + {Br}, w2) · (1− Pu,r)
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By induction hypothesis, it follows that M1[u, r] ≥M2[u, r].
Now, let σ denote the equilibrium strategy at H2 that only

selects the top T − k unmatched players to play. (Such a
strategy exists according to Claim 2.) Note that σ is also a
legal strategy at H1. Let µ(H1, σ) and µ(H2, σ) respectively
denote the utility of Team 1 when it applies strategy σ on
H1 and H2. Then,

µ(H1, σ) = min
r:Br∈Y

∑
u:Au∈A−X1

σ(Au) ·M1(u, r),

µ(H2, σ) = min
r:Br∈Y

∑
u:Au∈A−X2

σ(Au) ·M2(u, r).

From the inequalityM1(u, r) ≥M2(u, r), we get µ(H1, σ) ≥
µ(H2, σ). Moreover, we also have V (H1) ≥ µ(H1, σ) and
V (H2) = µ(H2, σ) (the equality is since that σ is the equi-
librium strategy on H2). Together, V (H1) ≥ V (H2).

Finally, Claim 2 of Lemma 3 implies Theorem 2 (1).

4. NONTRANSITIVE STRENGTH

Definition 4. A player is said to be weakest, if it is weaker
than all its teammates; and is said to be dominated, if it has 0
probability to win against any player in the opponent team.

Assume that the utility function is monotone. In the pre-
vious section, we show that if there are redundant players
in Team 1 and if these players are transitive, then there is a
SPE strategy for Team 1 which does not select the weakest
player. In other words, Team 1 can abandon the weakest
one without decreasing its utility. In this section, we show
that the transitivity is essential for this to hold. We start
by the following claim.

Claim 2. Suppose that Team 1 has redundant players and
one of them is the weakest. If the players in Team 1 are not
transitive, Team 1 might decrease its utility by abandoning
the weakest player.

This is somewhat counterintuitive; it might be intuitive
that the weakest player has no chance to participate in any
match since one can always replace him by a better team-
mate and increase utility. Perhaps even more surprisingly,
we have the following claim:

Claim 3. Suppose that Team 1 has redundant players and
one of them is dominated by the other team (i.e., has no
chance to win at all). If the players in Team 1 are not
transitive, Team 1 might decrease its utility by abandoning
the dominated player.

The above claims confirms that, the weakest player or
even dominated player could help its team.

We would now like to state the organization of the re-
mainder of the section. In Subsection 4.1, we give examples
that verify Claim 3, and we briefly explain the reason why
we need dominated players. In Subsection 4.2, we identify
a special case where the weakest player can be abandoned
without changing the utility. In Subsection 4.3, we consider
the optimal number of dominated players that we may need
to achieve maximum utility. In Subsection 4.4, we discuss
the limitations of the dominated players.

4.1 Dominated teammates can be helpful
Let V (T, P, U) denote the value of game G(T, P, U). Let

P ∗ denote the sub-matrix of P by deleting the last row (thus
G(T, P ∗, U) is the game where Team 1 has abandoned Am).

Example 2. Let n = m = 3, T = 2, U = UE (recall that

UE(t) = t− T/2), and let P =

 1 0 0
0 1 0
0 0 0

.

In Example 2, there are redundant players and the players
in each team are not transitive. Besides, A3 is a dominated
player. We argue the follows: (I) If A3 is abandoned, Team 2
can win both rounds and hence V (T, P ∗, U) = −1. (II) If
A3 is in the team, Team 2 cannot win both rounds with
certainty and that means V (T, P, U) > −1. Combining (I)
and (II), we get V (T, P, U) > V (T, P ∗, U), which implies
Claim 3.

Proof of (i). If A3 is abandoned, Team 2 can play as
follows. It chooses B3 to win the first round. If B3 defeated
A1, it chooses B1 in the second round to beat A2; otherwise,
it chooses B2 in the second round to beat A1.

Proof of (ii). If Team 2 wants to win with certainty
in both rounds, it must select B3 to play the first round.
However, if Team 1 selects the dominated player A3 to play
the first round, Team 2 cannot win the second round with
certainty anymore.

From this example, we see why a dominated player might
be helpful for its team. The reason behind is similar to the
horse race story described at the beginning of [12].

In the next, we give one more example. It gives, to our
best knowledge, the largest decrease of utility by abandoning
a dominated player.

