
Simplifying Urban Network Security Games with
Cut-Based Graph Contraction

Hiroaki Iwashita1, Kotaro Ohori1, Hirokazu Anai1, and Atsushi Iwasaki2
1Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan

{iwashita.hiroak,ohori.kotaro,anai}@jp.fujitsu.com
2University of Electro-Communications, Tokyo 182-8585, Japan

iwasaki@is.uec.ac.jp

ABSTRACT
The scalability of the algorithm for solving urban network security
games, which is an important challenge concerning security game
problems, was improved. State-of-the-art solvers have been scaled
up to handle real-world networks with tens of thousands of edges;
however, it can take days or more when the inputs are varied. Since
they do not essentially overcome exponential growth of the strategy
space with increasing graph size, an approach, which can be com-
bined with previous ones, is proposed. In particular, a practical ap-
proach of simplifying the graphs so that they can be handled within
a realistic time is devised and tested. The key idea behind this ap-
proach is to restrict the defender’s pure strategies to potential ones
before calculating an equilibrium solution. The restriction can be
tightened for faster computation and loosened for better solution.
The following three techniques for computing an optimal solution
to the restricted game are proposed and evaluated: (i) contraction
of the network based on the restriction, (ii) compact formulation of
the optimization problem using weighted edges in place of multiple
edges, and (iii) efficient solution using a mixed-integer quadratic
programming oracle. They can naturally cope with an extension of
the game to one taking width of the roads into account. Further-
more, a heuristic algorithm of finding effective restriction of the
game is also proposed.

Keywords
Game Theory; Optimization; Security; Graph Contraction

1. INTRODUCTION
With the deteriorating security situation around the world, effec-

tive safety policies are required to prevent terrorism and drug deal-
ing. However, all possible security checkpoints cannot be covered
at every moment because resources are limited. Over recent years,
to plan effective resource allocation strategies for patrolling and in-
spection, game-theoretic approaches have been applied. Security
games modeled as Stackelberg games [18] have provided various
applications in real-world domains, for example, at LA Interna-
tional Airport [12], the US Federal Air Marshals Service [16], and
the US Coast Guard [14, 4].

As one of the important types of game, a security game for urban
networks models an attacker and a defender who take decisions on
a network consisting of nodes and edges. The defender’s strate-

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

gies represent allocations of their limited resources to edges of the
network, while the attacker’s strategies represent paths from any
source node to any target node. In this study, improving the scala-
bility of the algorithms, which an important challenge concerning
security games [15], is focused on. In particular, the strategy spaces
for the defender and the attacker increase exponentially with the
number of security resources and the size of the network, respec-
tively.

Developed for simple security games in which targets are di-
rectly defended or attacked on the basis of pure strategies of each
player, a compact security-game model [9] improved the scalability
of those games by several orders of magnitude. Instead of enumer-
ating the defender strategies as k-combinations from n targets, this
model introduces a “coverage vector” representing the probability
that each target is covered. The feasible space of coverage vectors
is characterized simply by the sum of its elements being not more
than the number of defender resources. A counterpart of that model
for urban network security games has not been invented yet; in par-
ticular, a coverage vector cannot be defined easily because a de-
fender’s pure strategy covers targets indirectly by blocking a huge
number of attacker’s pure strategies aimed at the target, which is
discrete and complicated relation.

Scaling up urban-network security games to handle realistic prob-
lem sizes has been attempted in several studies. RANGER [17]
obtains an approximate solution for the defender by optimizing
marginal probability of selecting individual edges without consid-
ering how to combine multiple edges. RUGGED [7] and SNARES
[6] are based on a double-oracle approach [10], which does not
enumerate all pure strategies for either of the attacker and the de-
fender. SNARES has successfully computed an optimal strategy for
the road network of Mumbai comprising 9,503 nodes and 20,416
edges.

However, the above-mentioned algorithms cannot always be ap-
plied to real problems without any conditions; that is, the runtime of
an algorithm varies significantly with changing conditions such as
numbers of targets and resources [8]. In our experience, computa-
tion time to obtain a solution increases dramatically as the number
of targets and/or resources is increased. Moreover, it was experi-
mentally shown that varying minor conditions (such as source and
target placement) significantly affected the runtime of every run.

In light of the above-described issues, a robust method for ob-
taining effective defender strategies for large-scale networks is pro-
posed and evaluated. After the problem is defined and related works
are introduced in Section 2, the key idea behind the proposed method,
namely, reducing the problem by contracting the graph, is presented
in Section 3. Techniques for efficiently solving the reduced prob-
lems, including a column-generation method using a mixed-integer
quadratic programming oracle, are shown in Section 4. A heuris-

205



tic algorithm utilizing the proposed method, which incrementally
adds candidate edges and improves the solution, is introduced in
Section 5. Experimental results in Section 6 show the high quality
of the determined solutions as well as the robustness of the pro-
posed method.

