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ABSTRACT
Game theoretic models of security, and associated compu-
tational methods, have emerged as critical components of
security posture across a broad array of domains, including
airport security and coast guard. These approaches consider
terrorists as motivated but independent entities. There is,
however, increasing evidence that attackers, be it terrorists
or cyber attackers, communicate extensively and form coali-
tions that can dramatically increase their ability to achieve
malicious goals. To date, such cooperative decision making
among attackers has been ignored in the security games lit-
erature. To address the issue of cooperation among attack-
ers, we introduce a novel coalitional security game (CSG)
model. A CSG consists of a set of attackers connected by a
(communication or trust) network who can form coalitions
as connected subgraphs of this network so as to attack a col-
lection of targets. A defender in a CSG can delete a set of
edges, incurring a cost for deleting each edge, with the goal
of optimally limiting the attackers’ ability to form effective
coalitions (in terms of successfully attacking high value tar-
gets). We first show that a CSG is, in general, hard to
approximate. Nevertheless, we develop a novel branch and
price algorithm, leveraging a combination of column gener-
ation, relaxation, greedy approximation, and stabilization
methods to enable scalable high-quality approximations of
CSG solutions on realistic problem instances.
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1. INTRODUCTION
Recent decades have seen a number of major terrorist at-

tacks, such as WTC 9/11 attack, Jemaah Islamiyahs Bali
bombing, and 7/7 London bombing, that have killed thou-
sands of lives and caused significant economic losses. An
important reason for the increasing threat of terrorism is co-
operation between terrorist groups [22]. For example, three
terrorist groups in Africa have been reported to share funds,
training, and explosive materials with each other [27], and
Chechen terrorists were reported to obtain weapons from
terrorist organizations in the Middle East [19]. Such shar-
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ing of skills and resources among terrorist groups is common
because it significantly increases their capability of achieving
malicious goals, such as attacking high-value targets.

An important way to prevent individual terrorist groups
from forming powerful coalitions is to cut off connections
between them. This can be done by blocking their bank ac-
counts, increasing surveillance of strategic exchange points,
setting sentries in arterial roads, etc. However, since it is
impractical to block all possible ways attackers can commu-
nicate, a central decision problem is to choose a subset of
such connections to block so as to minimize expected effi-
cacy of formed coalitions and resulting attacks. Addressing
this problem entails several challenges: i) the set of possible
combinations of edges to cut is exponential in the number
of connections among attackers; ii) the number of possible
coalitions to account for is exponential in the number of at-
tackers; iii) coalition stability is an important consideration
in assessing which coalitions will form, and it significantly
increases problem difficulty; iv) the decision space of attack-
ers includes the choice of targets to attack, which must also
be accounted for by the defender.

While there is existing research on terrorist networks, it
has been limited in scope to either social network analysis of
terrorist groups [13, 29, 21, 12], or using cooperative game
theory as a means for identifying key members of terrorist
networks [17, 18]. The related research in security games,
on the other hand, tends to model attackers as independent
actors (indeed, only a single attack by a single attacker or
group is typically considered) [30, 11, 31, 15, 32, 35, 10, 34,
33]. The ability and proclivity of attackers to form coalitions
is thus largely ignored within the security games research.

To address the problem of optimally inhibiting formation
of attack coalitions, we introduce a formal Coalitional Secu-
rity Game (CSG) model. We show that the associated prob-
lem is MAX SNP-hard for the defender, indicating no poly-
nomial time approximation scheme unless P=NP, and the
decision problem is NP-hard for the attackers. To overcome
the computational challenges, we develop a sophisticated
branch and price algorithm, involving a novel combination
of column generation and linear programming relaxation.
Since the slave problem of column generation is formulat-
ed as a bilevel mixed-integer linear program (BMILP), we
further improve the performance of the algorithm by using
a novel linear relaxation approximation to reformulate the
slave problem as an easily solvable single level MILP with
formal constant factor approximation guarantee. Further-
more, we provide an interior-point stabilization to improve
convergence properties of column generation by generating
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Figure 1: Mideast Terrorist Network [1].

an interior dual optimal solution of the master problem, and
novel heuristics for generating multiple columns in each it-
eration to support the linear relaxation approximation and
further speed up the column generation. Extensive exper-
imental results show that our algorithms 1) provide orders
of magnitude improvement in speed over the exact integer
programming solution; 2) enable scalable high-quality ap-
proximation solutions of realistic CSG problem instances,
outperforming existing classic heuristic search algorithms
significantly; and 3) are remarkably robust against uncer-
tainties of attackers’ payoffs.

2. MOTIVATING DOMAIN
Cooperation among terrorist groups is common and neces-

sary for their survival. During the past few decades, almost
half of terrorist groups have had an ally [22]. Various kinds
of cooperation are found among them, including transferring
funds, weapons support, training, and other sharing of criti-
cal skills and resources. For example, the Al-Taqwa banking
system financed the activities of multiple terrorist organiza-
tions, including Hamas [16]. Levitt [16] pointed out that
there is significant overlap and cooperation between Pales-
tinian terrorist groups like Hamas and other groups, such as
al-Qaeda in the area of terrorist financing and logistical sup-
port. In 2000, Al-Qaeda held training camps which served
as open universities, educating terrorists from a wide ar-
ray of local and international terrorist groups [24]. Terrorist
groups also cooperate with each other to coordinate attacks.
For example, the Popular Resistance Committee (PRC) is a
conglomeration of members of Islamic Jihad, Hamas and the
various terrorist groups, and has conducted several infamous
terrorist attacks, including the roadside bombing attack in
February 14, 2002 [4].

