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ABSTRACT
We propose a multilayered multiagent simulator that can
simulate traffic in any urban environment on earth, subject
to specific weather conditions. We adopt an agent-based
approach for the behaviors of the vehicles and the drivers.
We additionally propose a behavioral model to realistically
emulate the driving behaviors of humans.
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1. INTRODUCTION
Multiagent systems have inspired an increasing number of

researchers from different domains. Their goal is to model
the real world in terms of autonomous agents that can pur-
posely interact with their external environment [13]. An
agent can basically gather information from the environ-
ment using sensors, while attempting to execute its objec-
tives using effectors [12]. In this paper, we propose a multi-
agent simulator that simulates traffic in an urban area sub-
ject to particular weather conditions. An inherent feature
of such complex system is its multilayered structure and
the nested levels of detail that compose it. Hence, we will
model our simulator in terms of multiple independent lay-
ers. Each layer processes a particular aspect of the simu-
lation through the interactions of its elements. A layer will
therefore be represented by a complex network of interacting
agents that communicate within that layer and possibly with
other layers. Multiagent traffic simulation has been exten-
sively studied since traffic and transportation management
require autonomic, collaborative, and reactive agents [1]. It
is within this perspective that we propose to simulate traffic
while adopting a multilayered multiagent architecture cou-
pled to behavioral agent simulation. This is in fact a way
to refine both microscopic and macroscopic aspects found
in many traffic simulators. Additionally, the availability of
data collected via sensors and mobile devices allows us to
better model human behaviors. For instance, this allows for
the analysis of driver behaviors and the underlying decision-
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making mechanisms [3, 9, 10, 11]. As a result, we can build
large-scale simulations by embedding the social interactions
and by elaborating fine-grained human behaviors [7]. The
resulting multiagent social simulation [2] is well suited to any
social context due to its ability to simulate pro-active behav-
iors, parallel computations [8], and dynamic micro scenarios
[6, 4]. Our motivation is to build a simulator that can em-
ulate traffic as well as any environmental factor that effects
traffic flow, routing, and even CO2 emission. Being able to
simulate weather is a novel way to approach traffic simula-
tion since it allows the reproduction of real-world scenarios
like traffic congestion in natural disaster situations. Such
simulator becomes a testbed for general-purpose computa-
tional intelligence and can be used for the benchmarking of
routing algorithms.

In section 2, we provide the architecture of the simulator.
In section 3, we cover the behavioral models. Finally, we
discuss the result.

2. SIMULATOR ARCHITECTURE

Figure 1: Architecture

The idea is to represent our complex system as a superpo-
sition of different layers. Each layer operates autonomously
with its internal threads, agents, graphical objects, data,
etc. The architecture of the simulator is illustrated in figure
1. We assume that the way vehicles navigate their space is
not specific to one particular Geographic Information Sys-
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tem (GIS). Particularly, There is an independence between
the actual simulation (Behavioral Models and Physical
Engine) and the corresponding GIS rendering. This is im-
portant when the renderer is complex, that is, when we are
not only rendering vehicles, but weather data, pedestrians,
snow, etc. This separation obeys the Dependency Inversion
Principle (DIP) in the sense that the physical simulation acts
as a high-level, abstract, or mathematical representation of
the phenomena we are trying to simulate, while the GIS ren-
dering is one possible way of rendering the traffic simulation.
Next, we provide the components of the architecture.

2.1 Physics Engine and Behavioral Models
The Physics Engine component provides an approxi-

mate simulation of the physics that underly traffic, motion
and the interactions between the agents (mostly collision de-
tection). This component performs the simulation in real-
time before rendering the result. The Behavioral Models
component describe the scenarios that govern the motion
of the vehicles and the behaviors of the drivers. The flow
from the Physics Engine and Behavioral Models towards the
OSM renderer is shown in figure 1 using the pink arrows.