2. URBAN NETWORK SECURITY GAMES
Urban network security games [17] are zero-sum games with

two players: a defender and an attacker. They are defined by 6-
tuple G = (V,E,S,T,U,k), where G = (V,E) is a graph describing
a road network, S⊂V is a set of source nodes, T ⊂V is a set of tar-
get nodes, U : V → R≥0 is a payoff function (value of each node)
satisfying U(v) 6= 0 if and only if v ∈ T , and k is the number of
security resources.

The defender selects at most k edges from E and allocates the
resources to them. The attacker moves along E from any one of the
sources, s ∈ S, to any one of the targets, t ∈ T . It is assumed that
only one target can be attacked at a time; no targets but the last one
(t) can be attacked even when there are multiple targets along the
attacker path. If one or more defender resources are located on the
path, the attack fails and both players get nothing; otherwise the
defender and the attacker gain −U(t) and U(t) respectively.

The objective of the game is to find an optimal mixed strategy
for the defender, namely, the most-effective plan for allocating the
security resources, in terms of minimizing the maximum expected
damage. Since the game is a zero-sum game, its optimal solution
is a Nash equilibrium as well as a strong Stackelberg equilibrium
[20].

Urban network security games can be formulated as follows. Let
D be a set of all defender allocations and A be a set of all attacker
paths. The defender’s mixed strategy is denoted as x : D→ [0,1],
and expected damage is denoted as z. A successful attacker path
(a ∈ A) causes damage U(t(a)), where t(a) represents the target
of a. The probability that attacker path a ∈ A becomes successful
against defender allocation d ∈ D is denoted as P(d,a), which, in
this problem setting, is either 0 or 1. An urban network security
game is formulated as the following minimax linear programming
(LP) problem:

min
x,z

z (1)

s.t. z ≥ U(t(a)) ∑
d∈D

P(d,a)x(d) , ∀a ∈ A (2)

∑
d∈D

x(d) = 1 (3)

0≤ x(d)≤ 1 , ∀d ∈ D . (4)

Solving formulas (1)–(4) gives defender’s optimal mixed strat-
egy and expected damage corresponding to it. Moreover, the so-
lution to its dual LP problem provides attacker’s optimal mixed
strategy, y : A→ [0,1]. This simple formulation, however, cannot
be applied directly to real-world problems because |D| and |A| in-
crease exponentially with problem size.

2.1 Min-Cut Method
If the number of resources, k, is sufficient, the defender can pro-

tect all targets perfectly by allocating them to all minimum cut-sets
separating the targets from the sources. Even in the cases that the
size of a min-cut is larger than k, it is known that the defender’s op-
timal strategy is to allocate resources to k edges randomly chosen
from the cut-set if only one target exists or all targets have the same
value [19].

The min-cut method reduces complexity of the problem to poly-
nomial time of finding a minimum s-t cut [2, 1]. However, it does

not generally provide a good strategy in the case that the targets’
payoff values are not uniform.

2.2 Double-Oracle Method
To solve the minimax LP problem, RUGGED [7] uses a double-

oracle method [10], which is a kind of constraint and column gener-
ation algorithm for solving linear programming problems. It reaches
an optimal solution asymptotically by adding pure strategies one
by one instead of computing the solution after enumerating all pure
strategies.

Algorithm 1: Double-oracle method

1 Initialize D by arbitrary defender allocations
2 Initialize A by arbitrary attacker paths
3 repeat
4 Solve the minimax LP problem of equations (1)–(4), and

let x and y be mixed strategies of the defender and the
attacker over D and A, respectively

5 Find defender’s best response to y and add it to D
6 Find attacker’s best response to x and add it to A
7 until convergence
8 return x

The double-oracle method is outlined in Algorithm 1. The best-
response oracles in lines 5 and 6 are formulated as mixed-integer
linear programming problems, which often dominate computation
time in RUGGED.

Instead of using the best-response oracles every time, SNARES
uses fast heuristic algorithms whenever they give a better response.
A method called mincut-fanout is used to improve the initial mem-
bers of D and A. Mincut-fanout first constructs a min-cut that sep-
arates the target with the highest value from the sources; it then
initializes D by defender allocations, such that each allocation cov-
ers k edges in the cut-set, and A by the attacker’s best responses to
them.

3. PROBLEM REDUCTION
Although the double-oracle method definitely improves the scal-

ability of the solvers, it does not essentially overcome exponential
growth of the strategy space with the increasing problem size. In
other words, problem reduction can exponentially improve perfor-
mance of the state-of-the-art solvers.

