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ABSTRACT
Sequential allocation is one of the most fundamental mod-
els for allocating indivisible items to agents in a decentral-
ized manner, in which agents sequentially pick their favorite
items among the remainder based on a pre-defined priority
ordering of agents (a sequence). In recent years, algorithmic
issues about agents’ manipulations have also been investi-
gated, such as the computational complexity of verifying
whether a given bundle of items is achievable and maximiz-
ing one’s utility under a given additive utility function. In
this paper we consider a slightly modified model, where the
selection process is divided into rounds, each agent obtains
exactly one item in each round, and the sequence per round
is determined uniformly at random. It is natural to ex-
pect that finding a profitable manipulation is difficult even
for the case of two agents, since a manipulator must con-
sider exponentially many possible sequences with respect to
the number of rounds due to randomization. To our sur-
prise, however, an optimal manipulation can be computed
without any exploration for exponentially decaying utilities.
Furthermore, for general additive utilities, although some
exploration is required, it can still be done in polynomial
time with respect to the number of rounds.

CCS Concepts
•Computing methodologies → Multi-agent systems;
•Applied computing → Economics;
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1. INTRODUCTION
Sequential allocation, which is one of the most common re-

search topics in the field of social science and economics [12],
simply models the situation of allocating indivisible items to
agents in a decentralized manner. In a traditional sequen-
tial allocation model, there is a set of indivisible items, a
set of agents, and a fixed priority ordering (known as a se-
quence) over the set of agents, according to which they pick
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items one-by-one. Considering fairness among agents, the
sequences used in practice are commonly ‘balanced,’ such
that at every moment of the selection process the difference
of the numbers of items already selected is bounded by one.
This traditional model can represent several practical situa-
tions, including the draft system in many worldwide profes-
sional sports associations, such as the National Basketball
Association in the US.

Sequential allocation has also been attracting a huge
amount of attention from researchers in the fields of multi-
agent systems, algorithmic game theory, and computational
social choice, and several research issues related to these
fields have been investigated. Bouveret and Lang [4] con-
siders the problem of finding the optimal sequence in which
social welfare, i.e., the sum of agents’ utilities, is maximized,
which was followed and extended by Kalinowski et al. [10].
Furthermore, Kalinowski et al. [11] addresses the problem
from the viewpoint of sequential form games and studies the
subgame-perfect equilibrium in a game defined by sequen-
tial allocation. Aziz et al. [2] investigates the computational
complexity of verifying whether a given bundle is possible
or necessary.

From the perspective of an agent who is willing to max-
imize her own utility, a natural algorithmic question asks
whether she can obtain a specific bundle of items, as initi-
ated by Bouveret and Lang [5]. Assuming that the utility
of such an agent (a manipulator) is additive and that every
other agent adopts the ‘sincere’ picking strategy, i.e., pick-
ing her most favorite item among the remainder at every
moment of her action, they show that maximizing the ma-
nipulator’s utility is solvable in polynomial time with respect
to the number of items. They also conclude that the effect
of such optimal manipulation on social welfare, specifically
the loss of social welfare by manipulation, is not very large.

Although all of these research issues address sequential
allocation with fixed sequences, some practical situations
related to sequential allocation do not have such fixed se-
quences, including the draft system in Japan’s professional
baseball league. For such situations, it is natural to consider
random tie-breaking in the sequential allocation problem,
which is the issue we study in this paper. One of the sim-
plest processes with random tie-breaking can be described
as follows. In each round, each agent chooses one item. If
there is a conflict among agents’ choices, then a lottery is
used to decide which agent among those having the conflict
obtains the item. All of those who cannot obtain the item
choose other items among the remaining ones, and the same
process is repeated until every agent obtains exactly one in

141



the round. Then go to the next round and repeat the process
until every item is given to an agent.

For simplicity, in this paper we consider a slightly different
model and focus on the case of two agents (nevertheless,
our results can still be applied to the above original model
with two agents, as we discuss in Section 6). In our model,
there exist 2m items and two agents, A and B, where m is
a positive integer. The selection process is divided into m
rounds, in each of which one agent obtains one item. At the
beginning of each round, a coin flip determines which agent
picks first; the sequence in a round is chosen uniformly at
random between AB and BA, where AB means that agent A
picks first followed by agent B. Here, an agent, say A, faces
the problem of choosing between ‘risk-taking’ and a ‘sure-
thing.’ Consider four items {1, 2, 3, 4}, where the indices
indicate agent A’s preference so that she prefers the lower-
indexed one, agent B has preference (binary relation over
the set of items) �B such that 2�B 3�B 1�B 4 and plays a
‘sincere’ picking strategy, and the sequence in the first round
is chosen as AB. By picking 2 first and deferring 1 to the
next round, agent A takes a risk of losing 1 depending on the
coin flip in the next round. On the other hand, by picking
1 first, she is guaranteed to obtain 1 but cannot obtain 2.

We focus on three specific computation problems,
Bundle-Possibility, Bundle-Certainty and Max-
Expected-Utility. Bundle-Possibility (respectively,
Bundle-Certainty) defines the computation problem of
verifying whether agent A can obtain a given bundle under
some (resp. any) realizable sequence. On the other hand,
Max-Expected-Utility defines the computation problem
of finding the maximum value of her expected utility, where
expectation is taken for the randomized realization of se-
quences. It is natural to expect that Max-Expected-
Utility is not solvable in polynomial time, i.e., finding a
profitable manipulation in the model with random sequences
becomes much harder than in the model with determinis-
tic sequences, since a manipulator must consider exponen-
tially many possible sequences with respect to the number
of rounds due to randomization. To our surprise, however,
an optimal manipulation can be computed without any ex-
ploration in the exponentially decaying utility case. Fur-
thermore, even in the general additive utility case, although
some exploration is required to find an optimal manipula-
tion, it can be done in polynomial time with respect to the
number of rounds.