Example 3. Let m = 4, n = T = 3. Let U = UE or

U = UM . Let P =


1 0 0
0 1 0
0 0 1
0 0 0

.

According the method shown in Subsection 2.3, we can
compute that 2

V (T, P, UM ) = 0; V (T, P ∗, UM ) =− 2/3;

V (T, P, UE) = −1/2; V (T, P ∗, UE) =− 1/2.

So, for the game G(T, P, UM ), we will lose utility as much
as 2/3 if we abandon the dominated player.

In the following we explicitly state a SPE strategy for
Team 1. In the first round it selects the dominated player
A4. Without loss of generality, assume that it loses to B1.
In the second round, it selects A2, A3 uniformly random. So,
there is 1/2 chance that Team 1 wins this round. Further-
more, if Team 1 wins the second round (say A2 beats B2) it
can also wins the next (let A3 beat B3) and thus gets utility
1. By this strategy, there is 1/2 chance to get utility 1 and
1/2 chance to get utility −1, so the expected utility is 0.

However, for the game (T, P, UE), we do not lose any u-
tility by abandoning the dominated player. This is not a
coincidence. In fact, this example belongs to a special case
where the weakest player can indeed be abandoned. We
show this in the next theorem.
2Note that the value of G(T, P ∗, UM ) and G(T, P ∗, UM ) can
be simply computed according to Theorem 1 since there are
no redundant players in these games.

18



4.2 A case where the weakest player can be
abandoned

We have seen that the weakest redundant player is useless
when the players are transitive (as proved in Theorem 2)
but might be useful when the players are not transitive (as
shown in the previous subsection). So, the next question is:

Question 1. If the players are not transitive, on what cas-
es the weakest player can be abandoned?

We get the following result.

Theorem 3. Suppose that Team 1 has redundant players
but Team 2 does not. So, m > T and n = T . Suppose that
each player in AT+1, . . . , Am is weaker than each player in
A1..AT . Let U = UE. Then, Team 1 can abandon all the
players in AT+1, . . . , Am without losing its utility.

Before we give the proof, we make two remarks.
1. The condition m > n = T is important for Theorem 3.

If both team got redundant players, then the claim in this
theorem does not hold anymore.

2. From Example 3, we see that the claim in this theorem
fails when U = UM . Therefore, as a comparison, by recruit-
ing extra dominated players, a team can gain more utility
when U = UM , but cannot when U = UE . This may suggest
that UE is more reasonable than UM in team competition.

We need the following lemma on proving Theorem 3. It is
a technical statement of probability theory. Proof omitted.

Lemma 4. Assume that n = T and Ai, Bj are any pair of
players from the two teams. Let Qσi,j denote the probability
that Ai meets Bj in the game when Team 2 applies the u-
niformly random strategy and Team 1 applies some strategy
σ. Then,

Qσi,j ≤ 1/T. (2)

Proof of Theorem 3. We call AT+1, . . . , Am the weak
players. When the weak players are abandoned, there are
T remaining players for each team. By Theorem 1, the uni-
formly random strategy is a SPE strategy for Team 2. To
prove Theorem 3, the key idea is to show that even if Team 1
is allowed to select the weak player, it will not gain more u-
tility if Team 2 keep using the uniformly random strategy.
On the other hand, it is obvious that Team 2 can’t gain more
utility. Therefore, the value of game does not change when
the weak players are allowed to play.

When Team 1 abandons its weak players, its maximum
utility is

U∗ = (
∑
j=1..T

∑
i=1..T

1

T
Pi,j)−

T

2
.

Let Qσ(i, j) be defined as Lemma 4. The utility of Team 1
when it applies strategy σ against the uniformly random
strategy of Team 2 is

Uσ = (
∑
j=1..T

∑
i=1..m

Qσi,jPi,j)−
T

2

We need to prove that Uσ ≤ U∗, and it reduces to show
that for any fixed j in 1..T ,∑

i=1..m

Pi,jQ
σ
i,j ≤

∑
i=1..T

1

T
Pi,j (3)

To prove (3), consider the following optimization problem:

Variables: x = (x1, . . . , xm)
Parameters: c = (c1, . . . , cm)
Guarantee: ci ≥ c′i(∀(i, i′) such that i ≤ T < i′)
Constrant 1: 0 ≤ xi ≤ 1

T
(∀1 ≤ i ≤ m)

Constrant 2:
∑m
i=1 xi = 1

Objective: max f(x) =
∑m
i=1 cixi

Clearly, f(x) is maximized at x∗, where x∗i =

{
1
T

i ≤ T
0 i > T

.