Generally, a set of defender’s pure strategies appearing in an op-
timal mixed strategy is a fraction of the huge entire space. For
example, only edges in C = {e1,e2,e3,e4,e5,e6,e7} are used in an
optimal solution to the problem shown in Figure 1(a). If C ⊂ E is
determined in advance by some other algorithm or suggested by a
security expert, it becomes possible to reduce the problem.

EXAMPLE 1. To reduce G=(V,E) in Figure 1(a), unused edges
e ∈ E \C are contracted, and the problem is reduced to a com-
pact one defined on GC = (VC,EC), as illustrated in Figure 1(b).
Furthermore, multiple edges in the graph are replaced with a sin-
gle edge with the capacity to make a more-compact problem on
ĜC = (V̂C, ÊC), as shown in Figure 1(c). In later sections, it is
shown that optimal solutions computed on both GC and ĜC are
also optimal on G under the restriction that the defender allocates
resources to only C. In this example, C is not the only one best
set of candidate edges. If C′ = {e2,e3,e4,e5,e6,e7,e8} instead of
C is selected, another solution with the same quality is obtained
because GC and GC′ are isomorphic.

206



(a) G = (V,E)

(b) GC = (VC,EC)

(c) ĜC = (V̂C, ÊC)

Figure 1: An example of reduction.

Algorithm 2 is a possible manual procedure for finding realis-
tic solutions to large problems. Although quality of the solution
depends on the choice of C, the computed security level for the
reduced problem is guaranteed also for the original one. Security
agencies can therefore determine if the solution is acceptable.

Algorithm 2: Manual task of security scheduling

1 Determine an initial set of candidate edges C
2 loop
3 Reduce and solve the problem based on C
4 if the problem cannot be solved then
5 Shrink C

6 else if the security level is not sufficient then
7 Extend C or increase the number of defender resources

8 else return

3.1 Contracting Unused Edges
An urban network security game with a restriction on the de-

fender’s pure strategies is considered as follows. Here, C ⊂ E is
a set of candidate edges to which the defender can allocate re-
sources. A contracted graph, GC = (VC,EC), is made from an
original graph, G = (V,E), by edge contraction for all e ∈ E \C,
where edge contraction of e is an operation in graph theory that re-
moves e from a graph and merges its two incident nodes. When
the correspondence of those nodes is represented by ϕC : V →
VC, the original game, G = (V,E,S,T,U,k), is reduced to GC =
(VC,EC,SC,TC,UC,k) where

SC = {ϕC(s) | s ∈ S},
TC = {ϕC(t) | t ∈ T},

UC(v′) = max{U(v) | ϕC(v) = v′, v ∈V}.

Additional two functions are defined for later use. First, ϕ̃C : VC→
V is the function that maps v′ ∈ VC to a set of the most valuable
nodes in V represented by v′, that is,

ϕ̃C(v′) = argmax
v∈V

{U(v) | ϕC(v) = v′}.

Secondly, ψ̃EC ,E : EC→C maps an edge in the contracted graph to
the one in the original graph.

LEMMA 1. When e1 ∈ E and C = E \{e1}, ψ̃EC ,E maps the de-
fender’s optimal mixed strategy for GC to the one for G that has the
same quality and is optimal under the restriction that the defender
allocates resources only to C.

PROOF. Any defender allocation, d′⊆EC, can be simply mapped
to d = {ψ̃EC ,E(e

′) | e′ ∈ d′}. Attacker path a′ ⊆ EC to target t ′ ∈ TC
can be mapped to a = {ψ̃EC ,E(e

′) | e′ ∈ a′} if it forms a path to
ϕ̃C(t ′); otherwise, it can be mapped to a∪ {e1}, which forms a
path to ϕ̃C(t ′). These mappings do not change the equilibrium be-
tween both player’s mixed strategy and the best responses against
them. Therefore, quality and optimality do not change.

THEOREM 1. For all C ⊆ E, ψ̃EC ,E maps the defender’s opti-
mal mixed strategy for GC to the one for G that has the same qual-
ity and is optimal under the restriction that the defender allocates
resources only to C.

PROOF. Let C0 =C and Ci =Ci−1 +{ei} for i = 1, . . . ,m where
E \C = {e1, . . . ,em}. From Lemma 1, ψ̃EC ,EC1

maps the defender’s
optimal mixed strategy for GC to the one for GC1 . If ψ̃EC ,ECi

maps
the defender’s optimal mixed strategy for GC to the one for GCi , it
can be mapped over again by ψ̃ECi ,ECi+1

to the one for GCi+1 . By us-
ing induction, ψ̃EC ,ECm

= ψ̃EC ,E maps the defender’s optimal mixed
strategy for GC to the one for GE = G .

