
Sum-Product-Max Networks for Tractable Decision Making

(Extended Abstract)
Mazen Melibari

University of Waterloo
Waterloo, Ontario, Canada

mmelibar@uwaterloo.ca

Pascal Poupart
University of Waterloo

Waterloo, Ontario, Canada
ppoupart@uwaterloo.ca

Prashant Doshi
University of Georgia

Athens, GA, USA
pdoshi@cs.uga.edu

1. INTRODUCTION
Influence diagram (ID) has been the graphical language of choice

for probabilistically modeling decision-making problems [5]. IDs
extend the probabilistic inference of Bayesian networks with deci-
sion and utility nodes to allow the computation of expected utility
and decision rules. However, unlike Bayesian networks that have
witnessed a rich portfolio of algorithms to automatically learn their
structure from data, no algorithms exist to the best of our knowledge
for learning the structure and parameters of IDs from data.

Recent investigations into new models for tractable probabilis-
tic inference such as arithmetic circuits [2] and sum-product net-
works [4] that are suited to learn models from large datasets could
help fill this gap. Specifically, approaches to directly learn a net-
work polynomial that is graphically represented as a network of sum
and product nodes from data have been devised [3]. Evaluations
of the polynomial provide the joint or conditional distributions as
desired and are performed in time that is linear in the size of the
network. Thus, arithmetic circuits and sum-product networks repre-
sent a tractable class of inference models compared to the generally
intractable inferencing of Bayesian networks.

Motivated by tractable inference, we generalize sum-product net-
works to a new class of problems that involve probabilistic decision
making, in this paper. To enable this, we introduce two new types
of nodes: max nodes to represent the maximization operation over
different possible values of a decision variable, and utility nodes
to represent the utility values. We refer to the resulting network as
a sum-product-max network (SPMN), whose solution provides a
decision rule that maximizes the expected utility in linear time. The
semantics of the max node is that its output is the decision that leads
to the maximal value among all decisions. Analogously to sum-
product networks, we introduce a set of properties that guarantee
the validity of the SPMN, such that the solution will correspond to
the expected utility obtained from a valid embedded probabilistic
model and utility function that are encoded by the network.

We present a first method to learn the structure and parameters
of valid SPMNs from decision-theoretic data. Such data not only
consists of instances of the random state variables but also possible
decision(s) and the corresponding valuation(s). This is a significant
advance because it brings machine learning to decision making,
which has so far relied on handcrafted expert models.

2. SUM-PRODUCT-MAX NETWORKS

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2.1 Definition and Solution
SPMNs generalize SPNs [4] by introducing two new types of

nodes to an SPN: max and utility nodes. We begin by defining an
SPMN.

DEFINITION 1 (SPMN). An SPMN over decision variables
D1, . . . , Dm and random variables X1, . . . , Xn is a rooted di-
rected acyclic graph. Its leaves are either binary indicators of the
random variables or utility nodes. An internal node of an SPMN is
either a sum, product or max node. Each max node corresponds to
one of the decision variables and each outgoing edge from a max
node is labeled with one of the possible values of the corresponding
decision variable. The value of a max node i is maxj∈Children(i) vj ,
where Children(i) is the set of children of i, and vj is the value
of the subgraph rooted at child j. The sum and product nodes are
defined as in the SPN.

0.6 0.00.3 1.0X X

* *

+

0.2 0.8

* *

+

0.4 0.6

MAXD

T
ru
e

F
alse

Figure 1: An SPMN for one decision and random variable.

Figure 1 shows a generic example SPMN for a decision-making
problem with a single decision D1 and binary random variable X1.
Indicator nodes X1 = T and X1 = F return a 1 and 0 respectively,
when the random variable X1 is true, and vice versa if X1 is false.

Next, we define a set of properties to ensure that a SPMN encodes
a function that computes the maximum expected utility (MEU) given
some partial order between the variables and utility function U .

DEFINITION 2 (COMPLETENESS OF SUM NODES). An SPMN
is sum-complete iff all children of the same sum node have the same
scope.

The scope of a node is the set of all random variables associated
with indicators and decision variables associated with max nodes
that appear in the SPMN rooted at that node.

DEFINITION 3 (DECOMPOSABILITY OF PRODUCT NODES).
An SPMN is decomposable iff no variable appears in more than
one child of a product node.

1419

DEFINITION 4 (COMPLETENESS OF MAX NODES). An SPMN
is max-complete iff all children of the same max node have the same
scope, where the scope is as defined previously.

DEFINITION 5 (UNIQUENESS OF MAX NODES). An SPMN
is max-unique iff each max node that corresponds to a decision
variable D appears at most once in every path from root to leaves.

Together, these properties allow us to define a valid SPMN.

DEFINITION 6 (VALIDITY). A SPMN is valid if every sum
node in the network is complete, every product node is decompos-
able, and each max node is complete and unique.