2.2 Traffic Module
This module is composed of the 6 components. Walk-

ers component relates to the pedestrians and their mobility
generation and collision detection. Drivers contains rou-
tines related to driving, collision prediction, lights and lanes
assessment. Vehicles is to modulate the acceleration, di-
rection, location, friction, velocity, and breaking. Synchro-
nization tier updates the states of the traffic lights. Sen-
sors are the motion detectors and Map is the space where
the motion is generated.

2.3 Weather Module
Weather simulation is the generation of precipitation as

if it is detected by a Weather Surveillance Radar (WSR).
Additionally, it is possible to download this data in real-
time and render it directly onto the map.

2.4 Geographic Module
We adopt OpenStreetMap (OSM) [5] as a geographic ref-

erential. The rendering of the map relies on downloading
and updating OSM tiles. Such tiles correspond to an area of
the map and are loaded dynamically depending on where the
simulation is being run. We note that there are two maps: a
core map assigned to the physics engine, and a map to rep-
resent a real-world referential (OSM in our case). The core
map is used to run the simulation in real-time so that the
result is later rendered onto the second map (bottom pink
arrow in figure 1).

3. BEHAVIORAL MODELING
The behavioral models govern the agents mobility and the

actions allowed within the simulator. Herein, we mention
two types of behavioral models: driving and vehicle mobility.

3.1 Driving
The main feature that reflects the driving behavior of a

human is the velocity and the way it changes as function of
the turns. In fact, turns are an important indicator of the
driver’s mastery of the steering wheel (with angle λ) and its

physical effect on the vehicle. Thus, we can look at the turn-
ing angle θ comprised between the velocity and direction.
For instance, driving in a straight line corresponds to θ = 0
while a right turn corresponds to θ = π/2. The minimal and
maximal velocities of the vehicle are respectively ~v− and ~v+,
and define the driver’s spectrum of physically allowed veloc-
ities. A behavioral model is a specific way of mapping θ to a
velocity ~vθ. Figure 2 shows three behavioral models. v1 cor-
responds to what is perceived as a reckless driver since he
barely decelerates when performing right turns. v2 shows
a conservative driver since he decelerates drastically when
reaching right turns. v3 shows a standard driver. A be-
havior is invariant beyond π (U-turn), which justifies the
interval [0, π].

Figure 2: Behavioral Models ~v1, ~v2, and ~v3

3.2 Vehicle Mobility
Moving from point A to point B is reduced to a set of

calculations that update the motive force ~Fm, friction ~Ff ,

acceleration ~a, velocity ~v, direction ~d, and the location x.
~d is updated to α~d + 1

L
(‖~v‖um)sin(λπ

3
)p 180

π
with λ being

the steering wheel angle, L the vehicle wheelbase, um the
number of units per meter, p the simulation step, and α~d
is the angle of ~d. ~v is updated to ~d ‖~v‖ + ~ap. Based on

Newton’s second law, ~a is set to 1
m

(~Fm + ~Ff ). Updating all
the forces requires updating the friction force whenever the

driver breaks according to ~Ff ← −~d~amax with ~amax being
the maximal acceleration. x is updated to x+ ~vump.

4. DISCUSSION
The user can macroscopically switch between the views

(Aerial view, OpenStreetMap view, Grid view) of the sim-
ulation by altering the opacity of the layer. It is possible
to configure the simulations and specify the desired scenario
by providing three XML files. The first file specifies the
simulation geographic area. The second file specifies the
driving behaviors of each driver by assigning a velocity to
a turning angle λ. The third file specifies for each vehicle
the starting point, the itinerary, and the driver’s type. The
separation between the layers allows the simulations to be
scalable in the number of vehicles, despite the complexity of
their behaviors. Furthermore, running the physical calcula-
tions within one monolithic component allows us to render
all the results faster than if each layer had to separately
perform complex physical computations. The simulator can
additionally generate rich datasets corresponding to the ve-
hicles physical processes (location, velocity, predictions), the
drivers actions, and the weather effects of the overall traffic
simulation.
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