The following statements give guidelines for selecting the set of
candidate edges.

THEOREM 2. The defender’s mixed strategies for G computed
with two different set of candidate edges, C and C′, have the same
quality if GC and GC′ are isomorphic in consideration of node la-
bels of sources, targets, and payoff values.

PROOF. Apparently, GC and GC′ yield the defender’s optimal
mixed strategies on GC and GC′ respectively that have the same
expected utilities. According to Theorem 1, both strategies can be
mapped to the ones on G while the same quality is maintained.

THEOREM 3. The set of candidate edges that achieves the de-
fender’s mixed strategy with the best possible quality can be com-
posed of cut-sets separating one or more targets from all sources.

PROOF. Let C be a set of candidate edges achieving the de-
fender’s mixed strategy with the best possible quality. If self-loop
edges are included in EC, they can be excluded from C without loss
of solution quality because they are useless for attacker paths and
thus for defender allocation. If non-target node v′ ∈ VC \ TC has
edges only to single node u′ ∈ VC, no edges between u′ and v′ are
used by either player and can be excluded from C without loss of
solution quality. Edges between two sources in SC can also be ex-
cluded from C safely. Consequently, all remaining candidate edges
are covered by a collection of cut-sets separating one or more tar-
gets from all sources.

3.2 Unifying Multiple Edges
While the reduced problem can be solved as is in the same way

as the original one, more compact problem can be formulated by
adapting the proposed model. Contraction of many edges often
produces multiple edges, which are two or more edges that are
incident to the same two nodes. An optimal strategy of the de-
fender should use those edges uniformly (since they are topologi-
cally equivalent). Each pair of nodes connected by m edges do not
need to be distinguished, and they can be simplified as a single edge
(e) with capacity we = m, as illustrated in Figure 1. In the example,
six attacker paths from s to t1 on GC are reduced to only one on ĜC.
This conversion effectively suppresses combinatorial explosion of
the strategy space.

A graph with multiple edges, G = (V,E), is reduced to a more
compact weighted graph without multiple edges, Ĝ = (V̂ , Ê), in

207



which each edge, e ∈ Ê, has capacity we. The game is reduced to
Ĝ = (V̂ , Ê, Ŝ, T̂ ,Û ,k) where Ŝ ⊂ V̂ is a set of source nodes, T̂ ⊂ V̂
is a set of target nodes, and Û : V̂ → R≥0 is a payoff function.

Let de ∈ {0, . . . ,we} denote the number of resources on edge
e in defender allocation d. When the defender and the attacker
play d and a respectively on Ĝ, the attack succeeds at probability
P(d,a) = ∏e∈a (1−de/we). Therefore, this game is formulated as
the following minimax LP problem:

min
x̂,z

z (5)

s.t. z ≥ Û(t(a)) ∑
d∈D̂

∏
e∈a

(
1− de

we

)
x̂(d), ∀a ∈ Â (6)

∑
d∈D̂

x̂(d) = 1 (7)

0≤ x̂(d)≤ 1 , ∀d ∈ D̂ , (8)

where D̂ and Â are all defender allocations and all attacker paths on
Ĝ respectively, x̂ : D̂→ [0,1] is the defender’s mixed strategy, z is
an expectation of the damage, and Û(t(a)) is the amount of damage
when attacker path a ∈ Â succeeds.

In fact, this formulation is usable independently of graph con-
traction. It is a natural extension of urban network security games
that edge e is assumed to have capacity we, where we resources are
required to block e.

4. SOLUTION TECHNIQUES
If multiple edges are not unified, the problem after reduction can

be still formulated as (1)–(4); conventional techniques are applica-
ble to it as they are. This section presents the solution techniques
that can be applied to the problem (5)–(8). Without these tech-
niques, all pure strategies, D̂ and Â, must be enumerated before-
hand.1

4.1 Selecting Pure Strategies
To reduce the cost for solving the minimax LP, the strategy spaces

are restricted without sacrificing quality of solutions. First, the de-
fender’s strategies that do not affect the quality are identified.

Let Re = {0, . . . ,we} and R−e = Re \{0,we}. Edge e is partially
blocked by defender allocation d when de ∈ R−e . The following
theorem guarantees that even if every defender allocation that par-
tially blocks two or more edges is ignored, a mixed strategy for the
defender that yields the optimal expected utility still exists.

THEOREM 4. At least one optimal mixed strategy for the de-
fender includes no defender allocation by which two or more edges
are partially blocked.