Since cooperation among terrorist groups is achieved
through communication channels, such as front companies,
charities for transferring funds [16], and transportation hub-
s including roadways, ports, and rivers for weapon supply,
training, and coordinated attacks, an important measure for
preventing terrorist groups from forming coalitions is to cut
off connections among them. For example, in 2003, FBI
Assistant Director John Pistole testified to Congress that
investigations into the financial activities of terrorist sup-
porters in the United States helped prevent four different
terrorist attacks abroad [23]. Moreover, the US strategy for
combating terrorism asserts that “The interconnected nature
of terrorist organizations necessitates that we pursue them
across the geographic spectrum to ensure that all linkages

between the strong and the weak organizations are broken,
leaving each of them isolated, exposed, and vulnerable to de-
feat” [6].

In order to cut connections among terrorist groups, secu-
rity agencies can shut down the front companies and char-
ities, which are providing and transferring money for ter-
rorist groups, to stem the flow of funds between terrorist
groups [16]. Besides, blocking critical transportation hubs
can significantly reduce efficiency of coordination attempts
such as weapon support and terrorist training. Nevertheless,
activities aimed at inhibiting communication among attack-
ers, such as blocking roadways by setting sentries are costly,
and it is infeasible to cut all the connections among terrorist
groups. This motivates our investigation of optimal alloca-
tion of security resources to block attacker linkages, taking
into account the associated costs, as well as the nature of
coalitions that would form as a result.

3. COALITIONAL SECURITY GAMES
A coalitional security game (CSG) is modeled based on

the coalitional skill game [2], and consists of T types of tar-
gets, each with a large number of copies, which is reasonable
since there is a large pool of potential targets of terrorism
around the world. There is a set N of terrorists (individuals
or groups) who want to attack these targets. Each terror-
ist i has a set Si of skills, and attacking a target of type
t ∈ T requires a set S(t) of skills. Let S =

⋃
i∈N Si. We

assume S(t) ⊆ S for all t ∈ T without loss of generality.
Each type t ∈ T has a value pt > 0 for the terrorists. Typi-
cally, each terrorist i has a capacity mis ∈ N for each of his
skills s ∈ Si, so that he can use s in at most mis attacks.
For example, a terrorist can provide weapons for a certain
number of terrorist attacks.

The terrorists form coalitions to share skills to launch
more attacks. Similar to existing work [18], we use a graph
G = (N,E) to represent the cooperation network of ter-
rorists, where N is the set of terrorists and E is the set of
edges representing connections between pairs of terrorists.
We denote by (i, j) an edge connecting terrorists i and j. A
set C ⊆ N of terrorists can form into a coalition only when
the induced subgraph GC = (C,E(C)) is connected, where
E(C) = {(i, j) ∈ E|i ∈ C, j ∈ C}. We use the set C to
represent the coalition formed.

A terrorist coalition can choose multiple targets to at-
tack simultaneously, so long as it possesses sufficient required
skills and resources. For example, in 2008, a group of ter-
rorists carried out a series of twelve coordinated shooting
and bombing attacks in Mumbai [14], and in the September
11 attack, 4 airplanes were hijacked to attack several tar-
gets in 3 different cities. We model these types of threats
through the definition of the value of a coalition. Formally,
let a = 〈at〉 be an attacking plan of a coalition C, where at
is the number of targets of type t that coalition C plans to
attack. An attacking plan a is feasible if∑

t∈T, s∈S(t)
at ≤

∑
i∈C, s∈Si

mis, ∀s ∈ S, (1)

The payoff u(a) for an attacking plan a is the sum of values
of all targets attacked, i.e., u(a) =

∑
t atpt. We assume that

terrorists are utility-maximizers. Thus, once a coalition is
formed, they choose an attack plan which maximizes payoff
over all feasible plans.

v(C) = maxa: satisfying Eq.(1) u(a). (2)
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The value v(C) of a coalition C is defined as the maximum
achievable payoff in Eq.(2). We use a payoff vector y =
〈yi〉≥ 0 to denote the payoff for each terrorist i. A payoff
vector represents how the value of every coalition is divided
among their members, so that for a coalition structure CS
(i.e., a partition of N into disjoint coalitions) we require∑

i∈C yi ≤ v(C) for any C ∈ CS. The pair (CS,y) is called
an outcome of a coalitional game.

3.1 Stable Coalition Structure
Since the terrorists are self-interested and profit driven,

we assume that a coalition structure CS formed by attackers
must be stable in the sense that any subset of attackers has
no (or little) incentive to break off into another coalition for
higher payoff. To enforce coalition structure stability, we
adopt the widely-used solution concept of ε-core [7].

Definition 1 (ε-core). The ε-core, for ε > 0, is the
set of all outcomes (CS,y) such that for any coalition C ⊆
N ,

∑
i∈C yi ≥ v(C)− ε.

Attackers always prefer the outcome in ε-core with as lower
ε value as possible, and the minimal value ε∗ for which the
ε-core is non-empty is called the least-core value of the game,
with the corresponding ε∗-core called the least-core. For a
coalition structure CS, if there exists an outcome (CS,y)
in the least-core, we call CS a stable coalition structure. Al-
though computing the least-core is extremely hard for gener-
al coalitional games [7], given the coalition value function v
defined in Eq.(2), the coalitional game turns out to be super-
additive (Lemma 1). In this case, the attackers are willing
to form as large coalitions as they can, and the coalition
structure CS∗, whose induced subgraphs are all connected
components, is a stable coalition structure (Lemma 2).

Lemma 1. Given the value function defined in Eq.(2), the
terrorists’ coalitional game G = (N, v) is superadditive, i.e.,
v(C ∪D) ≥ v(C) + v(D) for every pair of disjoint coalitions
C,D ⊆ N .

