
Exclusion Method for Finding Nash Equilibrium in
Multi-Player Games

(Extended Abstract)
Kimmo Berg

Aalto University School of Science
Dept. of Mathematics and Systems Analysis

kimmo.berg@aalto.fi

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
sandholm@cs.cmu.edu

ABSTRACT
We present a complete algorithm for finding an ϵ-
Nash equilibrium, for arbitrarily small ϵ, in games
with more than two players. The best prior com-
plete algorithm has significantly worse complex-
ity and has, to our knowledge, never been im-
plemented. The main components of our tree-
search-based method are a node-selection strat-
egy, an exclusion oracle, and a subdivision scheme.
The node-selection strategy determines the next
region to be explored—based on the region’s size
and an estimate of whether the region contains
an equilibrium. The exclusion oracle provides a
provably correct sufficient condition for there not
to exist an equilibrium in the region. The subdi-
vision scheme determines how the region is split
if it cannot be excluded. Unlike well-known in-
complete methods, our method does not need to
proceed locally, which avoids it getting stuck in a
local minimum that may be far from any actual
equilibrium. The run time grows rapidly with
the game size, and this suggests a hybrid scheme
where one of the relatively fast prior incomplete
algorithms is run, and if it fails to find an equi-
librium, then our method is used.

Keywords
Nash equilibrium; multi-player games; noncooperative games

1. INTRODUCTION
Finding a Nash equilibrium is an important and well-

studied problem. Finding (even an approximate) Nash equi-
librium in a multi-player game is PPAD-complete [2, 3].
Several techniques have been proposed: simplicial subdivi-
sion [10], homotopy [4, 5], mixed-integer programming [9],
support enumeration [8], and differential evolution methods.
The only prior complete method for finding an approximate
Nash equilibrium is an exhaustive grid search in the space
of probabilities [1], and it had not been implemented.
We present a complete method that improves the best-

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c⃝ 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

known upper bound for computing an approximate Nash
equilibrium. It is guaranteed to find an ϵ-Nash equilibrium,
for arbitrarily small ϵ, in finite time that depends on ϵ.

2. NORMAL-FORM GAMES
LetN = {1, .., n} be the set of players andAi = {a1, .., am}

is the set of pure actions for player i. The function ui : A 7→
R gives player i’s payoff. Each player i assigns a proba-
bility pi(aj) ≥ 0 for each pure action aj ∈ Ai such that∑m

k=1 pi(ak) = 1. A strategy p∗ is a Nash equilibrium if
ui(aj , p

∗
−i) ≤ ui(p

∗
i , p

∗
−i) for all aj ∈ Ai and i ∈ N . At least

one Nash equilibrium always exists in these finite games [6].
We can define player i’s regret of action aj as ri(aj , p) =

ui(aj , p−i)−ui(p). The regret of player i is ri(p) = maxaj∈Ai

ri(aj , p) and r(p) = maxi∈N ri(p). A strategy p∗ is an ϵ-
Nash equilibrium if the regret is small enough: r(p∗) = ϵ.

3. TREE-SEARCH-BASED METHOD
We propose a tree-search-based method for finding a Nash

equilibrium in multi-player games. It splits the space of
strategy probabilities into smaller regions until a solution is
found, that is, when the regrets are small enough.

3.1 Region selection (node-selection strategy)
An important choice in the method is the order in which

the regions are examined. We propose a ranking function
g(R, p0) that uses the size of the region d(R), the regret,
and its gradient evaluated at one point p0 ∈ R:

g(R, p0) = max
i∈N

ri(p
0)/(d(R) ·Mi(p

0)), (1)

Mi(p
0) = max

aj∈Ai(p0)
∥∇ri(aj , p

0)∥∞ (2)

is the maximum derivative at p0 of player i’s regret over all
the variables in p′ and d(R) = maxq∈R ∥q − p0∥.

3.2 Exclusion oracle
An exclusion oracle can detect that a Nash equilibrium

cannot be in the region. If this is the case, the region can be
excluded, and otherwise the region is subdivided. We deter-
mine a global upper bound for the gradient of the regret:

M∗
i = max

p∈P ′
max

aj∈Ai(p)
∥∇ri(aj , p)∥∞.

