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ABSTRACT
This paper focuses on finding optimal solutions to the multi-
agent path finding (MAPF) problem over undirected graphs
where the task is to find non-colliding paths for multiple
agents, each with a different start and goal position. An en-
coding of MAPF to Boolean satisfiability (SAT) is already
known to the makespan optimal variant of the problem. In
this paper we present the first SAT-solver for minimizing
the sum of costs enabled by introducing cardinality con-
straints into the SAT encoding. An experimental evaluation
on grid graphs indicate promising performance of the new
SAT-based method in comparison with the best variants of
previous sum-of-costs search solvers.
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1. INTRODUCTION AND BACKGROUND
The multi-agent path finding (MAPF) problem consists a

graph, G = (V,E) and a set ofm agents labeled a1, a2, . . . am,
where each agent ai has a start position in V and a goal po-
sition in V . Time is discretized into time points. At each
time step an agent can either move to an adjacent empty
location or wait in its current location. The task is to find
a valid solution, i.e., a sequence of move/wait actions for
each agent ai, moving it from the start to the goal position
such that agents do not conflict, i.e., do not occupy the same
location at the same time.

MAPF has many practical applications [3], and can model
many real-world problems in games, traffic control, robotics,
aviation and more. The scope of this paper is limited to the
centralized setting, in which we assume that the agents are
fully cooperative and centrally controlled.

MAPF is usually solved aiming at minimizing a global
cumulative cost function. Two such cost functions that are
commonly used in the literature are the sum of costs [8,
5, 4] and the makespan [9, 10]. The sum of costs is the
summation, over all agents, of the number of time steps
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required to reach the goal location while the makespan is
the maximum of the number of times steps over all agents.

Finding makespan optimal and sum-of-cost optimal solu-
tions are both NP-Hard [11, 9] as the state-space grows ex-
ponentially with m (# of agents). Therefore, many subopti-
mal solvers based on rules or relaxed search were developed
and are usually used when m is large [6, 1].

The focus of this paper is within the class of optimal
MAPF solvers. Research on optimal solutions sheds light
on the theoretical hardness of the problem and on its at-
tributes and characteristics. Optimal solvers are divided
into two main classes.

(1) Reduction-based solvers which reduce MAPF to prob-
lems such as CSP [3], SAT, Inductive Logic Programming [10]
(ILP) [11] and Answer Set Programming (ASP) [2]. These
papers mostly provide and prove a polynomial-time reduc-
tion from MAPF to these problems typically for the makespan
variant.

(2) Search-based solvers consider all the different ways to
place m agents into V vertices, one agent per vertex. Many
enhancements of the basic A*-based approach have been de-
veloped like Independence Detection and Operator Decompo-
sition [8]. Another approach is used in the increasing cost
tree search (ICTS) [5] and conflict based search algorithms
(CBS, MA-CBS, and ICBS [4]) - they use a two-level frame-
work where the search is divided between a more abstract
high-level and low-level which places agents to vertices ac-
cording to constraints from the high-level.

1.1 Contributions
Most of the search-based algorithms can be easily modi-

fied to the makespan variant by modifying the cost function
and the way the state-space is represented. By contrast,
the reduction-based algorithms are not trivially modified to
the sum-of-costs variant and sometimes a completely new
reduction is needed.

In this paper we address this challenge and develop the
first SAT-based solvers for the sum-of-costs variant which is
enabled by integrating so called cardinality constraint [7] for
bounding the sum-of-costs.

2. OPTIMAL COST MAPF SOLVING
A significant difficulty in applying SAT-based approach to

the sum of costs metric is the numeric character of this ob-
jective function, which contrasts with the modeling abilities
of the SAT paradigm where no numeric but only Boolean
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variables are available. Fortunately, the SAT modeling prac-
tice offers another technique that can be used for the purpose
of calculating and bounding the cost within SAT - cardinal-
ity constraints [7]. The cardinality constraint bounds the
number of propositional variables from the given set that
can be set to TRUE.

We integrated cardinality constraints into existing SAT-
approaches to makespan optimal MAPF solving to obtain
a cost optimal approach. Particularly, we adopted the core
concept of a time expansion graph (TEG) which is a graphi-
cal representation of agents’ arrangements at individual time-
steps. In TEG, the underlaying graph G is duplicated for all
time-steps from 0 up to the given bound. Each time expan-
sion in TEG corresponds to adding propositional variables
and constraints for a single time-step into the formula so
that any of possible arrangement of agents at that time step
can be represented. Constraints added as clauses into the
formula ensure that the formula is satisfiable if and only if
there is a solution of the given MAPF of makespan equal to
the number of time expansions.

By the simple strategy, that iteratively increases the num-
ber of time expansions [10] (that is, makespans 0, 1, 2, ... are
tried) until a satisfiable formula is obtained, the optimal
makespan can be calculated (the corresponding makespan
optimal solution can be extracted from the formula as well).

Furthermore, agent’s actions that have non-zero cost are
mapped to positive valuations of certain propositional vari-
ables. Bounding the number of these variables that are as-
signed TRUE by the cardinality constraint then leads to the
desirable bounding of the sum of costs. The search for op-
timal sum-of-costs is done in a similar way as in the case of
makespan optimal approach - cost bounds ξ0, ξ0+1, ξ0+2, ...
are tried, where ξ0 is the lower bound of the sum-of-costs
calculated as the sum of lengths of shortest path between
agent’s initial positions and goals. The cost bound increas-
ing strategy needs to be accompanied with increasing the
number of time expansions in the TEG (makespan bound)
so that any solution of the given cost can be represented in
the corresponding TEG.

3. EXPERIMENTAL EVALUATION
We performed experiments on 4-connected grids with ran-
domly placed obstacles, which are a standard MAPF bench-
mark [6]. Specifically, we experimented on 8 × 8, 16 × 16,
and 32 × 32 grids, in which 10% of the vertices are occu-
pied by an obstacle. The initial position of the agents were
randomly selected (all vertex had uniform probability).

Two variants of our novel encoding called BASIC-SAT and
MDD-SAT with several state-of-the-art search-based tech-
niques, namely the ICTS [5] and ICBS [4] were compared.
The MDD-SAT encoding uses the technique of MDD [5] to
reduce the size of TEG which consequently reduces the size
of the Boolean formulae.

1 The presented SAT-based approach was implemented in
C++. As a SAT solver, we used Glucose 3.0. The car-
dinality constraints were encoded using a standard circuit
based encoding called sequential counter in [7]. ICTS and
ICBS were implemented in C#, based on their original im-
plementation.

For each number of agents, we generated 10 random in-

1All experiments were performed on a computer with CPU
Xeon 2Ghz, 12 Gb of memory, and Linux kernel 3.5.0-48.

Figure 1: Success rate and runtime on 32 × 32 grid.

stances as explained above. Experimental results achieved
for the grid 32× 32 are presented in Figure 1. We measured
the number of problem instances solved by each algorithm
under a timeout of 512 seconds and the average runtime over
the cases that all the algorithms solved all the 10 instances.

4. DISCUSSION AND CONCLUSIONS
A trend observed in grid experiments is that our MDD-

SAT encoding solves more instances and for more agents
than all other algorithms. It indicates that SAT-based solvers
would be able to scale to denser and harder problems than
the search-based algorithms.

The runtime results suggest that while search-based solver
may be faster for sparse domains with a small number of
agents, the SAT encodings, and in particular MDD-SAT,
is expected to be the algorithm of choice for complicated
scenarios.
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