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ABSTRACT

Autonomous robots in unstructured and dynamically changing re-
tail environments have to master complex perception, knowledge
processing, and manipulation tasks. To enable them to act compe-
tently, we propose a framework based on three core components:
(o) a knowledge-enabled perception system, capable of combining
diverse information sources to cope with occlusions and stacked ob-
jects with a variety of textures and shapes, (o) knowledge processing
methods produce strategies for tidying up supermarket racks, and
(o) the necessary manipulation skills in confined spaces to arrange
objects in semi-accessible rack shelves. We demonstrate our frame-
work in an simulated environment as well as on a real shopping
rack using a PR2 robot. Typical supermarket products are detected
and rearranged in the retail rack, tidying up what was found to be
misplaced items.
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1. INTRODUCTION

Robotic agents that are embodied and can manipulate the world
in order to accomplish human-scale manipulation tasks in open and
realistic environments are still a largely unresolved challenge.

Lately robotic solutions for retail environments are becoming
more and more popular. Common tasks include refilling product
shelves, and putting misplaced products back to where they belong.
Retail scenarios are semi-structured, but unpredictable in details,
products might be missing, requirements of where to place which
item change, or products and shelves are partially obstructed. The
products are placed such that they can be easily seen, the front side
is typically visually distinctive but they also constitute challenges as
identical items are placed directly next to each other, complicating
object segmentation as well as manipulating objects without causing
side effects on the neighboring items. The tasks that the robotic
agents are to accomplish include loading an empty rack, restocking
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Figure 1: Retail environment showing the used robot next to
the perceived objects of an example scene

sold items, cleaning up unordered shelves, rearranging product
configurations, etc.

In this paper, we outline our systematic solution for robotic agents
that perform a limited kind of shelf reordering. The robotic agent
takes a qualitative spatial description of how the items in a shelf
should be re-ordered, such as the cereal should be placed to the
right of the coffee. The robotic agent then tessellates the target
region of the items into variable size grid cells that are allocated
for the individual product groups. The items are to be placed in the
respective grid cell, next to each others and facing the front.

The solution presented herein is unique on the first hand in the
way that objects can be recognized and grasped even if they are
subject to heavy occlusion, or similar objects are stacked or aligned
with each other (see Fig. 1). Multiple instances per object are not a
limitation either. Second, our approach focuses on reasoning about
objects’ semantics which is crucial for everyday scenarios where
the requirement is to achieve a certain final object configuration.
Additionally, since we want to avoid to accidentally clear up the
whole shelf, awareness and avoidance of clutter objects are a central
requirement in such a scenario.

2. SYSTEM OVERVIEW

Addressing the problems stated in this paper would not be pos-
sible without a tight integration between specific modules that are
needed by an autonomous robotic agent.

Three main components were used to build up the system, each
of them introduced recently, mainly because they are open-source
software and because they meet the required needs of being modular
and easy to extend: (o) CRAM [2] — a high-level robot planning
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Figure 2: Example experiment arrangements of objects in a
shopping rack. The left images show the source camera data.
The right images depict the processed object instances recog-
nized by the perception system.

and reasoning system (o) KNOWROB [4] — a centralized knowledge
processing and inference framework (o) ROBOSHERLOCK [1] —a
knowledge-enabled robotic perception framework.

Furthermore, ROBOSHERLOCK was extended with two essential
perception components and tasked with the gist of the recognition
process: a texture [5] and a shape-based [3] recognition system.

The entry point to the system is a generalized plan for rearranging
the shelf, generated by CRAM and the target arrangement of the
shelves in a specific aisle defined in our knowledge base. As a first
step, ROBOSHERLOCK is queried for the detected items. At this
point, using knowledge about the environment stored in the semantic
map of KNOWROB, the raw data is filtered in order to contain only
the regions of interest for the current task, that is, the respective shelf.
Based on the filtered images, the instance and shape recognition
then hypothesize about possible products and their locations, and
transmit these back to CRAM through ROBOSHERLOCK.

Internally, the plan generation evaluates different strategies for
executing the rearrangement task, which are ranked based on their
intrinsic cost as calculated by an A*-based planner implemented in
CRAM. The best ranked strategy is then chosen to be executed.

Once the best strategy has been chosen, the actual manipulation
plan is generated and executed by the robot. In case of failures
that occur during the manipulation (e.g. unable to grasp object,
dropped object, unable to plan manipulation trajectory, etc.), control
is handed back to CRAM where the contingency is resolved and an
alternative plan is generated.

3. RESULTS

To evaluate the importance of harmonizing the different system
components of our approach when dealing with complex shopping
rack scenarios, we present a series of example cases. In these, we
demonstrate the effects of slight variations in perception data on the
output of the planning algorithm, and thus, in the manipulation.

Figure 2 depicts two examples of 20 shopping rack situations
we created, separated into two qualitatively different series with
varying pose, obstacles, unknown objects and stacking of similar
and different objects. In some cases, objects were not or wrongly
detected. The planner’s goal was to group the available objects and
evenly distribute them over two of the rack’s shelves.

The cost shown in Table 1 represents the accumulated cost of
all individual actions inside of a planned sequence as used by A*.
Picking and placing are rather simple actions, while moving the
robot’s torso takes quite some time. As execution time is a quality
criterion while tidying up shopping racks, it is more expensive.
Moving the robot’s base is rather fast, and handing over an object
from one hand to the other takes longer than picking and placing.

As experiments suggest, the cost does not exceedingly increase
when meeting difficulties, such as obstructions, or stacked objects.

Failures in perception are therefore not directly reflected in the
planner’s output. In one case, two stacked objects were identified as
only one object, leading to a simpler, and wrong plan. In another
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Time [s] # Pick # Place #Move #Move Cost
Torso Base
Set 1 5.35 4 4 6 2 23.6
(18.6 £37.8)|(4.4+£0.5) (44+0.5) (5.6+1.6) (1.2+1.0)[{(23.0+2.7)
Set 2 43 45 45 5.0 2.0 22.0
(20.0+£32.5)|(4.5+£0.8) (4.5+0.8) (5.3+£1.3) (1.4+1.0)[(22.84+3.9)

Table 1: Summary of details from action sequences as gener-
ated based on the data from two qualitatively different sets,
with 10 scenes each. “Time” is the time taken to plan the ac-
tion sequence, “Cost” is the accumulated cost of all individual
actions (top: median, bottom: mean + standard deviation).

case, both lower objects on the stacks are not detected at all, also
resulting in a wrong configuration. In these cases, we rely on the
failure detection and recovery mechanisms which are implemented
in CRAM. After every manipulation action, the performing robot
re-perceived and validated the current scene, and re-plans its strategy
if inconsistencies are detected. The video we created in the course
of this work! shows the system being executed on a PR2 robot.

4. CONCLUSION

We have shown a novel application of knowledge-based manip-
ulation in an everyday retail scenario which requires extended per-
ception and reasoning capabilities.

In the current state of the art it is hard to measure the competence
of full robotic systems other than evaluating individual components.
In our experiments we show how the results of visual perception
reflect in the generation of manipulation plans for robotic agents.
Having a quantifiable connection between beliefs about the real
world and the quality of the plans for the robotic agents allows for
further investigation of other modalities for improving the robot
behavior.
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