Let us introduce how we can interpret our technical re-
sults. From the viewpoint of a mechanism designer who or-
ganizes a sequential allocation with random sequences, those
results have negative implications. If an agent wants to max-
imize her utility, finding the best manipulation is easy, and
she will not use the sincere picking strategy. This means that
introducing randomization in tie-breaking does not help the
mechanism designer provide agents incentive to behave sin-
cerely, at least for the case of two agents. However, our anal-
ysis is just a first step; considering more than two agents in
the model and discussing other criteria such as social welfare
and fairness remain an open and interesting future direction.

The paper is organized as follows. Section 2 compares our
model and its contributions with previous works. Section 3
introduces our model and explains several terms used in the
technical parts. Section 4 defines four decision problems,
Bundle-Possibility, Bundle-Certainty, Find-Best-
Possible and Find-Best-Certain, and shows that all can

be solved in polynomial time. Section 5 defines the Max-
Expected-Utility problem and shows that it can also be
solved in polynomial time. Particularly, for the case of ex-
ponentially decaying utilities, we show that the problem can
be solved much faster, without any exploration. Section 6
shows an application of our results to the model with random
tie-breaking. Section 7 discusses related existing works and
raises possible future research questions. Finally, Section 8
concludes the paper.

2. RELATED WORKS
Some prior works have dealt with the decentralized alloca-

tion of indivisible items with randomization. The contested
pile methods, proposed by Vetschera and Kilgour [14] and
followed by Brams et al. [6], create a decentralized allocation
model, in which a conflict over an item is solved by putting
it into a place called a contested pile and deciding its allo-
cation after the picking sequence is completed. The parallel
elicitation-free protocol, proposed by Huang et al. [9] is an-
other class of decentralized procedures, in which every agent
has the same probability to get each item. Both randomiza-
tions in these models differ from ours, and thus their results
have no direct implication for our model.

In the literature of social choice and mechanism design,
some researches also deal with the randomized allocation of
indivisible items and focus on centralized allocation mech-
anisms. Budish and Cantillon [7] analyzes the random se-
rial dictatorship mechanism, which is a well-known type of
scheme for allocating indivisible items in a centralized man-
ner. Bogomolnaia and Moulin [3] analyzes the probabilistic
serial rule, which is another centralized mechanism that will
be explained in more detail in Section 7. Analyzing manip-
ulation complexity is also common in the fields of artificial
intelligence and multi-agent systems, even for the problem
of allocating indivisible items [1, 8, 13].

3. MODEL
We first introduce the model of sequential allocation with

random sequence dealt with in this paper. There is a set O
of 2m items, which are indivisible and distinct, and a set of
two agents, A and B.

The sequential allocation we consider is described as fol-
lows. In each round, the rule flips a fair coin to determine
which agent picks an item first. If ‘heads’ appears, the se-
quence in the round (or the partial sequence) is set to AB,
where agent A first picks an item among the remaining ones,
followed by agent B. If ‘tails’ appears, the sequence is set to
BA, where agent B first picks, followed by agent A. Then go
to the next round and repeat this process as long as items
remain. Note that by definition, there are exactly m rounds
and each agent has exactly one turn to pick an item in each
round, and thus both agents finally obtain m items. Let
π ∈ ΠB = {AB,BA}m indicate a sequence of the realiza-
tions of ‘heads’ and ‘tails’ by coin flips in each of m rounds.
Here ΠB corresponds to the set of possible ‘recursively bal-
anced’ sequences [2].

Next let us introduce several terms that will be used to
define the problems investigated in this paper. Consider
agent A a manipulator, assuming that B plays a ‘determin-
istic, simple picking’ strategy [5], which is referred to as a
sincere strategy in this paper. Let �B indicate a strict or-
dering of all items O, representing the preference of agent
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B. Agent B picks, in each of her turns, her most favorite
item among those remaining, and agent A knows this fact.
Let uA : O → R+ be a utility function of agent A. We
assume, in this entire paper, that agent A’s utility is ad-
ditive, meaning that for given utility function uA of agent
A and bundle X ⊆ O, uA(X) :=

∑
i∈X uA(i). We usu-

ally describe the items by indices 1, . . . , 2m based on agent
A’s preference so that A prefers a lower-indexed one, i.e.,
for any i, j ∈ O, uA(i) > uA(j) if and only if i < j. We
also say that utility function uA is exponentially decaying
if uA(i) > uA(j) → uA(i) ≥ 2uA(j) for every i, j ∈ O
Sometimes we refer to such a exponentially decaying util-
ity function as v. Furthermore, for given utility function
uA and probability distribution function F associated with
mass function f over 2O, expected utility uA(F ) of agent
A is defined as EX∼F [uA(X)] =

∑
X∈2O uA(X) · f(X). We

write �B and uA as � and u, respectively, if they are clear
from the context.

Now we are ready to introduce some additional terms and
notions related to agent A’s strategy in our model of sequen-
tial allocation. For given bundle X of items and preference
�, let LX,� be the list of the items in X that are ordered
based on �. Particularly, for given �, let Linit be the sorted
list of all the items in O, where Linit := LO,�, which we
sometimes denote as Linit = (o1, o2, . . . , o2m−1, o2m). We
omit both subscripts X and � for simplicity and write L
whenever they are clear from the context. Furthermore, for
notation simplicity, let u(LX,�) := u(X).