PROOF. Let us assume that defender allocation ď partially blocks
edges i and j in an optimal mixed strategy x̂, that is, 1≤ ďi ≤wi−1
and 1 ≤ ď j ≤ w j− 1. New defender allocations d̀ and d́ are made
by moving as many resources as possible from j to i and i to j
respectively:

d̀e =


ďe +α if e = i
ďe−α if e = j
ďe otherwise ,

d́e =


ďe−β if e = i
ďe +β if e = j
ďe otherwise ,

α = min(wi− ďi, ď j) , β = min(ďi, w j− ď j) ,

where α and β are the largest possible numbers of moved resources.
Note that at most either i or j is partially blocked after the move. A
1Actually, it is possible to some extent because the problem reduc-
tion drastically compresses the strategy spaces.

new mixed strategy is defined as:

x̂′(d) =


0 if d = ď
x̂(d)+ β

α+β
x̂(ď) if d = d̀

x̂(d)+ α

α+β
x̂(ď) if d = d́

x̂(d) otherwise .

The difference of blocking probability of i between x̂ and x̂′ is:

∑
d∈D̂

di

wi

(
x̂′(d)− x̂(d)

)
=− ďi

wi
x̂(ď) +

d̀i

wi
· β

α +β
x̂(ď) +

d́i

wi
· α

α +β
x̂(ď)

=− ďi

wi
x̂(ď) +

ďi +α

wi
· β

α +β
x̂(ď) +

ďi−β

wi
· α

α +β
x̂(ď)

= 0 .

It follows that the probability of blocking i remains unchanged by
replacing x̂ with x̂′. Similarly, the probability of blocking j also re-
mains. Therefore, x̂′ is also optimal. By repeating the above mod-
ification, it is possible to find an optimal mixed strategy including
no defender allocation by which two or more edges are partially
blocked.

Secondly, the way to reduce the attacker’s strategy space is rather
simple. It can be done by excluding any path passing over target t
and attacking t ′ such that Û(t) ≤ Û(t ′). Such a path is worse than
its prefix attacking t and is not required by the attacker’s optimal
strategy. In Figure 1(c), the valid attacker paths are s–t3 and s–t3–t1
if Û(t2)≤ Û(t3)< Û(t1).

4.2 Column Generation
To avoid an explosion of the number of defender’s pure strate-

gies to be considered in the case of the minimax LP problem (5)–
(8), Algorithm 3, which is a column generation technique using
defender’s best-response oracle, is introduced.

Algorithm 3: Single-oracle column generation

1 Initialize D by arbitrary defender allocation
2 Initialize A by all attacker paths
3 repeat
4 Solve the minimax LP problem (5)–(8), and let x̂ and ŷ be

mixed strategies of the defender and the attacker using D
and A, respectively

5 Find defender’s best response to ŷ and add it to D
6 until convergence
7 return x̂

The oracle finds one of the best defender allocations, d, against
the attacker’s mixed strategy, ŷ. It is formulated as a mixed-integer
nonlinear programming (MINLP) problem:

min
d

∑
a∈Â

Û(t(a)) ŷ(a) ∏
e∈a

(
1− de

we

)
(9)

s.t. ∑
e∈Ê

de ≤ k (10)

de ∈ Re , ∀e ∈ Ê . (11)

Unfortunately, MINLP introduces a further level of difficulty and
can not be accepted directly by many generic optimization solvers.

208



It is thus transformed into a mixed-integer quadratic programming
(MIQP) problem, which is much easier to solve quickly by state-
of-the-art optimization solvers. Let λ (e,r) ∈ {0,1} be a variable
representing that the number of resources allocated on edge e is
r (de = r). According to Theorem 4, it can be assumed that at
most one pair (e,r) of e ∈ a and r ∈ R−e for each a ∈ Â satisfies
λ (e,r) = 1. Equations (9)–(11) are rewritten as follows:

min
λ ,ω

∑
a∈Â

Û(t(a)) ŷ(a)

(
1−∑

e∈a
∑

r∈R−e

r
we

λ (e,r)

)
(1−ω(a)) (12)

s.t. ∑
e∈Ê

∑
r∈Re

r λ (e,r)≤ k (13)

∑
e∈Ê

∑
r∈R−e

λ (e,r)≤ 1 (14)

∑
r∈Re

λ (e,r)≤ 1 , ∀e ∈ Ê (15)

ω(a)≤ ∑
e∈a

λ (e,we) , ∀a ∈ Â (16)

λ (e,r) ∈ {0,1} , ∀e ∈ Ê , ∀r ∈ Re (17)

ω(a) ∈ [0,1] , ∀a ∈ Â . (18)

Equation (13) indicates that the total number of allocated resources
does not exceed k. Equations (14) and (15) constrain no two edges
to be partially blocked. Equation (16) defines the relation between
ω and λ ; that is, ω(a) = 1 if attacker path a is completely blocked
by the defender at some edge e ∈ a; otherwise, ω(a) = 0.