Evaluation An SPMN is evaluated by setting the indicators that are
consistent with the evidence to 1 and the rest to 0. Then, we perform
a bottom-up pass of the network during which operators at each
node are applied to the output values of its children. The optimal
decision rule is found by tracing back (i.e., top-down) through the
network and choosing the edges that maximize the decision nodes.

2.2 Structure Learning
Our method for learning SPMNs labeled as LearnSPMN general-

izes LearnSPN [3], which is a recursive top-down learning method
for SPNs. This allows automated learning of computational models
of decision-making problems from appropriate data. LearnSPMN
extends LearnSPN to generate the two new types of nodes intro-
duced in SPMNs: max and utility nodes. Equally important, the
generalization also requires modifying a core part of LearnSPN so
that the learned structure respects the constraints that are imposed by
the partial order P≺ on variables involved in the decision problem.
Algorithm 1 describes the structure-learning method.

Algorithm 1: LearnSPMN
input :D:data,V: set of variables,i:infoset index,P≺: partial order
output :
if |V| = 1 then

if the variable V in V is a utility then
u← estimatePr(V = True) from D;
return a utility node with the value u

else
return smoothed univariate distribution over V

else
rest← P≺[i+ 1...];
if P≺[i] is a decision variable then

for v ∈ decision values of P≺[i] do
Dv ← subset of D where P≺[i] = v

return MAXv LearnSPMN(Dv, rest, i + 1,P≺)
else

Try to partition V into independent subsets Vj while keeping
rest in one partition;

if a partition is found then
return

∏
j LearnSPMN(D,Vj, i,P≺)

else
partition D into clusters Dj of similar instances;

return
∑

j
|Dj |
|D| × LearnSPMN(Dj,V, i,P≺)

LearnSPMN takes as input a dataset D and a partial order P≺.
Each utility variable in the data is first converted into a binary
random variable, say U , independent from other utility variables
by using the well-known Cooper transformation [1]. Specifically,
Pr(U = true|Parents(U)) = u−umin

umax−umin
where umin and

umax are the minimum and maximum values for that utility vari-
able and Parents(U) is a joint assignment of the variables that
U depends on. This step has an added benefit in that it allows for

stochastic utility functions as well such as in bandit problems. Next,
we duplicate each instance a fixed number of times and replace the
utility value of each instance by an i.i.d. sample of true or false from
the corresponding distribution over U . Consequently, utility vari-
ables may be treated as traditional random variables in the learning
method. Algorithm 1 iterates through the partial order P≺. For each
decision variable D, a corresponding max node is created. For each
set V of random variables in an information set of the partial order,
the algorithm constructs an SPN of sum and product nodes by recur-
sively partitioning the random variables in non-correlated subsets
and by partitioning the data into clusters of similar instances. As
in LearnSPN, LearnSPMN can be implemented using any suitable
method such as a pairwise χ2 or G-test to partition the variables and
instances. Clustering algorithms such as EM and K-means can be
used to partition the data into clusters of similar instances.

3. EXPERIMENTS
We evaluate LearnSPMN by applying it to a small test bed of 3

data sets whose attributes consist of state and decision variables and
corresponding utility values. These datasets were created by simu-
lating a randomly generated directed acyclic graph of nodes whose
conditional probability tables and utility tables were populated by
values from symmetric Dirichlet distributions. Table 1 gives some
descriptive statistics for these data sets.

Dataset #Dec_var |ID| |Dataset| |SPMN|
Random-ID 1 3 116 100K 730
Random-ID-2 5 283 100K 922
Random-ID 3 8 580 100K 2940

Table 1: Synthetic datasets and learned model statistics. #Dec_var
is the number of decisions variables in the problem, |ID| is the total
representational size of the ID (total clique size + sepsets), |Dataset| is
the size of the dataset, and |SPMN| is the size of the learned SPMN.

The last column of Table 1 reports on the size of the SPMN that
was learned for each dataset. While the size is usually larger than
the total representational complexity of the corresponding ID, we
emphasize that the run time complexity of SPMN is linear in the
size of the network. For the top two datasets, SPMN yields an
identical MEU as that from the IDs and the third dataset exhibits a
10.3% difference in the MEU from the SPMN.

Acknowledgments
This research is supported in part by grants from NSERC and ONR
#N000141310870.

REFERENCES
[1] G. F. Cooper. A method for using belief networks as influence

diagrams. 1998.
[2] A. Darwiche. A differential approach to inference in bayesian

networks. In UAI, pages 123–132, 2000.
[3] R. Gens and P. Domingos. Learning the structure of

sum-product networks. In Proceedings of The 30th
International Conference on Machine Learning, pages
873–880, 2013.

[4] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. In Proc. 12th Conf. on Uncertainty in Artificial
Intelligence, pages 2551–2558, 2011.

[5] R. D. Shachter. Evaluating influence diagrams. Operations
Research, 34(6):871–882, 1986.

1420