A (standard) plan δ with length k ≤ m specifies, for given
list L of remaining items and partial sequence s ∈ {AB,BA}
realized by a coin flip in the current round, a sequence of
k choices for subsequent k rounds. Plan δ is represented as
a binary tree, where each node corresponds to an item, the
root node indicates the item that agent A is going to pick in
the current round, and the left (resp. right) child indicates
the item that A will pick when the partial sequence in the
next round is AB (resp. BA). We say plan δ with length k
is feasible for given list L of the remaining items and partial
sequence s in the current round if for any possible sequence
of k partial sequences that will be realized by coin flips in
subsequent k rounds, agent A can pick the item indicated by
the corresponding node. In other words, the item remains
at the turn of A’s choice. A secure plan is a special form
of plans, which indicates, for each round, the selection of
the same item regardless of the partial sequence. Hence, a
secure plan can also be represented as a list, where the first
(second, and so on) element of the list indicates the item A
picks in the first (second, and so on) round.

Although a plan has a sufficient power of representation, it
has O(2k) nodes that cannot be efficiently described. There-
fore we introduce a compact representation of the plans
called a strategy. Strategy σ is a function that returns
an item, σ(s, L), that agent A should pick for given par-
tial sequence s and list L of the remaining items with even
length. For given strategy σ and list L, let E(L, σ) repre-
sent agent A’s expected utility when she uses strategy σ for
list L of items. Assume that E(L, σ) = 0 whenever L is
empty list (). Analogously, let EAB(L, σ) (resp. EBA(L, σ))
represent A’s expected utility under the condition that the
partial sequence in the current round is AB (resp. BA), i.e.,
EAB(L, σ) := u(i) +E(L′, σ), where i is the item that σ in-
dicates to pick at the current round under sequence AB, i.e.,
i = σ(AB, L) and L′ is the list of remaining items at the be-
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Figure 1: A plan is represented as a binary tree.

ginning of the next round. By the assumption that we focus
on a fair coin, E(L, σ) = 0.5 · EAB(L, σ) + 0.5 · EBA(L, σ).
Let Σ be the set of all strategies of agent A for the prob-
lem. Furthermore, let E∗(L) be A’s optimal expected utility
achieved using one of the optimal strategies for L. For-
mally, E∗(L) = maxσ∈Σ E(L, σ). As is the case with E,
let E∗AB(L) (resp. E∗BA(L)) represent A’s optimal expected
utility under the condition that the partial sequence in the
current round is AB (resp. BA). By definition, E∗(L) =
0.5 · E∗AB(L) + 0.5 · E∗BA(L).

The following example explains how these terms work for
a given problem instance.

Example 1. Consider two agents, A and B, and eight
items O = {1, 2, · · · , 8} (i.e., m = 4). Assume that B has
preference � such that 3 � 8 � 6 � 2 � 1 � 5 � 4 � 7 over
them. Furthermore, we consider two utility functions, u and
v, that can be held by agent A. We assume that u(i) = 9− i
for any i ∈ O, i.e., u is the Borda scoring function, and
v(i) = 28−i for any i ∈ O, i.e., v is exponentially decaying.

Plan δ with length 4 of agent A is presented as a binary
tree in Fig. 1. This plan is feasible for Linit = (3, 8, 6, 2, 1, 5,
4, 7) and both s = AB and s = BA. However, it is not
secure, because for some list L of the remaining items, say
L = (2, 5, 4, 7) at the rightmost node with label 1, it chooses
a different item based on the realized partial subsequence,
explaining why this plan cannot be represented as a list.

As a compact representation, we define a strategy σ based
on this plan δ. Strategy σ is a function such that
σ(AB, (2, 5, 4, 7)) = 2, σ(BA, (2, 5, 4, 7)) = 4, etc. Under
above utility function u, expected utility E(Linit, σ) achieved
by strategy σ is 18.25. Similarly, under v, the expected utility
achieved by the strategy is 176.

4. POSSIBLE AND CERTAIN BUNDLES
In this section we consider the computation problem of

verifying whether agent A can obtain a given bundle. As an
analogy from the possible and necessary winner problems in
the literature of computational social choice, we define two
variants of the problem for our model of sequential allocation
with random sequences.

Definition 1 (Best Possible (Certain) Bundle).
For given � and current partial sequence s, bundle X ⊂
O is said to be possible (resp. certain) under � and s if
for some (resp. any) sequence π ∈ ΠB of realizations that
begins with s, there exists feasible plan δ that achieves X.
Furthermore, for given �, s, and u, the best possible (resp.
best certain) bundle is the possible (resp. certain) bundle X
that maximizes u(X) among all the possible (resp. certain)
bundles under � and s.

143



BA

8

2

1

7

4

4 75

AB

AB

BAAB BAAB

BA

2

1

7

4

4 75

AB

BAAB BAAB

BA

BA

6

5

2

7

5

4 74

AB

AB

BAAB BAAB

BA

5

2

7

5

4 74

AB

BAAB BAAB

BA

BA

8

5

2

7

5

7 77

AB

AB

BAAB BAAB

BA

5

2

7

5

7 77

AB

BAAB BAAB

BA

Figure 2: A feasible plan that achieves (6, 2, 5, 4) un-
der the most optimistic sequence.

Definition 2 (Bundle-Possibility (-Certainty)).
For given �, s, and X ⊂ O, is X possible (resp. certain)
under � and s ?

The following theorem shows that both problems can be
efficiently solved by agent A, which has a negative implica-
tion that agent A will behave insincerely even if her compu-
tation power is bounded. These results can be considered as
a generalization of the results in Bouveret and Lang [5].