The attacker’s best response oracle is not provided here; the all
members of Â is enumerated in advance and D̂ only is generated
incrementally. As for the proposed method, it is empirically con-
firmed that the number of valid attacker paths does not increase
explosively.

5. HEURISTIC ALGORITHM
Algorithm 2 is replaced by introducing an automatic method for

selecting appropriate candidate edges for defender allocations. The
min-cut method for single-target problems [19] and mincut-fanout
in SNARES [6] imply that min-cuts are strongly associated with de-
fender strategies. A min-cut separating a subset of targets, T ′ ⊆ T ,
from a set of all sources, S, gives the best set of edges for uni-
formly enhancing the security of targets in T ′. The idea proposed
here, called “min-cut arrangement,” is to combine multiple such
S-T ′ min-cuts.

A naive implementation of min-cut arrangement would be one
that tries to use all 2|T |− 1 nonempty subsets of T as T ′. It will
surely find the best solution among min-cut-arrangement-based al-
gorithms; however, it is not practical in terms of computational
complexity when |T | is large.

Algorithm 4: MiCANS(V,E,S,T,U,k)

1 C0← /0, T 1← argmaxt U(t), i← 1
2 loop
3 Ci←Ci−1∪FindCandidateEdges(V,E,S,T i)

4 if Ci =Ci−1 then return x̂i−1

5 (x̂i, ŷi) = ReduceAndSolve(V,E,S,T,U,k,Ci)

6 T i+1←{v | v ∈ ϕ̃Ci(t(a)), ŷi(a)> 0}
7 i← i+1

Algorithm 4, called MiCANS, is based on min-cut arrangement
that aims for both runtime and quality. Ci and T i represent a set

Original graph

(a) (b)

(c) (d)

Figure 2: An example of execution.

of candidate edges and a set of critical targets in the i-th iteration,
respectively. Critical targets are the ones that will suffer the high-
est expectation of damage for the current equilibrium solution. Ini-
tially, it is assumed that no target is protected; thus T 1 is a set of the
most valuable targets (line 1). Subsequent sets of critical targets are
found by extracting targets with non-zero attack probability from ŷi

and mapping them back to the original graph (line 6).
FindCandidateEdges(V,E,S,T i) returns a set of edges by com-

puting a min-cut separating T i from S. When multiple S-T i min-
cuts exist, some heuristics for selecting one or more of them must
be devised. One of the simplest heuristics is to choose the min-cut
that minimizes the size of the node group containing T i.

ReduceAndSolve(V,E,S,T,U,k,Ci) stands for the method de-
scribed in Section 3 and Section 4, which contracts all unused
edges, e ∈ E \Ci, of G = (V,E), unifies every bundle of multiple
edges into a weighted edge, and solves the minimax LP problem
with column generation. The graph is refined in each iteration by
adding minimum cut-set separating critical targets. It is repeated
until the candidate edges stop growing.

The MiCANS algorithm can be interpreted as a kind of (incom-
plete) column generation at higher level of abstraction for solving
the minimax LP (1)–(4). The defender’s strategy space, D, is ex-
panded indirectly by adding candidate edges to E ′. Ideally, they
should be chosen in such a way that no other choices reduce ex-
pected damage if they do not. Although the min-cut edges are ef-
ficient candidates for improving the solution, they do not always
satisfy such a property; that is, this algorithm does not guarantee
that it always converges to an optimal solution.

EXAMPLE 2. Figure 2 shows an example of execution, in which
s is the source, t1 and t2 are the targets with values 1 and 2, respec-
tively, and the number of resources is 2. The first critical target set
is T 1 = {t2}. Two min-cuts separate t2 from s: α and β . In either
case that C1 = α or C1 = β , the first reduced graph is (a), t2 is
completely guarded by two defender resources in the first iteration,
expected damage of t2 changes to zero, and therefore T 2 = {t1}.
At the second iteration, three min-cuts, γ , δ , and ε , exist between
s and t1. If C2 = α ∪ γ is chosen, the reduced graph is (b). As the
optimal mixed strategy for the defender balances expected dam-
age of attacks on t1 and t2 to 4/5, both targets become critical:
T 3 = {t1, t2}. The third reduced graph is (c) and the expected dam-
age is reduced to 2/3, which is the optimal value. The algorithm
terminates because {t1, t2} is critical again. If C2 = β ∪ ε is cho-
sen at the second iteration, reduced graph (d) is obtained, and it
yields another solution with the same expected damage, 2/3, even
though (c) and (d) are topologically different. Optimal solutions
are also obtained from other combinations of min-cuts.