Theorem 3.1. A p0-centered ball with radius s cannot
contain 0-Nash if

ri(p
0) > s ·M∗

i , for some i ∈ N. (3)

1417



Table 1: Results for the random general-sum games.

n m Dim Avg Time Median Timeout % Avg ϵ at timeout
3 2 3 0.04 0.02 0 -
3 3 6 18.2 0.8 1 0.0028
3 5 12 900 900 100 0.07
4 2 4 21.5 0.47 1 0.0026
4 3 8 343 96 27 0.003
5 2 5 110 27 7 0.0038
5 3 10 576 652 49 0.003

3.3 Subdivision of the region
There are many ways how the search space can be subdi-

vided. In this paper, we use hyperrectangles which makes
the memory requirement linear in dimension. It is also easy
to compute the middle point p0 in the hyperrectangle and
the maximum distance d to the corner points:

p0x = (ux + lx)/2,

d = 1/2 ·
√∑

x∈p′

(ux − lx)2,

where lx and ux are the lower and upper bounds of the
hyperrectangle in dimension x. We use a bisection method
and split the hyperrectangle along the longest edge.

Algorithm 1
Repeat until the stopping condition is met

1. Select the region with minimal value of g in Eq. (1).
2. Compute r(p0). If Eq. (3) holds, exclude and goto 1.
3. Bisect the region.

Theorem 3.2. Any bisection algorithm excludes all points

with r(p) ≥ ϵ within 2
(m−1)n⌈log

(
2M∗

ϵ

)
/ log(2)⌉ − 1 iterations,

where M∗ = maxi∈N M∗
i .

The only prior complete algorithm is an exhaustive grid
search by Babichenko et al. [1]. It is slower: it runs in (k +
1)nm iterations, where k > 8(logm+logn− log ϵ+log 8)/ϵ2.

Theorem 3.3. The number of iterations required by any
bisection algorithm (with small enough ϵ and large enough
m and n) is smaller than (k + 1)mn.

4. EXPERIMENTS
We tested the algorithms on randomly generated normal-

form games (time limit 900s) and on GAMUT games [7];
we used target accuracy ϵ = 10−3. One can see from the
results that the running times grow rapidly as the search
space dimension increases.
Figure 1 shows the computation times for different ϵ in

three-player (black solid line), four-player (red dashed line)
and five-player (blue dash-dotted line) games, with three
actions per player. Moreover, we have tested different node-
selection strategies: depth-first, breadth-first and random
search order, and they were slower than the presented one.

5. CONCLUSION
Our aim was not to develop the fastest incomplete method

but a method that is guaranteed to find an ϵ-Nash equilib-
rium on all instances. In contrast, the homotopy methods,

error ǫ

10
-4

10
-3

10
-2

10
-1

ti
m

e
 (

s
)

10
0

10
1

10
2

10
3

Figure 1: 3 to 5-player games with 3 actions.

e.g., are often much faster in practice as they improve the
current solution locally, but they may not find a solution.
That suggests a hybrid scheme where one runs some rel-
atively fast incomplete method first, and if it fails to find
an equilibrium, then one runs our algorithm. That achieves
the best of both worlds: the speed of the prior algorithms
and the completeness of ours. It would also be extremely
interesting to develop improvements to each of the three
component techniques used in our tree search.

Acknowledgments
This material is based on work supported by the NSF under
grants 1320620 and 1546752.

REFERENCES
[1] Y. Babichenko, S. Barman, and R. Peretz. Simple

approximate equilibria in large games. EC ’14, p.
753–770, 2014.

[2] X. Chen, X. Deng, and S.-H. Teng. Settling the
complexity of computing two-player Nash equilibria.
Journal of the ACM, 56(3), 2009.

[3] C. Daskalakis. On the complexity of approximating a
Nash equilibrium. ACM Trans. on Alg., 9(3), 2013.

[4] S. Govindan and R. Wilson. A global Newton method
to compute Nash equilibria. JET, 110:65–86, 2003.

[5] P. J.-J. Herings and A. van den Elzen. Computation of
the Nash equilibrium selected by the tracing
procedure in n-person games. GEB, 38:89–117, 2002.

[6] J. Nash. Equilibrium points in n-person games. PNAS,
36:48–49, 1950.

[7] E. Nudelman, J. Wortman, Y. Shoham, and
K. Leyton-Brown. Run the gamut: A comprehensive
approach to evaluating game-theoretic algorithms.
AAMAS ’04, p. 880–887, 2004.

[8] R. Porter, E. Nudelman, and Y. Shoham. Simple
search methods for finding a Nash equilibrium. GEB,
63:642–662, 2008.

[9] T. Sandholm, A. Gilpin, and V. Conitzer.
Mixed-integer programming methods for finding Nash
equilibria. AAAI, p. 495–501, 2005.

[10] G. van der Laan, A. Talman, and L. van der Heyden.
Simplicial variable dimension algorithms for solving
the nonlinear complementarity problem on a product
of unit simplices using a general labelling. Math of
OR, 12(3):377–397, 1987.

1418