Theorem 1. For any given �, s, and X ⊂ O, both
Bundle-Possibility and Bundle-Certainty can be solved
in polynomial time with respect to m.

Proof. By Lemma 4 (resp. Lemma 5) that we will pro-
vide in Appendix, it suffices to verify whether X can be
achieved under � and specific realization π̄ = sABAB . . .AB
(resp. π = sBABA . . .BA). Bouveret and Lang [4] proved
that for any given � and any given sequence π, such a ver-
ification can be solved in polynomial time with respect to
the number of items, 2m in our model. Therefore it is also
solved in polynomial time with respect to m.

The next problem of finding the best possible (resp. cer-
tain) bundle is also related to the above problem. Actually
it can also be solved efficiently.

Definition 3 (Find-Best-Possible(-Certain)). For
given �, s, and u, return the best possible (resp. best certain)
bundle X ⊂ O under �, s and u.

Theorem 2. For any given �, s, and u, both Find-Best-
Possible and Find-Best-Certain can be solved in polyno-
mial time with respect to m.

Proof. By Lemma 4 (resp. Lemma 5), it suffices to re-
turn bundle X that maximizes u(X) among all the bun-
dles that can be achieved under �, π̄ (resp. π). Bouveret
and Lang [5] proved that for any given �, any given s, and
any given additive utility function u, such a bundle can be
uniquely found in polynomial time with respect to the num-
ber of items, which is given as 2m in our model. Therefore it
can still be found in polynomial time with respect to m.

Example 2. Consider again the same problem with Ex-
ample 1. For example, bundle (6, 2, 5, 4) is possible under
s = AB since it can be achieved by a feasible plan under �

and π̄ = ABABAB . . . , e.g., by the one described in Fig. 2,
while it is not certain since it cannot be achieved by any
feasible plan under � and π = ABBABA . . . . On the other
hand, bundle (8, 2, 5, 7) is possible and certain under s = AB
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Figure 3: A feasible secure plan that achieves
(8, 2, 5, 7) under the most pessimistic sequence.

since it can be achieved by a feasible secure plan under π,
e.g., by the one described in Fig. 3. By a similar argument
(shown in the proof of Theorem 2), we can confirm that un-
der both utility functions, u and v, (3, 2, 1, 4) and (2, 1, 4, 7)
are the best possible and best certain bundle under s = AB,
respectively.

5. MAXIMIZING EXPECTED UTILITY
Another important question from the manipulator’s view-

point is how much expected utility she can get upon the un-
certainty of the realization of subsequent sequences. First
we formally define the problem.

Definition 4 (Max-Expected-Utility). For
given �, s, and u, return the maximum expected utility
E∗s (Linit) = maxσ∈Σ Es(L

init, σ).

To describe the main theorems in this section, we intro-
duce an additional term called critical depth, which is related
to agent A’s strategy and is useful for the proof. Let L be
the list of remaining items and X be the best possible bun-
dle for L and current partial sequence s. Then the critical
depth is integer d ∈ N such that A first fails to pick the d-
th item in LX,� under π = sBABA · · ·BA by picking from
the top of list LX,�. When A does not fail until the end,
i.e., when X is certain under � and s, critical depth d is
defined by |X|+1, i.e., the number of remaining rounds (in-
cluding the current one) plus one. Letting d be the critical
depth, we observe that d ≥ 2. Furthermore, letting xd be
the d-th top item in LX,�, we observe that xd is always at
an odd-numbered position in L, because (i) under the above
strategy of A and the sincere strategy of B, exactly 2d − 2
items in total that appear before xd in Linit will be picked
before round d, and (ii) xd is on the top of the list of re-
maining items at the beginning of round d, since xd will be
picked by agent B when s = BA by definition.

We introduce another technical term called an admissible
secure plan, which is a refinement of secure plans. Let Xd =
{i ∈ X | i � xd ∨ i = xd}, i.e., the set of items in X that
appears before xd (including xd). |Xd| = d clearly holds.
Then an admissible secure plan is a secure plan of length
d− 1 that picks the d− 1 items among Xd in the first d− 1
rounds in the order specified by �. Thus, d admissible secure
plans usually exist. When d is defined by the number of
remaining rounds plus one, then the admissible secure plan
just picks the items of Xd in the order specified by �. In
this case, only one admissible secure plan exists. Note that
any admissible secure plan is feasible, because any bundle Z
that satisfies Z ⊂ Xd, |Z| = d− 1 is certain under s and �.

Also, for given utility u, we call the admissible secure
plan, which takes d − 1 items among Xd except for j′ =

144



arg minj∈Xd u(i), i.e., the least preferred item, a prudent
admissible secure plan.

5.1 Exponentially Decaying Utilities
We first focus on a specific form of utility functions and

show that the problem can be solved quite easily, in the
sense that we do not need any exploration technique. More
specifically, when the utility of agent A is restricted to ex-
ponentially decaying ones, we can solve the maximization
problem without any exploration or comparison of the ex-
pected utilities during the whole search process.

Theorem 3. For any given �, s, and A’s utility function
v that is exponentially decaying, Max-Expected-Utility
can be solved in polynomial time with respect to m.

Proof Sketch. Let us show the optimality of the fol-
lowing strategy σ̂ ∈ Σ of agent A: pick the item specified
by the prudent admissible secure plan. Such strategy σ̂ is
obviously feasible and also runs in polynomial time because
of its ‘greedy’ nature, i.e., it just follow a particular secure
plan and does not compare expected utilities that may hap-
pen in the future from the current state. Thus, Es(L, σ̂) can
be computed in polynomial time.