EXAMPLE 3. An optimal solution cannot be obtained from the
graph in Figure 2(d) if the number of resources is 3. When the de-

209



fender completely blocks edge {t1, t2}, the remaining resource must
be allocated to edge {s, t1}. The security of t1 is strengthened by
blocking one-quarter of attacks. On the other hand, an optimal so-
lution is obtained from the graph in Figure 2(c), in which resource
allocation on {s,u} and {t1,u} completely protects t2 and one more
resource on {s, t1} blocks one-third of attacks on t1. In fact, for an
optimal solution, it is necessary to choose two out of β , γ , and δ .

Under the assumption that the min-cut that minimizes the size
of the target-side is always chosen, MiCANS overlays the cut-sets
that do not cross each other. In that case, the size of the reduced
graph increases by one after each iteration. The number of itera-
tions in MiCANS, as well as the final size of the reduced graph,
becomes linear in relation to the number of targets with differ-
ent values, namely, O(|T |). In a large problem in which the re-
duced graph becomes small enough in comparison with the origi-
nal graph, G = (V,E), min-cut computation dominates the running
time. It takes polynomial time with respect to the size of G, namely,
O(|V | · |E|2). Consequently, the total cost of MiCANS under this
assumption is O(|T | · |V | · |E|2).

6. EXPERIMENTAL RESULTS
We have implemented MiCANS and SNARES in Python with

the NetworkX graph library [13] and the Gurobi mathematical pro-
gramming solver. Experiments were performed on a machine with
2.9 GHz CPU and 10 GB memory. The following three types of
network models were used:

1. A random road network model called GRE (grid model with
random edges) [11], which is a planar connected graph made
of a l ×w square grid of nodes. Horizontal/vertical edges
between neighbors are controlled by probability p, and diag-
onal ones by q. It is reported that the values of p spread in
[0.3,0.9] and q in [0.1,0.7] in models that best match the road
networks of Europe. Sources were fixed to w nodes at the
bottom end, while the target nodes were selected randomly.

2. Random geometric graphs, which have also been shown to
mimic some properties of real road networks [3] and were
used to evaluate SNARES. n nodes are distributed uniformly
at random in a unit square, and node pairs with a distance
not more than a given threshold, d, are connected by edges.
Source and target nodes were selected randomly.

3. Real road network data collected in Mumbai, made of 21,132
nodes and 33,603 edges. It was extracted from a rectangle
area of latitude 18.84 to 19.36◦ and longitude 72.75 to 73.16◦

of Open Street Map [5]. Source and target nodes were se-
lected randomly.

6.1 Effectiveness of Graph Reduction
400 random instances of the GRE were generated; their horizon-

tal and vertical sizes were chosen randomly from {10, . . . ,300}, p
from [0.3,0.9], and q from [0.1,0.7].

Figure 3(a) shows the relation between numbers of nodes and
edges of the final reduced graph made by min-cut arrangement. It
is confirmed that the numbers of nodes and edges are about the
same in every reduced graph; that is, reduced graphs are generally
sparse. That is the reason why the number of attacker paths does
not explode in reduced graphs. The actual number of attacker paths
enumerated on every reduced graph is less than 200 in these exam-
ples.

The comparison between original graphs and reduced ones in
Figure 3(b) show that the numbers of edges are reduced by several

(a) Vs. nodes after reduction

(b) Vs. edges before reduction

(c) Vs. number of sources

(d) Vs. number of targets

Figure 3: Number of edges after reduction.

orders of magnitude. It should be further emphasized that no direct
correlation was found between them.

Figure 3(c) and Figure 3(d) shows that the size of reduced graph
is strongly related to the number of targets, but not to sources. The
number of edges in each reduced graph becomes likely to propor-
tion to the number of targets when sufficient resources are available
with respect to the number of targets.

6.2 Comparison with SNARES
For the GRE graphs, central parameter values are chosen as 10×

10 nodes, (p,q) = (0.6,0.4), 3 targets, and 3 resources. Figure 4
presents runtime in seconds when varying (a) number of nodes,

210



(a) Varying number of nodes (b) Varying edge probabilities

(c) Varying number of targets (d) Varying number of resources

Figure 4: Runtime for small GRE graphs.

(a) Varying number of nodes (b) Varying distance threshold

(c) Varying number of targets (d) Varying number of resources

Figure 5: Runtime for random geometric graphs.

(b) edge probabilities, (c) number of targets, and (d) number of re-
sources. For each parameter setting, 10 graph instances were gen-
erated with different random seeds. The marks on the top margin
of the figures indicate the number of runs (of SNARES) that did
not finish within 1,000 seconds. All the results show that execu-
tion time of SNARES varies significantly, while MiCANS is very
robust, and all runs are finished within a second.