Proof. For any pair of disjoint coalitions C,D ⊆ N , let
aC and aD be the corresponding optimal attacking plans,
and v(C) =

∑
t a

C
t pt and v(D) =

∑
t a

D
t pt. For coalition

C ∪ D, the attacking plan aC∪D, where aC∪Dt = aCt + aDt ,
is feasible since

∑
t∈T, s∈S(t)(a

C
t + aDt ) ≤

∑
i∈C∪D, s∈Si

mis

∀s ∈ S. Therefore, v(C ∪D) ≥ v(C) + v(D).

Lemma 2. The coalition structure consisting of all coali-
tions whose induced subgraphs are connected components of
graph G(N,E) is a stable coalition structure, and it has the
maximum total value among all coalition structures.

Proof. Since a coalition cannot be formed by terrorists
in different connected components of G, we can consider
each connected component independently.

Let G′ = (N ′, E′) be a connected component of G. Let
(CS,y) be an outcome of G′ in the least-core. Now if all
terrorists in G′ forms into one coalition N ′ (i.e., the grand
coalition whose induced subgraph is G′), we have v(N ′) ≥∑

C∈CS v(C) due to superadditivity. Therefore, we obtain

a new outcome (CS∗,y∗) = ({N ′},y +
v(N′)−

∑
C∈CS v(C)

|N′| ),

such that y∗ � y and
∑

i∈C y
∗
i ≥

∑
i∈C yi ≥ v(C) − ε∗ >

0 for all C ⊆ N ′. This means (CS∗,y∗) is in the least-
core of G′. Obviously, CS∗ has the maximum value since
v(N ′) ≥

∑
C∈CS v(C) holds for arbitrary CS. Applying the

result to all connected components, we can obtain a stable
coalition structure consisting of all coalitions whose induced
subgraphs are connected components of G.

3.2 Defender Strategy
The defender’s goal is to optimally cut off connections

within terrorists to minimize threat due to attacks by formed
coalitions. We use a symmetric matrix B = 〈Bij〉 to repre-
sent the defender’s strategy, such that Bij = 1 if edge (i, j) is
blocked and Bij = 0 otherwise. We let Bii = 0 for all i ∈ N .
Blocking an edge (i, j) incurs a cost, λij . When the defend-
er adopts strategy B, the blocked edges are removed from
the network, resulting in a new network G(B) = (N,E(B))
where E(B) = E\{(i, j) ∈ E|Bij = 1}. Given B, the at-
tackers play a coalitional skill game on the induced graph
G(B) = (N,E(B)), and form a coalition structure CS∗(B)
consisting of all coalitions whose induced subgraphs are con-
nected components of G(B). The defender’s utility is then

Ud(B) = −
∑

C∈CS∗(B)
v(C)−

∑
(i,j)∈E

Bijλij

4. COMPLEXITY ANALYSIS
We first investigate the computational complexity of find-

ing the optimal strategies for both the defender and the
attackers, and show that the defender’s and the attackers’
decision-making problems are MAX SNP-hard and NP-hard
respectively.

4.1 Defender’s Decision-Making Problem
We reduce the k-TERMINAL CUT problem [8], whose

MAX SNP-hardness has been proved for any fixed k ≥ 3, to
the defender’s decision-making problem by a linear reduction
which preserves the approximation property (MAX SNP-
hardness) [20]. The following definitions will be useful to
introduce our key result (Theorem 1).

Definition 2 (k-TERMINAL CUT). Given a graph
G = (N,E), a set H={h1, · · · , hk} of k specified vertices or
terminals, and a positive weight wij for each edge (i, j) ∈ E,
find a minimum weight set of edges E∗ ⊆ E such that the
removal of E∗ from E disconnects each terminal from all the
other terminals.

Definition 3 (Linear reduction). Let A and B be
two optimization problems (either maximization or mini-
mization). We say that A linearly reduces to B if there are
two polynomial time algorithms f and g and constants α,
β > 0 such that:

1. Given an instance a of A, algorithm f produces an
instance b = f(a) of B such that the cost (objective
value) of an optimal solution for b, opt(b), is at most
α · opt(a).

2. Given a, b = f(a), and any solution y of b, algorithm g
produces a solution x of a such that |cost(x)−opt(a)| ≤
β|cost(y)− opt(b)|, where cost(x) and cost(y) refer to
the objective values of x and y.

Theorem 1. Finding an optimal defender strategy for a
coalitional security game is MAX SNP-hard.

Proof. W.l.o.g, we apply linear reduction to reduce
3-TERMINAL CUT problem to the defender’s decision-
making problem. Let a and b be instances of 3-TERMINAL
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CUT and defender’s decision-making problem respectively.
Let E′ and B be solutions for a and b correspondingly, and
opt(a), opt(b) are costs of the optimal solutions for a and
b respectively, i.e., the costs of optimal cuts E∗ and opti-
mal defender strategy B∗. We first present a polynomial
time algorithm f to reduce 3-TERMINAL CUT to defend-
er’s decision-making problem. Here for any input instance
a = 〈G,H,w〉, f outputs an instance b of defender’s decision-
making problem with the following components.

1. G as the cooperation network, and N (nodes of G)
as the set of terrorists. The blocking cost λij of edge
(i, j) ∈ E equals to wij .

2. S = {s1, s2, s3, s4} as the skill set; Sh1 = {s1, s4},
Sh2 = {s2, s4} and Sh3 = {s3, s4} as skills for terror-
ists h1, h2 and h3 who are referred to as the terminal
attackers; Si = {s4} as skill for all the other terrorists
i /∈ {h1, h2, h3}; and mis = 1 for all i ∈ N , s ∈ S.