Now we show an intuition of why σ̂ achieves the optimal
expected utility. Let v be the exponentially decaying utility
function. Here, assume for the sake of contradiction that
another strategy σ′ achieves an optimal expected utility that
is strictly better than that of σ̂. Then, during the first d− 1
rounds in a possible partial sequence, it picks either (a) d−1
items among Xd that are different from those that σ̂ picks
or (b) d − 1 items some of which does not belong to Xd;
otherwise σ′ coincides with σ̂ by applying the same argument
until the end.

For case (a), σ′ assuredly obtains item j′ =
arg minj∈Xd v(i), by taking a risk that she cannot obtain
another item that she prefers to j′ among Xd with proba-
bility that exceeds 1/2. Since v is exponentially decaying,
the expected utility of such strategy σ′ cannot dominate
that of σ̂.

Case (b) is more complicated. σ′ obtains bundle Y 6⊆ Xd,
which satisfies |Y | = d − 1 and is possible under s and �,
during the first d− 1 rounds. In this case, we can construct
another strategy that dominates σ′ by obtaining d−1 items
from Xd during the first d − 1 rounds and then assuredly
obtaining those items (Y ∩X) \Xd during the later rounds,
violating the assumption of the optimality of σ′.

Theorem 3 is part of Theorem 4, which we present in the
next subsection. However, the following example demon-
strates that the optimal strategy for the case of exponen-
tially decaying utilities runs without any exploration and
thus is much faster than a strategy that can be applied to
general additive utilities.

Example 3. Consider again the same problem with Ex-
ample 1, and focus on utility function v that is exponentially
decaying. When s = AB in the first round, the (sorted) best
possible bundle is (3, 2, 1, 4) and the critical depth is 3. Then
the strategy mentioned in the above proof suggests picking 2
in the first round (and 1 in the second round).

At the beginning of the third round, the list of remaining
items is (6, 5, 4, 7). In this round, the best possible bundle is
(5, 4) and the critical depth is 2, regardless of s. Then the

strategy suggests picking 4. In the final round, the strategy
suggests picking the best remaining item. Thus, the strategy
absolutaly takes 1, 2, 4, and 5 or 7 with probability 0.5. The
expected utility is 213.

When s = BA in the first round, the plan suggests picking
exactly the same items in the case where s = AB. Thus, the
expected utility is 213.

5.2 General Additive Utilities
Unlike the case of exponentially decaying utility functions,

the maximization problem seems much more difficult when
utility functions are general. An intuition of the difficulty
is that, to calculate the maximized expected utility, agent
A needs to explore its future by comparing all admissible
secure plans, appropriately choose one, and repeat this pro-
cedure until the best possible bundle at the moment be-
comes certain. However, the following theorem shows that
the problem can still be solved in polynomial time. One
main reason is that, although the whole procedure looks
complicated, the number of states at which she needs to ex-
plore its future is bounded by a polynomial with respect to
the number of items 2m.

The following lemma implies that we can restrict our at-
tention to plans/strategies that are based on admissible se-
cure plans without losing optimality. Note that this is a
generalization of case (b) in the proof of Theorem 3 for gen-
eral additive utility functions.

Lemma 1. For any L of even length and s, there exists
admissible secure plan L′ such that E∗s (L) = u(L′)+E∗(L′′)
holds, where L′′ is the list of remaining items after executing
L′.

Proof Sketch. Let X be the best possible bundle under
s and �, let d be the critical depth under the current partial
sequence s and the ordering �, Xd := {i ∈ X | i� xd ∨ i =
xd}, and let Y be an arbitrary bundle that is possible under
s and � and satisfies both |Y | = d − 1 and Y 6⊂ Xd. Then
we can construct Z ⊂ Xd that satisfies |Z| = d − 1 and
u(Z) +E∗(L′Z) ≥ u(Y ) +E∗(L′Y ), where L′Z (or L′Y ) is the
list of remaining items after A takes items in Z (or Y ) and
B takes items based on � from L.

Now let Z∗ be the optimal bundle among those Z that
satisfies the above conditions. Such an optimal Z∗ is certain
under s and �, and thus the optimal strategy must pick Z∗

during the first d−1 rounds in the order specified by �. This
coincides with a strategy based on the admissible secure plan
represented by LZ∗,�, which concludes the proof.

Theorem 4. For any given �, s, and u, Max-Expected-
Utility can be solved in polynomial time with respect to m.

To prove the statement, we first introduce the following
specific form of schemes that we call strategies based on ad-
missible secure plans (SASP). This is obviously a generaliza-
tion of the strategy we mentioned in the proof of Theorem 3.

Definition 5 (SASP). The strategy based on admis-
sible secure plans σ∗(s, L) is defined as follows:

1. Enumerate all admissible secure plans.

2. For each admissible secure plan L′, let L′′ denote the
list of remaining items after executing L′. If E(L′′, σ∗)
was not calculated before, then recursively run
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σ∗(AB, L′′) and σ∗(BA, L′′) to obtain EAB(L′′, σ∗) and
EBA(L′′, σ∗), respectively. Then set E(L′′, σ∗) to their
average.

3. Choose L′ that maximizes u(L′)+E(L′′, σ∗) and return
the first item in L′ and u(L′) + E(L′′, σ∗).

In the following we prove Theorem 4 by separately show-
ing that (i) SASP is optimal (in Proposition 1) and that (ii)
SASP runs in polynomial time in m (in Proposition 2).

Proposition 1 (Optimality). For any L, E(L, σ∗) =
E∗(L) holds. Hence, σ∗ is an optimal strategy.

Proof. We prove the statement by mathematical induc-
tion with respect to the length of list L. Note again that
the length of L is always even since we are focusing on re-
cursively balanced sequences. For the base case, in which
L = () holds, the statement is obviously true by definition.
Now let us move to the induction step.