Noticing the following facts, we see that inequality (3) is
just an application of the above problem.

Qσi,j ≤ 1
T

(Applying Lemma 4)∑m
i=1Q

σ
i,j = 1 (According to the definition)

∀i ≤ T < i′, Pi,j ≥ Pi′,j (Since Ai′ is weaker than Ai)

4.3 Optimal number of dominated players
Here we study the power of dominated players in another

direction. As we see in Subsection 4.1, by abandoning a re-
dundant dominated player, Team 1 may decrease its utility.
In other words, it states that Team 1 may increase its utility
by recruiting more dominated players. Note that the utility
of Team 1 will not decrease by recruiting more dominated
players. However, it is unclear that the utility will strictly
increase by doing so. For example, it is clear that recruiting
T dominated players is the same as recruiting T − 1 players
— in any case, if any team uses T dominated players in a
competition, it gets the lowest utility!

So, a natural question is,

Question 2. In order to get the maximum utility, how
many dominated players should we recruit at least? Is it
possible that we need as many as Θ(T ) such players?

The theorem below answers this question.

Theorem 4.

1. Suppose U = UE. Recruiting T − 1 dominated players
can be better than T − 2, but recruiting T dominated
players is the same as T − 1. So, to achieve optimal
utility, one may require T −1 dominated players. This
number is tight.

2. Suppose U = UM . Recruiting bT/2c dominated players
can be better than bT/2c − 1, but recruiting bT/2c+ 1
dominated players cannot be better than bT/2c. So, to
achieve optimal utility, one may require bT/2c domi-
nated players, and this number is tight as well.

One direction in these claims are rather trivial; we should
never use T dominated players when U = UE or bT/2c + 1
players when U = UM . To prove the other direction, we
need to construct some examples in which recruiting T − 1
(resp. bT/2c) could be better than T − 2 (resp. bT/2c − 1)
when U = UE (resp. U = UM ). To construct such examples,
an intuition is that we should make the current players in
Team 1 as weak as possible. Our construction is as follows.

Example 4.

T ≥ 1,m = T, n = T + (T − 1),

U = UE , Pi,j =

{
1 i = j
0 i 6= j
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Example 5.

T ≥ 1,m = T, n = T + bT/2c,

U = UM , Pi,j =

{
1 i = j
0 i 6= j

The following claims together prove Theorem 4.

C1. In Example 4, if Team 1 only recruit T − 2 dominated
players, it can win no rounds and thus can get utility
−T/2.

C2. In Example 4, if Team 1 recruit T −1 dominated play-
ers, it can win a positive number of rounds in expected
and thus gain utility more than −T/2.

C3. In Example 5, if Team 1 only recruit bT/2c − 1 dom-
inated players, it will always lose at least bT/2c + 1
rounds and thus can only get utility −1.

C4. In Example 5, if Team 1 recruit bT/2c dominated play-
ers, it can sometimes win at least dT/2e rounds and
thus can gain utility more than −1.

Proof of C1. In this case Team 2 can win all the rounds
by playing as follows. In the first T −1 rounds, it selects the
players BT+1, . . . , B2T−1 to play; and they all win. Then,
since Team 1 only has T − 2 dominated players, at least one
player in A1, . . . , AT has already played, denote it by Ai. In
the last round, Team 2 select Bi and it definitely wins.

Proof of C3. In this case, by applying a strategy simi-
lar to C1, Team 2 can win all the first bT/2c+1 rounds.3

Proof of C2. For convenience, we denote the T−1 dom-
inated players byAT+1, . . . , A2T−1. We argue that, if Team 1
applies the uniform random strategy (that is, select one
unused player in A1, . . . , A2T−1 uniformly random in each
round), then, Team 2 has no strategy to win all rounds all
the time. Suppose to the contrary that Team 2 can do it,
it must select a player from BT+1 . . . , B2T−1 to play in the
first round; otherwise there is a chance that it loses the first
round. Note that, since Team 1 apply the uniform random
strategy, there is a chance that Team 1 select a dominated
player in the first round. If this happens, Team 2 must again
select a player from BT+1 . . . , B2T−1 to play in the second
round. Once again, Team 1 might still select a dominated
player in the second round. By induction, there is chance
that Team 1 select all the dominated players in the first
T − 1 rounds while Team 2 consumes all its T − 1 invincible
players in BT+1 . . . , B2T−1. Then, Team 2 cannot win with
certainty in the last round.