3. A set T of four target types {t1, t2, t3, t4} with S(t1) =
{s1, s2, s4}, S(t2) = {s1, s3, s4}, S(t3) = {s2, s3, s4}
and S(t4) = {s1, s2, s3, s4}; p1 = p2 = p3 = M >
Wmax·|E| and p4 = 2M where Wmax = max(i,j)∈E λij .

Obviously, f reduces a to b in polynomial time. For a giv-
en defender strategy B, the cost (defender’s total loss) is

cost(B) =
∑

(i,j)∈E wijBij + F̃B, where F̃B = 0 if any pair

of terminal attackers are not connected under B, F̃B = M
if any two terminal attackers are connected while the rest

one is disconnected to both of them, and F̃B = 2M if all
three terminals are connected. Then we can have a polyno-
mial time algorithm g, which simply constructs a solution
E′ = {(i, j)|Bij = 1} for a from the solution B of b = f(a).

Next, we will show that there exists a constant α such
that opt(b), is at most α ·opt(a). Let the optimal solution of
a be E∗, i.e., opt(a) =

∑
(i,j)∈E∗ wij . Let B∗ be a solution

of b, such that B∗ij = 1 if (i, j) ∈ E∗, and B∗ij = 0 otherwise.
We show by contradiction that B∗ is optimal for b.

Suppose the optimal defender strategy is another one B.

We have cost(B∗)−cost(B) =
∑

(i,j)∈E wij(B
∗
ij−Bij)− F̃B

since F̃B∗ = 0. If F̃B = 0, which means that any two termi-
nals are not connected under B, then according to the fact
that E∗ is the minimum weight set of edges such that the re-
moval of them disconnects each terminal from all the others,
we have cost(B∗)− cost(B) =

∑
(i,j)∈E wij(B

∗
ij −Bij) ≤ 0,

which means that B∗ is optimal. Otherwise, F̃B 6= 0, we

have F̃B ≥ M > Wmax · |E|. It follows that cost(B∗) −
cost(B) <

∑
(i,j)∈E wijB

∗
ij −Wmax · |E| ≤ 0, which contra-

dicts that B is optimal. We conclude that B∗ is optimal to
b. Therefore, α = 1 is a satisfying constant.

Finally, when β = 1, |cost(E′) − opt(a)| ≤ |cost(E′) +

F̃B−opt(a)| = β|cost(B)−opt(b)| holds for any B. We con-
clude that the transformation is a linear reduction, and the
defender’s decision-making problem is MAX SNP-hard.

Theorem 1 indicates that computing an optimal defender
strategy does not admit a polynomial time approximation
scheme unless P=NP. Indeed, what makes the defender’s
problem particularly challenging is the fact that the attack-
er’s problem is hard as well, as we will demonstrate later.

4.2 Attackers’ Decision-Making Problem
For a given coalition C, the attackers’ decision-making

problem of choosing the optimal attacking plan a is NP-
hard, as the following theorem asserts.

Theorem 2. Computing the attackers’ optimal attacking
plan is NP-hard.

Proof. We reduce EXACT-COVER, an NP-complete
problem, to coalition’s decision-making problem. The
EXACT-COVER is defined as follows: Given a finite set
Q and a collection CQ of subsets of Q, does CQ contain an
exact cover for Q, i.e., a subcollection CQ′ ⊆ CQ such that
every element in Q occurs in exactly one member of CQ′?

The reduction can be done as follows. First, let the set of
skills S = Q, and the number of attackers |C| = |Q|. For
each attacker i, let Si = {si}. For each member Qj ∈ CQ,
we assign a target tj into T with S(tj) = {si|qi ∈ Qj},
where qi is the i-th element of Q, with value pj = |S(tj)|.
Let mis = 1 for any attacker i and skill s.

Next, we show that the optimal attacking plan a satisfies
u(a) ≥ |Q| iff EXACT-COVER has a “yes” solution.

If direction: If there exists a “yes” solution to EXACT-
COVER and CQ∗ is the corresponding exact cover of Q,
then the attacking plan a, where aj = 1 when Qj ∈ CQ∗,
and aj = 0 otherwise, satisfies u(a) ≥ |Q| since u(a) =∑

j ajpj =
∑

Qj∈CQ∗ |S(tj)| = |Q|.
Only if direction: The attacker has an optimal attack-

ing plan a satisfying u(a) ≥ |Q| only if EXACT-COVER has
a “yes” solution. According to Eq.(1), any attacking plan a
attacking two targets t′, t′′ such that S(t′)∩S(t′′) 6= ∅ is not
feasible since at′ + at′′ >

∑
i∈C, s∈Si

mis = 1 for s ∈ S(t′)

and s ∈ S(t′′). Thus u(a) < |Q| holds for any feasible at-
tacking plan if CQ has no exact cover for Q.

Therefore, we conclude that computing the optimal plan
a for attackers is NP-hard.

Despite these rather negative results, we nevertheless under-
take the task of devising a method for computing optimal
CSG solutions, showing the challenges can be overcome for
realistic problem instances, even if not in the worst case.

5. SOLUTION APPROACH
We now turn to the computational issues in CSGs. We

first propose an integer program (IP) to solve it exactly. Be-
cause the IP has an exponentially many variables, we pro-
pose a branch and price algorithm to tackle it.