Assuming that E(L, σ∗) = E∗(L) holds for any list L s.t.
|L| ≤ 2n (where n = 0, 1, . . .), we consider arbitrary list L
s.t. |L| = 2n+2. First we focus on the case where the partial
sequence in the current round is AB.

If the critical depth is n + 2, i.e., if the best possible
bundle X can be achieved even under subsequence
ABBABA . . .BA, then there exist a unique admissible se-
cure plan that achieves the best possible bundle, and thus
it holds that EAB(L, σ∗) = u(LX,�) + E((), σ∗) = E∗(L).

On the other hand, if the critical depth does not equal
n+2, then from Lemma 1, there exists admissible secure plan
L′ such that E∗AB(L) = u(L′) +E∗(L′′), where L′′ is the list
of remaining items after executing L′. Since it is the case
that |L′′| ≤ 2n, by the assumption, E∗(L′′) = E(L′′, σ∗)
holds.

Therefore, it holds that EAB(L, σ∗) ≥ E∗AB(L). By defini-
tion of E∗AB, this implies that EAB(L, σ∗) = E∗AB(L). By a
similar argument, it also holds that EBA(L, σ∗) = E∗BA(L).
Thus, E(L, σ∗) = E∗(L) holds.

We then show that SASP can be calculated in polynomial
time. First, we introduce an additional concept of reacha-
bility for bundles. Let L be a series of sorted lists defined
below, each of which can be obtained by eliminating all but
one element in the first 2t−1 elements, for each t ∈ 1, . . . ,m:

L = {(o1, o2, . . . , o2m),

(o1, o4, . . . , o2m), (o2, o4, . . . , o2m), (o3, o4, . . . , o2m),

(o1, o6, . . . , o2m), (o2, o6, . . . , o2m), . . . , (o5, o6, . . . , o2m),

...

(o1, o2t, . . . , o2m), . . . , (o2t−1, o2t, . . . , o2m),

...

(o1, o2m), (o2, o2m), . . . , (o2m−1, o2m)}.

Note that |L| = 1 + 3 + · · · + (2m − 1) = m2. List L is
said to be reachable from Linit (by admissible secure plans)
if there exists a series of partial sequences and an admissible
secure plan such that after the execution of the admissible
secure plan for the series of partial sequences, the list of
remaining items becomes L.

The following lemma helps us to show the polynomial time
computability, which implies that the number of lists of re-
maining items possible after any sequence of applications of
an admissible secure plan is at most |L| = m2.

Lemma 2. If L is reachable from Linit, L ∈ L∪{()} holds.

Proof. We prove the statement by mathematical induc-
tion with respect to k the number of times that an admissi-
ble secure plan is applied. For the base case in which k = 0,
such a reachable list that is obtained without applying an
admissible secure plan must be Linit, which is in set L by its
definition.

Now we show the induction step. Assuming that any list
that is reachable by applying an admissible secure plan k′

times is in set L, consider arbitrary list L that is reachable
by applying an admissible secure plan k′ + 1 times. At the
moment of the k′ + 1-st application of an admissible secure

plan, remaining list L̂ is in L, because of the fact that it
is reachable by applying an admissible secure plan k′ times
and the assumption.

Here let d and L′ be the critical depth and the sorted
list of the items in the best possible bundle at the moment,
respectively. If d = |L′| + 1, i.e., if all the remaining items
in the best possible bundles can be obtained, then L is ().
On the other hand, if it is not the case, then such list L is
obtained by eliminating the top 2d− 2 items among the top

2d− 1 items in L̂ by the definition of the admissible secure
plan and the sincere strategy of B, which results in a list
belonging to L.

Proposition 2 (Poly-Time). For any L that is reach-
able from Linit and any s ∈ {AB,BA}, σ∗(s, L) is calculated
in polynomial time with respect to m.

Proof. Strategy σ∗ is applied only for each list that is
reachable from Linit, which takes at most m2 applications by
Lemma 2. In each application of σ∗, the number of admis-
sible secure plans is O(m). Any admissible secure plan just
needs operations (e.g., calculating the best possible bundle)
that only take polynomial runtime. As a result, strategy σ∗

can be calculated in polynomial time with respect to m.

Example 4. Consider again the same problem with Ex-
ample 1 with Borda scoring function u. When s = AB in
the first round, the (sorted) best possible bundle is (3, 2, 1, 4),
and the critical depth is 3. Then strategy σ∗ considers ob-
taining two out of the three top items in (3, 2, 1, 4) without
taking any risk.

Obtain (3, 1): After taking them, the remaining items at
the beginning of the third round will be (2, 5, 4, 7).
When s = AB in the third round, the best possible
bundle is (2, 4), and the critical depth is 2. Then the
strategy next considers obtaining one out of the two
items (2, 4) without taking any risk.

Obtain (2): After taking item 2, the remaining items
at the beginning of the fourth round will be (4, 7).
When s = AB in the fourth round, the best possi-
ble bundle is (4), which is certain. When s = BA,
the best possible bundle is (7), which is also cer-
tain. As a result, strategy σ∗ returns an expected
utility of (u(4) + u(7))/2.

Obtain (4): After taking item 4, the remaining items
at the beginning of the fourth round will be (5, 7).
By a similar argument, it returns an expected util-
ity of (u(5) + u(7))/2.

Comparing u(2) + (u(4) + u(7))/2 and u(4) + (u(5) +
u(7))/2, it suggests picking 2 when s = AB. By a
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similar argument, it suggests picking 4 when s = BA.
As a result, it returns an expected utility of

u(3) + u(1) +
(u(2) + u(4)+u(7)

2
) + (u(4) + u(5)+u(7)

2
)

2
.

