
Supporting Group Plans in the BDI Architecture using
Coordination Middleware*

(Extended Abstract)
Stephen Cranefield

Department of Information Science,
University of Otago, Dunedin, New Zealand

stephen.cranefield@otago.ac.nz

ABSTRACT
This paper investigates the use of group plans and goals as pro-
gramming abstractions that encapsulate the communication needed
to coordinate collaborative behaviour. It presents an extension of
the BDI agent architecture to include explicit constructs for goals
and plans that involve coordinated action by groups of agents. For-
mal operational semantics for group goals are outlined, and an im-
plementation of group plans and goals for the Jason agent platform,
based on integration with the ZooKeeper coordination middleware,
is described.

Keywords
BDI agents; Group plans and goals; Coordination middleware

1. INTRODUCTION
Belief-Desire-Intention (BDI) agent programming is a powerful

and popular model for developing software that is goal-oriented,
adaptive to its circumstances, and equipped with pre-existing do-
main knowledge in the form of plans. However, when multiple
agents need to coordinate their actions over sustained interactions,
especially in interdependent activities such as working together to-
wards a common team goal, manual implementation of the required
communication actions can be complex and error prone. It can also
compromise scalability and other desirable properties of distributed
systems, such as robustness against network partitions.

Our aim in this work is to raise the level of abstraction when
programming groups of BDI agents so that explicit coordination
is no longer necessary, but rather is handled implicitly by robust
industry-grade coordination middleware. This paper investigates
the potential of group goals and plans to provide such a program-
ming abstraction.

2. GROUP GOALS
We define a group goal as one requiring coordinated action by a

group of agents. In this paper, we focus on conjunctive group goals,
in which each agent has a specific local subgoal to achieve, and the
group goal is satisfied only when all the subgoals are individually
satisfied. We consider that the group goal becomes active when
∗Full paper: http://hdl.handle.net/10523/6232

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Started

AllJoined

Succeeded

started(a) [a joined  |joined| +1 < group_size]
 / joined = joined  {a}
succeeded(a) [a succeeded]
 / succeeded = succeeded  {a}

started(a) [a joined  |joined| +1 = group_size]
 / startCompletionTimer(cto); joined = joined  {a}

started(a) / startJoinTimer(jto); joined = {a}; succeeded = {}

JoinTimedOut

SubgoalFailed

CompletionTimedOut

Failed

succeeded(a)
[a succeeded  |succeeded| +1 < group_size]
/ succeeded = succeeded  {a}

succeeded(a) [a succeeded 
|succeeded|+1 = group_size]
 / succeeded = succeeded  {a}

join timeout

failed(a)

completion
timeout

 failed(a)

started(a)
failed(a)

succeeded(a)

Figure 1: State diagram for a group goal

one or more agents begin working towards it, and can then eventu-
ally fail or succeed. However, to avoid agents waiting indefinitely
for other agents to complete their subgoals, we allow a group goal
to fail due to a “join timeout” or a “completion timeout”. A join
timeout occurs when some agents do not begin working on their
subgoals within a certain interval after the earliest start of any of
the other agents’ subgoals. A completion timeout occurs when the
result of some subgoals are still unknown within a certain interval
since the last agent began work on its subgoal.

Figure 1 shows the lifecycle of a group goal as a UML state
diagram. The variables joined and succeeded record the agents
that have begun work and completed their subgoals.

3. GROUP PLANS
We conceptualise a group plan as one that defines a collective

view of coordinated action amongst a group of agents, and rely on
group goals to provide this coordination. We thus define a group
plan as one in which all goals are group goals. A group plan is
supported by a set of individual plans for each agent to achieve
its local subgoals. These individual plans could be known by all
agents, or they could be kept private, as the application requires.

In this paper we restrict our attention to group plans in which
each group goal involves all agents in the group. However, any

1427

{ include("group_plans.asl") }
// Group plan
+!pincer(a1,a2,l1,l2,l3) <-

!gg(surround, [loc(l1)[agent(a1)],
loc(l2)[agent(a2)]]);

!gg(converge, [loc(l3)[agent(a1)],
loc(l3)[agent(a2)]]).

// Example local plan for a group goal
+!loc(L)[agent(a1), gg(surround)] <-

move_to(L);
?loc(L).

Figure 2: An example group plan

agent’s subgoal may be a trivial “do-nothing” goal (one having a
plan that immediately succeeds), and BDI agents may have multi-
ple goals (intentions) active at the same time. Thus it is possible
for an agent to work towards its own local goals while waiting for
the other agents to complete their work towards a group goal. We
can also model sequential turn-taking behaviour by a sequence of
group goals in which all agents except one have a do-nothing goal.