5.1 Coalition Enumeration Approach
We start with the IP computing the optimal solution.

Suppose C is the set of all coalitions for which the induced
subgraphs on G = (N,E) are connected, and Ck ∈ C is the
kth coalition in C with coalition value denoted by vk. Let
αki = 1 if i ∈ Ck and αki = 0 otherwise. Let the bina-
ry variables x represent the attackers’ strategy of forming a
coalition structure CS, such that xk = 1 iff Ck ∈ CS. If we
suppose that all coalitions in C as well as their associated
values have been precomputed, the defender’s optimization
problem can be formulated as the following integer program,
with the objective of minimizing the defender’s loss and E-
qs.(3b)–(3c) restricting the stable coalition structure:

min
x,B

∑
Ck∈C

vkxk +
∑

(i,j)∈E
Bijλij (3a)
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s.t.
∑

Ck∈C
αkixk = 1 i ∈ N (3b)∑

Ck∈C
αkiαkjxk ≥ 1−Bij (i, j) ∈ E (3c)

x ∈ {0, 1}|C|,B ∈ {0, 1}|N|×|N| (3d)

Eq.(3b) ensures that each attacker is in exactly one coalition,
so that CS denoted by x is a partition of N . Eq.(3c) means
that once an edge (i, j) ∈ E is not blocked by the defender,
i.e., Bij = 0, then i and j must be in the same coalition of
CS. Let CB be the set of coalitions whose induced subgraphs
are connected components of G(B). According to Eqs.(3b)–
(3c), for a feasible solution x, xk = 1 if and only if Ck ∈ CB
or Ck is a superset of several coalitions in CB. With the
superadditive coalition’s value and the minimizing objective,
the solution x with xk = 1 for Ck ∈ CB is always optimal for
a fixed defender strategy B, corresponding with Lemma 2.
Although IP (3) can obtain the optimal defender strategy
B∗, it has exponentially many (|C| + |E|) variables, which
makes it impossible to scale up to large game instances with
standard branch and cut method adopted by popular com-
mercial solvers, such as CPLEX. Therefore, we propose a
branch and price framework, which combines branch and
bound and column generation.

5.2 Branch and Price Framework
Before we introduce our branch and price framework, the

following lemma shows that the exponentially large number
of binary variables x in IP (3) can be relaxed without sacri-
ficing optimality (note that B remains to be binary). This
observation will be useful to significantly reduce the size of
the branch and bound tree.

Lemma 3. The formulation (3) is equivalent to its relaxed
formulation where x is continuous.1

Figure 2 shows the flow of the branch and price framework.
The left part of the figure shows the classic branch and
bound tree of solving IP (3) (with x being relaxed), where
the root node in the tree corresponds to the IP (3) and it
keeps an upper bound (UB) on its optimal objective, which
can be the objective value of any feasible solution of IP (3).
For each created node (an integer program), a lower bound
(LB) is obtained by further relaxing variable B. We refer to
the fully relaxed formulation LP relaxation, and denote by
B̃∗ its optimal solution. Two basic operators in branch and
bound are pruning and branching. A node is pruned once
its LB is not less than UB or B̃∗ is integral. Otherwise, the
branching operator will be conducted on a fractional vari-
able Bij in B̃∗, and two child nodes will be created, one by
fixing Bij to 0 and the other with Bij = 1. Once a node
happens to obtain an LB with B̃∗ being integral, the UB
of root node will be updated as UB = min{LB,UB}. The
method terminates when all leaf nodes are pruned, and the
final UB of root node will be equal to the optimum of IP (3).

Since the LP relaxation of each node in the branch and
bound tree has an exponential number of variables, we use
column generation to iteratively compute LB and B̃∗ as
illustrated by the right part of the Figure 2. Column gener-
ation begins by a master LP with a small subset of variables,
and solves the slave problem to add new column(s) or vari-
able(s) with negative reduced cost(s) to the master LP, then
1Please see online Appendix A for the proof of Lemma 3
available at: http://www.ntu.edu.sg/home/boan/papers/
AAMAS16_Coalition_Appendix.pdf

Figure 2: Branch and Price Framework.

resolves the master LP, repeating until no such column(s)
exists. The column generation approach terminates with
the optimal relaxed solution B̃∗.

The central challenge and novelty of any column genera-
tion approach is how to efficiently compute which columns
to add, and to guarantee that when this computation adds
no new columns, the solution is optimal. The issues involved
in adapting a column generation method to our setting are
sufficiently non-trivial as to warrant a separate section.

6. COLUMN GENERATION
The LP relaxation at each node in Figure 2 is decomposed

into master and slave problems for column generation. The
former solves for the relaxed defender strategy B̃, given a
restricted set of coalitions C′ ⊂ C. The objective for the slave
is updated based on the solution of the master, and the slave
is solved to identify the best new coalition to be added to
the C′ of the master problem, as measured by reduced cost
(explained later). If no new column can improve the solution
the algorithm terminates with an optimal solution.

6.1 Master Problem
The master problem (4) starts with a small set of coali-

tions C′ and solves for the optimal relaxed defender strategy
B̃∗. Note that Eqs.(4a)-(4c) have ensured x ≤ 1 and B̃ ≤ 1.

min
x,B̃

∑
Ck∈C′

vkxk +
∑

(i,j)∈E
B̃ijλij (4a)

s.t.
∑

Ck∈C′
αkixk = 1 i ∈ N (4b)∑

Ck∈C′
αkiαkjxk ≥ 1− B̃ij (i, j) ∈ E (4c)

x≥ 0, B̃≥ 0 (4d)

Let f and g be dual variables of master constraints (4b)
and (4c) respectively. After the master problem is solved,
the optimal dual solution (f∗,g∗) is computed and passed to
the slave problem for finding the column (coalition) to add
to the current C′, as we will discuss later.