Obtain (3, 2): By a similar argument, it returns

u(3) + u(2) +
(u(1) + u(4)+u(7)

2
) + (u(4) + u(5)+u(7)

2
)

2
.

Obtain (2, 1): it returns

u(2) + u(1) + u(4) +
u(5) + u(7)

2
.

Comparing the expected utilities based on u, it suggests pick-
ing 3 in the first round when s = AB. By a similar argu-
ment, it suggests picking 2 in the first round when s = BA.

6. APPLYING TO RANDOM TIE-BREAKING
As an application of the results presented in the previous

sections, we now show the original model of sequential allo-
cation with random tie-breaking that was already mentioned
in the introduction. Since the discussion in the previous sec-
tions is focused on the case of two agents, here we continune
to focus on the case of two agents: A and B.

The process of sequential allocation with random
tie-breaking is described as follows. In each round, each
agent bids on an item that still exists. If there is no conflict,
each gets the item on which she bids. If there is a conflict,
the ‘winner’ is decided by flipping a fair coin. The other
agent picks another item that is still present. The process
is repeated until all the items are picked.

In this model we also assume that agent B just uses the
sincere picking strategy based on her preference �. Al-
though the model with random tie-breaking is slightly differ-
ent from random sequences, some strategies in the random
sequence model remain valid for this random tie-breaking.
More precisely, there exists a bijection between the set of all
possible strategies in the model with random tie-breaking
and a certain set of strategies in the random sequence model,
such that corresponding strategies give the same expected
utility for the random sequence model and the random tie-
breaking model. Furthermore, SASP is actually in the set.
Therefore, the following statement holds.

Theorem 5. Given any � and u, the maximum expected
utility in sequential allocation with random tie-breaking can
be calculated in polynomial time with respect to m.

Due to space limitations, we omit the formal proof. In-
stead, we demonstrate how SASP works for this model.

Example 5. Consider again the same problem with Ex-
ample 1 with Borda scoring function u. Agent A first com-
putes SASP σ∗ to determine the item on which she first bids,
by assuming the random sequence model and that s = AB
in the first round. As we already observed in Example 4, σ∗

returns item 3.
Since B also bids on 3 first based on the sincere picking

strategy, there will be a coin flip. If A wins, she gets 3. Then
in the next round she bids on 1 as σ∗ suggests. After this,
A computes σ∗ again for the remaining items, and so on.

On the other hand, if A loses in the first round, she then
computes σ∗ again by assuming that the first partial sequence
in the random sequence model is BA, which suggests picking
2 in the first round, 1 in the second round, and 4 in the third
round, which ensures that no conflict occurs within the three
rounds. Then A computes σ∗ again for the remaining items.

7. DISCUSSIONS
One possible question about our sequential allocation

model with random sequences is how it differs from the well-
known probabilistic serial rule [3]. Here we show an exam-
ple that results in different outcomes under these two rules
with sincere strategies chosen by both agents. Consider a
situation with two agents, A and B, where B’s preference
� is such that 1 � 4 � 2 � 3, and both A and B choose
the sincere picking strategy (not alike our analysis where A
seeks the optimal strategy). Under the probabilistic serial
rule, both first start to ‘eat’ item 1, and then after finish-
ing 1, agent A eats 2 while B eats 4. Finally, both come
to item 3 at identical timing, which results in a utility of
0.5 · u(1) + u(2) + 0.5 · u(3). On the other hand, under se-
quential allocation with random sequence, agent A’s utility
is 0.5 · u(1) + 0.75 · u(2) + 0.75 · u(3). Note again that this
utility is under A’s sincere strategy. Verifying whether they
still differ in equilibrium is an open question.

Another possible question is how the coincidence result
presented in Section 6 could be applied to cases with more
than two agents. We observed that sequential allocations
with random sequences and random tie-breaking do not co-
incide when there are more than two agents. To demonstrate
the intuition, consider the following three agents: agent A
who is willing to pick bundle (1, 2, 3) in this order, agent B
who picks items sincerely with her preference �B : (1, 3, 2),
and agent C who also picks items sincerely with her prefer-
ence �C : (3, 2, 1). Under our model with random sequences,
it is possible that partial sequence ABC is realized, which
results in an allocation such that A, B, and C obtain 1, 3,
and 2, respectively. On the other hand, in sequential allo-
cation with random tie-breaking, agent C solely bids on 3
in the first round, while both A and B bid on 1. There-
fore, regardless of the result of the coin flip for tie-breaking
between A and B, C obtains 3, which cannot occur in the
random sequence model.

From the perspective of fair allocation, perhaps constantly
flipping a fair coin is not natural. This actually makes sense;
when the ‘heads’ side appears in the first round, it seems
fairer to use a biased coin so that it is likely to be ‘tails’ in
the next round. However, to the best of our knowledge, no
such discussion exists about the optimal (fairest) probabil-
ity distribution of coin flips. In this sense, our contribution
is a first step toward a new research direction on optimiz-
ing random sequences with respect to some fairness criteria,
such as envy-freeness and/or proportionality.

