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ABSTRACT
My research is focused on modeling optimal decision making in
partially observable multiagent environments. I began with an inves-
tigation into the cognitive biases that induce subnormative behavior
in humans playing games online in multiagent settings, leveraging
well-known computational psychology approaches in modeling hu-
mans playing a strategic, sequential game. My subsequent work was
in a scalable extension to Monte Carlo exploring starts for POMDPs
(MCES-P), where I expanded the theory and algorithm to the multi-
agent setting. I first introduced a straightforward application with
probably approximately correct guarantees (MCESP+PAC), and
then introduced a more sample efficient partially model-based frame-
work (MCESIP+PAC) that explicitly modeled the opponent.
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1. INTRODUCTION
Arriving at optimal policies in single agent partially observable en-

vironments can be computationally taxing, but is significantly more
so with the introduction of other agents who may have an impact
on the environment as well. Exact solutions in all but the simplest
domains may be far too intractable with conventional methodologies.
I utilize online reinforcement learning (RL) as my departure point
for partially observable multiagent settings.

My first investigation into RL was identifying whether humans
utilized a reinforcement learning approach when evaluating their
prospects of success in strategic, sequential games [1]. As a primary
effort, I parameterized Q-learning utilizing known behavioral cogni-
tive biases, including forgetfulness and erroneously ascribing reward
to neighboring states. In addition, I implemented subproportional
weighting a la prospect theory to represent humans misrepresenting
probability judgments.

My recent efforts involve generalized frameworks for arriving at
optimal policies in partially observable multiagent settings, while
additionally providing statistical guarantees via probably approxi-
mately correct learning. I extend Monte Carlo Exploring Starts for
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POMDPs [2] with PAC bounds to the multiagent setting. I then add
a partially model-based component explicitly modeling opponent
behavior and show it dramatically reduces sample requirements. In
addition, I customize ε-pruning to improve runtime.

2. MODELING HUMANS WITH BEHAVIORAL
Q-LEARNING

My first work is concerned with the phenomenon of non-normative
behavior in human subjects when engaging in strategic environments.
I computationally model the effects of three cognitive biases on rein-
forcement learning: forgetfulness (erroneously discounting previous
experience), reward spill over (where subjects attribute experiences
in one state to a neighboring state as well), and subproportional
weighting (from prospect theory, where probability assessments are
categorically under- or over-weighted).

Figure 1: UAV problem domain, with the subject following a
predefined path and the predator visible only initially.

In conjunction with the psychology department at my university,
we conducted a series of experiments where subjects observed a
UAV navigating in a 4x4 grid between a known start and goal sector.
However, the environment included a predator UAV who, when
arriving in the same sector as the subject UAV, would end the game
in a loss. The predator’s position is only known in the first step of
the game.

I leveraged three parameters in our behavioral reinforcement
learning model. α is the learning rate which normally appears in
Q-learning. φ is an additional depreciation parameter affecting only
the previous Q-value. ε represents the proportion of the reward that
should be equally attributed to neighboring policies, where Eq. 1
represents the proportion given to the sector where the reward was
experienced and Eq. 2 are the spilled-over states. Equation 3 is
Prelec’s one-parameter subproportional weighting. The state in our
setting is the joint physical location of the subject and the predator
UAVs.

1532



Q(s, π(s)) = φ ·Q(s, π(s)) + α((1− ε)r(s) + γ ·Q(s′, π(s′))
−φ ·Q(s, π(s)))

(1)

Q(sn, π(s)) = φ·Q(sn, π(s))+α(ε·r(s)−φ·Q(sn, π(s))) (2)

w(p) = e−(−ln(p))β (3)

I tested the predictive capabilities of the normative and behavioral
models using Nelder-Mead downhill simplex with 5-fold cross-
validation using 43 participants playing 20 trials each.

Model total SSD
Behavioral Q-learning + Weighting 401.36
Default Q-learning + Weighting 406.26
Behavioral Q-learning 409.25
Default Q-learning 416.41

Table 1: Behavioral Q-learning with probability weighting
shows the best fit and the differences are significant.