Interior Point Stabilization. Before the slave problem
is introduced, it is necessary to understand that the opti-
mal dual solution (f∗,g∗) plays a critical role in generating
a good column. Since the standard technique computes an
optimal dual solution, which is an extreme point of the opti-
mal dual polyhedron and can be characterized by very large
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values for some dual variables, an Interior Point Stabiliza-
tion (IPS) method [26] is adopted to compute an optimal
dual solution taking values in the center (or at least the in-
terior) of the master problem’s optimal dual polyhedron by
averaging several extreme points of this polyhedron.

The basic idea of IPS is as follows: once the master
problem is solved and the optimal solution (x∗, B̃∗) is ob-
tained, we can depict a polyhedron D of the dual master
problem confined by the complementary slackness condi-
tions [5]. To obtain an extreme point of D, we can sim-
ply define a random objective function µT f + ωT g where
µ,ω ∼ U(0, 1), i.e., each element of µ and ω is uniformly
distributed between 0 and 1, and solve the corresponding
LP: (Dµ,ω) = min(f ,g)∈D µ

T f + ωT g. After solving several
instances of (Dµ,ω) with multiple random objective coeffi-
cients (µ,ω), we can get some extreme points of D. Tak-
ing the average of these extreme points provides an interior
point of D that gives much more centered dual values. For
the ease of reading, we provide the details of IPS in online
Appendix B1.

6.2 Slave Problem
The slave problem finds the best column (i.e., coalition)

to add to the current coalitions in C′. This is done using re-
duced cost, which captures the total change in the defender’s
utility if a candidate coalition is added to C′. The candidate
coalition with minimum reduced cost improves the defend-
er’s utility most [5]. The reduced cost rk of coalition Ck,
associated with variable xk, is given in Eq.(5), where the
dual solution (f∗,g∗) measures the influence of the associat-
ed constraint on the objective and can be calculated using
standard techniques or the IPS method.

rk = vk −
∑

i∈N
αkif

∗
i −

∑
(i,j)∈E

αkiαkjg
∗
ij (5)

The slave problem then boils down to solving mink rk (i.e.,
minimizing reduced cost). Clearly, if we were to simply it-
erate through all coalitions k (of which there are an expo-
nential number), nothing would be gained by column gen-
eration. We then exploit the structure of this problem by
first formulating the reduced cost minimization problem as
a bilevel mixed-integer linear program (BMILP) (6), where
(f∗,g∗) is the optimal dual solution of the master prob-
lem (4). What makes this problem bilevel is the fact that, in
minimizing reduced cost, we must also compute the value of
an associated coalition, since we have avoided precomputing
all coalitions’ values with branch and price.

In the BMILP (6), the coalition C is represented by binary
variable α such that αi = 1 if i ∈ C and αi = 0 otherwise.
The upper level constraints ensure that the coalition C in-
duced a connected subgraph, i.e., C ∈ C, while the lower
level program computes the coalition value v(C).

Eq.(6b) ensures that ξij = αiαj for edge (i, j) ∈ E. E-
qs.(6c)–(6f) enforce α to induce a connected subgraph of
G using flow balance techniques [28]: According to con-
straints (6c) and (6d), wi = 1 if and only if i is the smallest
index such that αi = 1, which will be set as the starting
point of the flows h+ and h−; h+

lij denotes the amount of
flow from starting point to ending point l, such that passes
through edge (i, j) in positive direction i → j, while h−lij in
negative direction j → i; Eq.(6f) restricts the flow to pass
through only edges that are in the subgraph induced by C,
i.e., (i, j) with ξij = 1; Eq.(6e) is the flow balance constraint
withN (i) denoting the set of vertices connected with i, mak-

ing sure there exists a path, in subgraph induced by C, from
starting point i : wi = 1 to any l ∈ C (αl = 1). Therefore
the subgraph induced by C is restricted to be connected.

The lower level program (6g) computes the coalition’s val-
ue v(C) where Eq.(6h) restricts C to have enough skill ca-
pacities to conduct the attacking plan a according to Eq.(1).

min
α, ξ,w

h+,h−

∑
t∈T

ptat − f∗Tα− g∗Tξ (6a)

s.t. ξij ≤ αi, ξij ≤ αj ,

ξij ≥ αi + αj − 1 ∀(i, j) ∈ E (6b)

wi ≤ αi,

wi ≤ 1− αj ∀i, j ∈ N : j < i (6c)∑
i∈N

wi = 1 (6d)∑
j∈N (i)

h+
lij −

∑
j∈N (i)

h−lij ≥

wi − (1− αl), ∀i, l ∈ N : i 6= l (6e)

h+
lij ≤ ξij ,

h−lij ≤ ξij , ∀(i, j) ∈ E, l ∈ N (6f)

max
a

∑
t∈T

ptat (6g)

s.t.
∑

t∈T
βtsat ≤

∑
i∈N

αiγismis s ∈ S (6h)

α ∈ {0, 1}|N|, ξ ∈ [0, 1]|E|,a ∈ N|T |

h+ ≥ 0,h− ≥ 0,w ≥ 0. (6i)

The key challenge of the BMILP is that the inner maximiza-
tion program described in (6g) has integer variables. If we
were to relax the integrality constraint, we could reformu-
late the bilevel program into a single mixed integer linear
program, as we describe next.