8. CONCLUSIONS
In this paper we consider a new model of sequential allo-

cation with random sequences. We focus on the case of two
agents and additive utilities of a manipulator and show that
Bundle-Possibility, Bundle-Certainty, Find-Best-
Possible, Find-Best-Certain, and Max-Expected-
Utility can be solved in polynomial time with respect to
the number m of rounds. When the manipulator’s util-
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ity is further restricted to be exponentially decaying, Max-
Expected-Utility can be solved much faster than the gen-
eral case. As an application of Max-Expected-Utility, we
show that for a different model of sequential allocation with
random tie-breaking, Max-Expected-Utility can also be
solved in polynomial time. Besides the questions raised in
Section 7, several related future research issues remain. Con-
sidering more than two agents in our model is one obvious
future direction. Also discussing how such a selfish manip-
ulation affects social welfare is another, as Bouveret and
Lang [5] do for a model with deterministic sequences.
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APPENDIX
Here we give supplementary materials used for the theorems
in Section 4. We first introduce some additional notation for
the proof.

First, for standard plan δ of length k defined for partial
sequence s, list L, and sequence π ∈ s{AB,BA}k−1, let
δ(π) denote the list of items taken by δ when the realized
sequence is π, i.e., δ(π) is one particular path in the tree
represented by δ. We call δ(π) an induced plan of δ in π.
Let X denote the set of items in δ(π). We say δ(π) is regular,
if δ(π) = LX,�, i.e., the induced plan takes the items in X
in the order of �.

Let sb(�, i) = |{j ∈ O | j � i}| be the number of items in
O that are strictly better than item i under given ordering
�. Also, let blk(�, X, i) = sb(�, i)− |{j ∈ X | j � i}| be the
number of “blanks” before item i, which means that when
agent A is going to obtain X, agent B does not pick i in any
round before blk(�, X, i). When it is clear from the context,
we write blk(i) instead of blk(�, X, i). Also, given π and
r ∈ {1, . . . ,m}, let πr indicate the partial sequence in π for
round r. Then define ρ(πr) such that ρ(πr) = 1 if πr = AB
and ρ(πr) = 0 otherwise.

The following corollary is derived from Proposition 8 in
Bouveret and Lang [5].

Corollary 1. Given � and sequence π, X can be
achieved under � and π if and only if there exists feasible
plan δ such that its induced plan δ(π) is regular and achieves
X under �.

Proposition 3. For given �, π, and X ⊆ O, a regu-
lar induced plan δ(π) achieves X under � if and only if
blk(xr) ≥ a(π, r) holds for any r ∈ {1, . . . , |X|}, where
a(π, r) = r + ρ(πr) − 1, representing the number of actions
(equally the number of items) B has already taken prior to
A’s r-th action.

Proof. The “if” part is obvious, because from the mean-
ing of blk, xr is still available for A during the first blk(xr)
rounds from the current state. Therefore it suffices to show
the “only if” part. Assuming that the regular induced plan
δ(π) achieves X, we show the conclusion by mathematical
induction for r.

As the base case, consider r = 1; we show that blk(x1) ≥
a(π, 1) = ρ(π1). Note again that there are blk(x1) items
before x1. If blk(x1) < a(π, 1) holds, then B obtains x1 at
her blk(x1)+1-st action, which violates the assumption that
A can obtain X containing x1 by δ(π).

As the induction step, assuming that the statement holds
for r = t, we consider the case of r = t + 1. If blk(xt+1) <
a(π, t + 1) holds, then there are blk(xt+1) items, as well as
x1, . . . , xt, before xt+1. From the assumption that a(π, t) ≤
blk(xt), A obtains x1, . . . , xt before B’s blk(xt+1) + 1-st ac-
tion. Thus, B obtains xt+1 by her blk(xt+1) + 1-st action,
which violates the assumption that δ(π) achieves X.

Using this result, we can show the following lemma, which
is an essential component in the proofs of Lemmas 4 and 5.

Lemma 3. Consider any ordering � and any sequence π.
Assume that there exists feasible plan δ that achieves bundle
X under π and �. Then, for any r′ ∈ {1, . . . ,m}, there also
exists feasible plan δ′ that achieves X under � and π s.t. for
all r ∈ {1, . . . ,m}:

π′r =

{
AB if r = r′

πr otherwise.
(1)

Proof. Obviously we can focus on r′ such that r′ ≤ |X|.
From Corollary 1 and the assumption that there exists δ(π)
that achieves X under �, a regular induced plan that cor-
responds to LX,� also achieves X under � and π. From
Proposition 3, it holds that for any r′ ∈ {1, . . . , |X|},

blk(xr) ≥ r + ρ(πr)− 1.

Also, by the definitions of ρ and π′, it holds that for any
r ∈ {1, . . . , |X|},

r + ρ(πr)− 1 ≥ r + ρ(π′r)− 1.

By summing them up, we have

blk(xr) ≥ r + ρ(π′r)− 1

for all r ∈ {1, . . . , |X|}, which coincides with the condition
described in Proposition 3.

Lemma 4. Given � and X ⊂ O, X is possible under � if
and only if X can be achieved under � and π̄ = sAB . . .AB.

Proof. The “if” part is obvious. Let us focus on showing
the “only if” part. Assume that feasible plan δ achieves X
under � for at least one specific sequence π. X can be
achieved under � and π. Here, by repeatedly applying a
modification described in Eq. 1 to π, we can reach π̄. Thus,
from Corollary 1 and Lemma 3, X can be achieved under �

and π̄.

Lemma 5. Given � and X ⊂ O, X is certain under � if
and only if X can be achieved under � and π = sBA . . .BA.

Proof. The “only if” part is obvious by the definition of
certainty of bundle X, Now we turn to show the “if” part.
Consider arbitrary bundle X that can be achieved under
� and π. From Corollary 1, a regular induced plan δ(π)
achieves X under �. From a similar argument with the
proof of Lemma 4, X can be achieved by a regular induced
plan δ′(π) under �, where π is any possible sequence, which
guarantees that X is certain under �.
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