3. RL IN PARTIALLY OBSERVABLE MUL-
TIAGENT ENVIRONMENTS

I extend Perkins’ Monte Carlo exploring starts for POMDPs [2]
(MCES-P) to multiagent domains with public observations of the
environment and private observations of other agents’ actions. The
setting is non-cooperative, akin to the Interactive POMDP [3]. This
extension, unlike the majority of the state of the art, does not require
communication or collaboration between agents.

I first introduce canonical MCES-P to the multiagent setting,
adapting the algorithm to allow private observations, and show that
the probably approximately correct bounds also hold, albeit with a
larger policy space. MCESP+PAC obtains action-values for poli-
cies using sampled trajectories and compares neighboring policies
(that is, policies that differ by an action in only one observation
sequence) to determine dominating transformations in the local
neighborhood. In order to guarantee this transformation dominates,
MCESP+PAC requires exactly km ←

⌈
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samples for each policy, where m is the number of transforma-
tions already taken and δm = 6δ/(m2π2), and the neighbor must
dominate the original policy by at least epsilon. Λ is the range of
possible rewards, defined in MCES-P as 2T (Rmax −Rmin). The
algorithm can determine a better neighbor in less than km samples
if, after each policy has p samples after m transformations, the

neighbor dominates by ε(m, p)← Λ
√
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δm

.
MCES for I-POMDPs with PAC bounds (MCESIP+PAC) adds a

partially model-based component of explicit models of the opponent
and requires dramatically fewer samples than MCES-P for the same
configuration and arriving at the same locally-optimal policy. Since
MCES-IP maintains a belief over opponent models, the range of
rewards is smaller, since it is limited to the rewards achievable for a
specific action the opponent takes, which we dub Λāj .

Lastly, I provide a custom ε-pruning methodology for MCES-P
and MCES-IP, referred to as observation sequence pruning, that
dramatically reduces the runtime in lieu of introducing bounded
regret on the reward lost from foregone transformations. Since
sampling some of the observation sequences can be quite costly due
to their relative rarity, and since the same observation sequences
have limited impact on the reward due to their infrequency, pruning
is a powerful technique for speeding up Monte Carlo exploring
starts. Given a proportion of allowable regret φ (around 15-20%

in our experiments), the maximum regret introduced by foregoing
transformations cannot exceed φ, such that

∑
~oi∈P

¯regret~oi ≤ φ.

We ran over 200 trials for two problem domains: the multiagent
Tiger problem and a 3x2 Autonomous UAV problem, where the
subject is a predator seeking the opponent (prey) before they arrive
at the goal sector. In almost every case, MCES-IP arrived at the
same policy as MCES-P, but did so in significantly fewer samples.

Method Policy
Mean # of samples

per transform
Mean

bound on km

MCESP+PAC Single 102,775 ± 44,468 271,478 ± 28,310
Mixed 142,137 ± 54,361 262,711 ± 58,315

MCESIP+PAC Single 50,154 ± 16,979 119,859 ± 11,743
Mixed 82,940 ± 39,384 118,888 ± 9,283

Method Policy
Mean # of samples

per transform
Mean

bound on km

MCESP+PAC Single 48,325 ± 21,694 96,877 ± 8,308
Mixed 46,210 ± 31,505 108,449 ± 11,314

MCESIP+PAC Single 14,111 ± 4,488 20,843 ± 1,948
Mixed 14,191 ± 3,475 19,893 ± 2,007

Table 2: Mean effective sample size and theoretical bound across the
stages for the multiagent Tiger problem (top) and the 3×2 AUAV (bot-
tom) problem, stratified over method and opponent model type.

4. FUTURE WORK
My final effort involves first introducing the same PAC bounds

and optimal policy search present in MCES-P/MCES-IP to the
cooperative Multiagent POMDP (MPOMDP) [4] setting (MCES-
IP). In this setting we consider the environment where n agents
with private observations of the environment communicate with a
centralized controller that iterates and tests a series of joint policies,
arriving at a mutually-optimal set of policies for each individual
agent. I will then follow up with a work on introducing new sam-
pling techniques in order to further improve the runtime of each
framework without impacting the overall optimality of the converged
policies.
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