The claim C4 is the most nontrivial. To prove it we first
state the following lemma.

Definition 5. For integers a, b, C such that

C ≥ 1, 0 ≤ a ≤ dC/2e, 0 ≤ b ≤ bC/2c, (4)

let ΓCa,b denote the following instance of team competition:

m = n = (C − a) + (bC/2c − b),

T = C − a− b, Pi,j =

{
1 i = j ≤ C − a
0 otherwise

.

3In this case Team 2 can actually win all the T rounds.

The utility is as follows.4 If Team 1 wins at least dC/2e−a
rounds, it gets utility 1 and Team 2 gets −1; otherwise,
Team 1 gets utility −1 and Team 2 gets 1.

Lemma 5. For integers a, b, C satisfying condition (4),
Team 1 can win utility larger than −1 in the game ΓCa,b.

Proof. Consider three cases.

Case 1 a = dC/2e.
In this case, Team 1 always get utility 1, and so ΓCa,b
has value 1, which is larger than −1.

Case 2 b = bC/2c.
The game ΓCa,b can be restated as follows.

– m = n = C − a, T = dC/2e − a.
Player Ai can only defeat Bi for i in 1..m.
Team 1 gets utility 1 if it wins all the rounds; and
−1 otherwise.

We argue that the uniformly random strategy guaran-
tees Team 1 an expected utility larger than −1. Equiv-
alently speaking, by applying the uniformly random
strategy, Team 1 has a chance to win all the rounds.
The proof is as follows. In the first round, there is a
positive chance that Ai meets Bi for some i. Then,
in the second round, same thing happens with a posi-
tive chance. This could happen for each round. When
these coincidences happen, Team 1 wins all the rounds.

Case 3 a < dC/2e and b < bC/2c.
We use induction. Assume that ΓCa+1,b and ΓCa,b+1 both

have value larger than −1, we argue that so does ΓCa,b.

The following facts follow from the definition of ΓCa,b.

Fact 1. If the two teams select Ai and Bi for i ≤ C−a
in the first round, it becomes a subgame that is
equivalent to ΓCa+1,b.

Fact 2. If the two teams select Ai and Bi for i > C−a
in the first round, it becomes a subgame that is
equivalent to ΓCa,b+1.

Combining them with the induction hypothesis, we get

Fact 3. If the two teams select players under the same
index, it becomes a subgame whose value is larger
than −1.

We know that the value of ΓCa,b is equal to the value of
the matrix game M , where M(i, j) indicate the value
of the subgame when Team 1 select Ai and Team 2
select Bj in the first round. Fact 3 implies that all the
utilities on the diagonal of matrix M are larger than
−1. Therefore, by using uniformly random strategy
over its players, Team 1 can win a utility larger than
−1. Therefore, ΓCa,b has value larger than −1.

4Here the utility functions for two teams are not identical.
However, since it is still a zero-sum game, SPE strategies for
the teams exists as before. The requirement that the utility
functions are identical is not necessary in our model.
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Proof of C4. Let G denote the revised game of Exam-
ple 5, in which Team 1 has recruited bT/2c dominated play-
ers. We could observe that game G is almost the same as
ΓT0,0. To be more specific, when T is odd, G is exactly ΓT0,0;

when T is even, the parameters m,n, T, P in G and ΓT0,0 are
the same; but the utility U is slightly different.

Suppose that the value of G is −1. Then, Team 2 has a
strategy which guarantees a expected utility −1. It means
that Team 2 has a strategy which can always win bT

2
c+1 or

more rounds. When Team 2 applies this strategy, Team 1
can never win dT

2
e rounds. It further implies that the value

of ΓT0,0 is also −1. However, this contradicts with Lemma 5.
Therefore, the value of G must be larger than −1.

4.4 Limitations of the dominated players
Although the presences of dominated players can affect

the value of the game, we conjecture that it will not be too
much. A question is then,

Question 3. By abandoning a dominated player, how much
utility might be lost in the worst case? In other words, how
much can a team gain by recruiting dominated players?