Linear Relaxation Approximation. To reformulate
the BMILP to an MILP, we first relax the integer pro-
gram (6g) of computing the coalition’s value in the lower

level, such that the decision variable a ∈ N|T | is relaxed to
ã ≥ 0. For this relaxed linear program (RLP), let u be the
dual variable associated with constraint (6h). A pair of fea-
sible solutions ã and u are optimal for the primal and dual
RLPs if and only if the following complementary slackness
conditions are satisfied [5]:

(
∑

s∈S
βtsus − pt) · ãt = 0 ∀t ∈ T (7a)

(
∑

i∈N
αiγismis −

∑
t∈T

βtsãt) · us = 0 ∀s ∈ S (7b)

Therefore, the RLP is equivalent with a set of constraints
consisting of the primal and dual constraints restricting the
feasibility of ã and u and the complementary slackness con-
ditions ensuring optimality, and the relaxed BMILP is re-
formulated as an MILP (8), with Eq.(8c) corresponding to
the dual constraint of the RLP, and Eqs.(8d)–(8e) equiva-
lent with the complementary slackness conditions (7). Our
next results show that the solution quality of the linear relax-
ation approximation and, consequently, the resulting branch
and price framework, provably achieves a competitive ratio
which only depends on the number of skills |S| (which we
assume to be constant).

min
α, ξ,w,u,φ

h+,h−, ã,ϕ

∑
t∈T

ptãt − f∗Tα− g∗Tξ (8a)
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s.t. Eqs.(6b)–(6f), (6h)–(6i) (8b)∑
s∈S

βtsus ≥ pt, ∀t ∈ T (8c)∑
i∈N

αiγismis −
∑

t∈T
βtsãt ≤M(1− φs),

us ≤Mφs ∀s ∈ S (8d)∑
s∈S

βtsus − pt ≤M(1− ϕt),

ãt ≤Mϕt ∀t ∈ T (8e)

ã ≥ 0,u ≥ 0

φ ∈ {0, 1}|S|,ϕ ∈ {0, 1}|T |. (8f)

Lemma 4. The coalition value ṽ(C) computed by LP re-
laxation of IP (6g) is bounded by ṽ(C) ≤ (1 + |S|)v(C).

Proof. We first prove the following fact: For the LP re-
laxation of IP (6g), if the optimal solution ã∗ has a fractional
value ã∗t > 0 for some target type t, then v(C) ≥ pt. The
idea is that since the coalition has integer capacities for all
skills, if ã∗t > 0, the coalition’s capacity for any skill s ∈ S(t),
which is necessary for attacking target of type t, should be
larger than 0, i.e., at least 1. Therefore, the coalition can at
least attack one target of type t and v(C) ≥ pt.

With the above fact, there are two cases to take into con-
sideration for proving this Lemma.
Case 1: v(C) = 0. In this case, for any target type t ∈ T ,

there must exist (at least) a necessary skill st ∈ S(t) such
that C’s capacity of st (i.e.,

∑
i∈N αiγismis) is 0. For LP

relaxation of IP (6g), any fractional solution ã with ãt > 0
is infeasible for violating the skill capacity constraint (6h)
of skill st:

∑
t∈T βtst ãt ≤ 0. Thus ṽ(C) = v(C) = 0.

Case 2: v(C) > 0. Let a∗ be the optimal integer so-
lution for IP (6g), and ã∗ be the optimal fractional integer
solution for LP relaxation of IP (6g). According to the prop-
erty of multidimensional knapsack problem [25], ã∗ can take
fractional values in at most |S| coordinates. Therefore, sup-
pose pmax be the largest value among all target types t with
ã∗t fractional, we have: ṽ(C) = v(ã∗) = v(bã∗c) + v(ãf ) ≤
v(a∗) + |S|pmax, where ãf = ã∗ − bã∗c is the residual part
of ã∗ after rounding. Since v(C) = v(a∗) ≥ pmax according
to the fact proved before, we have: ṽ(C) ≤ (1 + |S|)v(C).

To this end, we conclude that ṽ(C) ≤ (1 + |S|)v(C).

Theorem 3. The branch and price approach, in which
the slave problem of column generation is solved by the linear
relaxation approximation, can obtain a defender strategy B′

such that Ud(B′) ≥ (1 + |S|)Ud(B∗). Note that Ud(B) ≤ 0.

Proof. The branch and price approach, in which the
slave problem of column generation is solved by linear re-
laxation approximation, can obtain the optimal solution B′

for the following revised program of IP (3) in which ṽk is
the value of Ck computed by LP relaxation of IP (6g):

min
x,B

∑
Ck∈C

ṽkxk +
∑

(i,j)∈E
Bijλij (9a)

s.t. Eqs. (3b)–(3d) (9b)

Since B′ is optimal for IP (9), we have:

−Ud(B′)=
∑

C∈CS∗(B′)
v(C) +

∑
(i,j)∈E

B′ijλij

≤
∑

C∈CS∗(B′)
ṽ(C) +

∑
(i,j)∈E

B′ijλij

≤
∑

C∈CS∗(B∗)
ṽ(C) +

∑
(i,j)∈E

B∗ijλij

≤ (1 + |S|)(
∑

C∈CS∗(B∗)
v(C) +

∑
(i,j)∈E

B∗ijλij).

Therefore, we have Ud(B′) ≥ (1 + |S|)Ud(B∗).

Greedy Approximation. Although the MILP of lin-
ear relaxation approximation can obtain an approximately-
optimal coalition to add to C′ of master problem, it is still
relatively slow. Observe, however, that in each iteration
of column generation we actually need not find a minimal
reduced cost; rather, any reduced cost that improves solu-
tion quality would suffice. Consequently, a fast heuristic
approach for generating columns would be satisfactory in
most iterations, except when the heuristic is unable to find
a solution improving column, at which point we can fall back
on the MILP. To this end, we propose a Greedy with Multi-
Start (GMS) heuristic (see Algorithm 1). This heuristic is
fast, and has an important advantage of enabling genera-
tion of multiple coalitions in a single iteration of the column
generation algorithm (hence, the name multi-start), signifi-
cantly reducing the number of column generation iterations.