Figure 2 shows a group plan for two agents, a1 and a2, to per-
form a pincer attack on an enemy at location l3, with a1 moving
to one side of the enemy (location l1), and a2 moving to the other
side (location l2), before they both converge on location l3. This is
expressed in the Jason platform’s version of AgentSpeak [1]. The
include directive loads a set of plans for maintaining the state
of group goals via an integration between Jason and the Apache
ZooKeeper coordination middleware. The group plan above com-
prises a sequence of two group goals, but group plans may include
any control structures provided by the BDI programming language.
However, we do not currently address the use of context conditions.

4. SEMANTICS OF GROUP GOALS
We have defined a set of inference rules stating how the opera-

tion of each agent’s underlying BDI platform is extended to take
account of the shared state of group goals. We model the combined
goal states of the agents as a set comprising goal trees labelled with
agent names. Each goal tree records a top-level goal for an agent
as the root of a tree of subgoals, generated by a stack of currently
executing plan bodies. There can be multiple goal trees for each
agent. The inference rules then define the valid transitions on a
triple comprising this set of labelled goal trees, a set of group goal
state machines, and a time stamp. A local computation rule allows
local agent goal-tree transitions to proceed as usual, if they do not
involve an immediate local subgoal of a group goal that the agent
has not yet joined. A join goal rule allows an agent to begin a
subgoal of a non-failed group goal, and updates the state machine
for that group goal as defined in Figure 1. Local failure and lo-
cal success rules ensure that failure or success of an agent’s local
subgoal causes the state machine for the parent group goal to be
updated. Finally, group failure and group success rules react to a
group goal’s state machine reaching the failure or success state by
marking each agent’s local subgoal for that group goal as having
failed or succeeded. This allows the agents’ local computation to
handle this failure or success.

Using LTL model checking in Maude [2], we verified for the
two-agent case the desired relationships between individual sub-
goal and group goal failures and successes.

5. IMPLEMENTATION
We have implemented our semantics in a distributed setting by

using Apache ZooKeeper [4] to provide Jason agents, potentially
running on different hosts, with an eventually consistent view of

the state of their group goals. ZooKeeper is a high performance
coordination middleware system that maintains data objects repli-
cated across a set of servers. The data objects, known as znodes
are organised into a hierachical namespace like a file system, and
are designed to support the storage of coordination metadata in dis-
tributed applications. In our implementation, distributed Jason BDI
agents run within containers provided by the camel-agent middle-
ware [3]. This provides the ability for agent action invocations to
be delivered as messages to the Apache Camel message routing and
mediation engine [5], and for percepts to be delivered back to the
agents. Message processing “routes” written in Camel’s domain-
specific language interpret certain agent actions as ZooKeeper client
requests to update the state of group goals, while other routes de-
liver updates about their state to agents in the form of percepts. The
Camel routes collectively manage the representation of the state
machines for group goals as a collection of ZooKeeper znodes.
In particular, one master route, run repeatedly at a set frequency,
checks znodes representing the lists of agents who have begun and
completed their subgoals of a group goal, and updates the znode
encoding of the state machine’s state.

The semantics defined by our inference rules (outlined in Sec-
tion 4), are implemented by a standard set of plans that can be in-
cluded in the code defining a group plan (see line 1 in Figure 2).
These plans define (i) how to achieve the gg goal for beginning
a new group goal, (ii) how to handle percepts generated by Camel
routes (via camel-agent) to indicate the success or failure of a group
goal, and (iii) how to handle the Jason event signalling the failure
of an agent’s local subgoal for a group goal—this plan performs an
action to update ZooKeeper (via Camel) about this failure.

6. CONCLUSION
This paper has presented a model for coordinating the activities

of a group of BDI agents by providing them with shared group
plans containing group goals. These concepts provide an abstrac-
tion layer that removes the need for the programmer to provide ex-
plicit communication actions to share information about the agents’
failures and successes in pursuit of a larger goal. We defined the
lifecycle of group goals as a state machine and described formal
operational semantics for the interaction between the individual
agents’ BDI execution engines and a set of shared state machines
for the group goals. We also described an implementation of this
model using Jason and the industrial-strength coordination middle-
ware, Apache ZooKeeper.

REFERENCES
[1] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming

Multi-Agent Systems in AgentSpeak using Jason. Wiley, 2007.
[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,

J. Meseguer, and C. Talcott. The Maude 2.0 system. In
Rewriting Techniques and Applications, volume 2706 of
Lecture Notes in Computer Science, pages 76–87. Springer,
2003.

[3] S. Cranefield and S. Ranathunga. Embedding agents in
business processes using enterprise integration patterns. In
Engineering Multi-Agent Systems, volume 8245 of Lecture
Notes in Computer Science, pages 97–116. Springer, 2013.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In
Proceedings of the USENIX Annual Technical Conference.
USENIX Association, 2010.

[5] C. Ibsen and J. Anstey. Camel in Action. Manning, 2010.

1428