According to our simulations, we have the following con-
jecture that we cannot prove at the moment.

Conjecture 1. If U = UM , we can gain at most 2/3 ex-
tra utility by recruiting arbitrary number of dominated play-
ers. If U = UE, we can gain at most 1 extra utility by
recruiting arbitrary number of dominated players.

5. THROWING A MATCH AND DISCARD-
ING A PLAYER

Recall the card game between Alice and Bob in Subsec-
tion 2.1. We shall point out that, recruiting a dominated
player in this context can be thought of applying a cheating
action, which is to throw a match by not placing any card in
that round. In the mentioned card game, if Alice and Bob
are not allowed to throw a match, Alice can get expected
utility −1/3; if Alice is allowed to throw a match, she can
get expected utility 1/3. This can be computed according to
the method shown in Subsection 2.3. Therefore, throwing a
match is profitable if permitted.

It may seem unnatural to let a team throw a match like
this. The following alternative cheating action called dis-
carding, which may seem more natural, is still profitable for
the team.

Discarding is defined as follows. Alice (Team 1) is al-
lowed to discard one of its cards and agrees to lose in that
round; however the discarded card is never revealed to Bob
(Team 2). By discarding, Alice do not gain one more card
at hand, unlike the case of throwing a match.

However, if discarding is allowed, it may still be beneficial.
We give an instance in which one may gain extra utility by
discarding. Formally, we have the following theorem.

Theorem 5. There exists a game G such that VK(G) >
VK−1(G), where VK(G) denotes the value of game G in
which Team 1 is allowed to discard at most K players.

Example 6.

m = K + 1, n = 2K + 1, T = K + 1,

U = UE , P =

{
1 i = j
0 i 6= j

The following claims together imply Theorem 5.

C5 In Example 6, if Team 1 is only allowed to discard
K − 1 times, it cannot win in any round.

C6 In Example 6, if Team 1 is allowed to discard K times,
it can win some rounds in expectation.

Proof of C5. Suppose that Team 1 is only allowed to
use discarding K−1 times. Observer that, for any i in 1..m,
after Ai has played and revealed by Team 1, player Bi be-
comes invincible that he would win with certainty if he plays
in the next rounds. Notice that there are K invincible play-
ers at beginning (which are BK+1 . . . B2k+1) and Team 1 has
only K−1 chances to hide a player by discarding. So, in any
round, Team 2 has an invincible player at hand. Therefore,
Team 2 can win all the rounds.

Proof of C6. Consider the following strategy for Team 1.
First, Team 1 randomly chooses an order of the players (say,
each order with possibility 1/m!), and then it randomly
chooses exactly K of its players so that these players will
be discarded while playing. We argue that this strategy
guarantees Team 1 to win positive rounds in expected. It
reduces to prove that no strategy of Team 2 can win all the
rounds against this strategy. Suppose that Team 2 can do so.
In the first round, it must select an invincible player (i.e. a
player in BT+1 . . . BT+k). Otherwise, there is a chance that
it loses the first round. And then, we know that there is a
chance Team 1 discards in the first round. If this happens,
Team 2 must also select an invincible player in the second
round. Again, it is possible that Team 1 still discards in this
round. Continuing this process we see that, it could happen
that, in the first K rounds Team 2 use all its K invincible
players, while on the other hand Team 1 uses discarding K
times. Then, Team 2 could lose in the K + 1-th round.

Note that, when discarding is allowed, the value of the
game cannot be computed easily, because the competition
becomes an extensive-game with imperfect information.

6. CONCLUSIONS
In this paper, we study a novel game-theoretic model of

situations where two teams make sequential decisions about
which of a set of exhaustible actions to select in each round.
These actions can be interpreted as team members, cards in
a hand, etc. We present a simple SPE for the case where
there are no redundant players or the strength of players is
transitive. For the other case, we exhibit evidence that the
redundant dominated players cannot be easily discounted in
their contribution to team performance, which may appear
counterintuitive. We investigate the power of the dominated
players in three directions: 1. When do they influence the
value of the competition? 2. If additional dominated players
can be recruited, how many should be required to attain the
maximum utility? 3. How much utility might be lost at
most if we abandon them? We obtain several nontrivial
results that fully or partially answer these questions. We
believe that our results are of particular interests to both
designers and players of team competitions.
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