Algorithm 1: Greedy with Multi-Start (GMS)

Input: optimal dual solution (f∗,g∗) of master
problem, reduced cost function r(C) defined in
Eq.(5)

Output: a set of coalitions with negative reduced costs
1 CGMS = ∅;
2 for i ∈ N do
3 C = {i}, continue = true;
4 while continue do
5 î = arg mini∈N\C r(C ∪ {i})− r(C);

6 if r(C ∪ {̂i})− r(C) < 0 then C ← C ∪ {̂i};
7 else continue = false;

8 if r(C) < 0 then CGMS ← CGMS ∪ {C};
9 return CGMS ;

7. EXPERIMENTAL EVALUATION
We demonstrate the effectiveness of our algorithmic frame-

work through extensive numerical evaluations. We use the
CPLEX (version 12.6) to solve all linear programs. All com-
putations were performed on a 64-bit PC with 16 GB RAM
and a quad-core 3.4 GHz processor. All values are averaged
over 40 instances unless otherwise specified. All scale-free
graphs are generated by standard Barabási-Albert model [3]
widely used for simulating networks with realistic topolog-
ical properties, denoted by BA(d), in which d represents
the average node degree. All random graphs are generated
by standard Erdős-Rényi model denoted by ER(p) where p
represents the probability of existence of an edge between
any pair of nodes [9]. According to the different approaches
adopted for the slave problem, the abbreviations of different
branch and price algorithms are as follows: LR for Linear
Relaxation Approximation, GLR for the combination of the
GMS with LR such that LR is called only when GMS returns
empty set; The optimal dual solution of the master problem
is generated through Interior Point Stabilization (IPS) for
IGMS, ILR, and IGLR. IP (3) is represented by EXACT.
Our benchmark is a heuristic algorithm Genetic Algorithm
(GA), and for the ease of reading, we put the details of GA
in online Appendix C1. By default, the instances are pa-
rameterized as follows: |T | = 10 and |S| = 20, the necessary
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(a) BA(2) (b) BA(3) (c) BA(4) (d) ER(0.1)

(e) ER(0.2) (f) BA(2) (g) BA(3) (h) BA(4)

(i) ER(0.1) (j) ER(0.2) (k) BA(2) (l) BA(4)

Figure 3: Scalability: (a)–(e); Optimality: (f)–(j); Robustness: (k)–(l).

skills for each target type and the ones owned by each attack-
er drawn randomly from S, mis ∼ {1, 2, 3, 4, 5}; pt ∼ [0, 1.0]
and λij ∼ [0, r] where r ∈ [0, 1] is chosen randomly.

7.1 Scalability and Optimality
Runtime. We test different algorithms on 5 types of

networks, and the results are depicted in Figures 3(a)–3(e),
from which we can observe the significant efficiency improve-
ment provided by the branch and price framework. The IPS
procedure and the GMS approach are shown to reduce the
number of iterations of column generation drastically as they
further improve the branch and price framework to scale up
to realistic-sized problems. For example, Figure 1 contains
76 groups and the average degree is 3.4, which is well within
the scalability of IGLR and IGMS.

Defender Utility. We compare the defender utility of
IGLR and IGMS, with EXACT and GA as benchmarks.
The results are illustrated in Figures 3(f)–3(j), from which
we can see that IGLR can achieve an almost optimal solution
which outperforms GA significantly, in accordance with the
theoretical analysis of Theorem 3. The solutions obtained
by IGMS, which also outperform GA, are near-optimal espe-
cially for networks with higher connectivity, such as large-
scale networks of type ER(0.1) and ER(0.2). A tradeoff
between runtime and solution quality is observed for IGMS
and IGLR, as IGMS shows the better scalability while IGLR
obtains the solution with higher quality, however, both of
them outperform the alternatives significantly.

7.2 Robustness
In the real world, the defender’s estimation of target value

pt may not be perfect from attackers’ perspective. There-
fore, we analyze the performance of our algorithmic frame-
work under the existence of noise of pt. Let p̄t be the de-
fender’s estimation of pt while pt is drawn uniformly within
p̄t · [1− δ, 1 + δ]. We compare the defender utility of IGLR

and IGMS under different degrees of uncertainty, with the
near-optimal solution of IGLR, denoted by EXACT* (IP (3)
cannot scale to N = 60), and heuristic solution of GA as
comparison. The results are shown in Figures 3(k)–3(l),
from which a decreasing efficiency is observed for IGLR and
IGMS when δ increases. However, IGLR and IGMS solu-
tions still outperform GA significantly under the existence
of uncertainty of pt, and IGLR can obtain an almost op-
timal solution even when δ = 0.3, which shows the strong
robustness of our algorithmic framework.

8. CONCLUSION
For the first time, this paper studies the problem of block-

ing attacker coalition through efficient allocation of security
resources. This paper provides the following key contribu-
tions: 1) We formally define and model coalitional securi-
ty games. 2) We prove the MAX SNP-hardness of defend-
er’s decision-making problem and NP-hardness of attackers’
decision-making problem. 3) To address the MAX SNP-
hardness, we propose an exact integer program and provide a
branch and price algorithm, a linear relaxation based column
generation with a constant factor approximation bound, an
interior point stabilization procedure, and a greedy method
to further improve the scalability. 4) Experiments demon-
strate that our methods can scale up to realistic-sized in-
stances and achieve near-optimal performance.
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