Figure 5 presents runtime in seconds for random geometric graphs,
where central parameter values were selected as 100 nodes, d =
0.2, 3 sources, 3 targets, and 3 resources. The same trends as the
GRE graphs can be found in these graphs.

For the problem settings of the Mumbai road network in [6],
where the number of resources is 1, 5, 10, or 15, the number of
targets is 4 or 8, and the number of sources is fixed to 3, every run
of MiCANS took 10 to 30 seconds, including 10 seconds of data
reading. SNARES often did not end overnight when the number of
resources was set to 5.

Figure 6: Total number of inner iterations for GRE graphs.

(a) Varying number of nodes (b) Varying edge probabilities

(c) Varying number of targets (d) Varying number of resources

Figure 7: Runtime for large GRE graphs.

Numbers of inner iterations (number of runs of minimax opti-
mizations) for the algorithms are compared in Figure 6. This com-
parison also shows a significant reduction of iterations by MiCANS
and no clear correlation between difficulties concerning the original
problem and the reduced one.

Expected payoff values were also compared for the problems that
were solved by both SNARES and MiCANS in these experiments
(154 GRE graph problems, 154 random geometric graph problems,
and 124 Mumbai road network problems). The comparison con-
firmed that they are always the same; it thus follows that MiCANS
successfully found the optimal solutions for these problems.

6.3 Scalability
Scalability of MiCANS was evaluated by using more-difficult

problems, which our implementation of SNARES could not solve.
It was performed using 10 random instances for each parameter
setting. Note that y-axis is changed from a logarithmic scale to a
linear scale.

Figure 7 presents runtime in seconds for larger GRE graphs,
where central parameter values were selected as 200× 200 nodes,
(p,q) = (0.6,0.4), 20 targets, and 20 resources. It shows that the
algorithm is still stable for large problems. When the original graph
size is very large (e.g. >100k nodes), runtime is dominated by min-
cut computation. These results are similar to those for large random
geometric graphs.

Figure 8(a) presents runtime in seconds for the Mumbai road net-
work when the number of targets was varied from 10 to 40 and both
numbers of sources and resources were fixed to 20. Figure 8(b)
presents runtime in seconds when the number of resources was var-

211



(a) Varying number of targets (b) Varying number of resources

Figure 8: Runtime for Mumbai road network.

Table 1: Solution quality

(a) GRE graphs
Optimal solutions Worst case Time (sec.)

MiCANS 7342/7412 (99.056%) +12.92% 433.7
AllComb 7409/7412 (99.960%) +0.08% 4008.0

(b) Random geometric graphs
Optimal solutions Worst case Time (sec.)

MiCANS 7364/7375 (99.851%) +4.18% 246.7
AllComb 7375/7375 (100.00%) +0.00% 1836.4

(c) Random graphs
Optimal solutions Worst case Time (sec.)

MiCANS 8280/8295 (99.819%) +7.11% 313.1
AllComb 8292/8295 (99.964%) +0.75% 1904.9

ied from 10 to 60 and both numbers of sources and targets were
fixed to 20.

Overall, the results for large random geometric graphs, large
GRE graphs, and the Mumbai graph are similar. The performance
of MiCANS depends on size of the original graph, number of tar-
gets, and number of resources. When the original graph size is very
large (e.g., |E|> 100k), computation time is dominated by min-cut
computation. All results show gradual growth in computational
cost with respect to size of the problems.

6.4 Solution Quality
Huge number of random tests were performed to evaluate qual-

ity of solutions. The number of optimal solutions, the worst-case
quality, and the total time for solving all problems are shown in
Table 1. For the GRE graphs, horizontal and vertical sizes were
chosen randomly from {3, . . . ,10}, p and q from [0,1], and the
numbers of targets and resources from{1, . . . ,5}. For random ge-
ometric graphs, the number of nodes was chosen randomly from
{10, . . . ,100}, d from [0.1,0.4], and the numbers of targets and
resources from{1, . . . ,5}. The number of sources was fixed to 3.
Additional tests on random graphs were also performed. 10,000
random instances for each graph types were generated, and the so-
lutions of MiCANS and AllComb were compared with the optimal
solutions computed by SNARES, except for the instances that are
trivial (perfectly defensible) or unsolvable by SNARES. AllComb
enumerates all combinations of targets and selects two min-cuts
maximizing and minimizing the size of the node group containing
the targets for each combination. MiCANS did not find an opti-
mal solution on rare occasions, and it produced trade-offs between
quality and speed.

Figure 9 shows one of the rare cases where both MiCANS and
AllComb did not find an optimal solution. The candidate edges
selected by MiCANS were α ∪β ∪ γ (expected damage = 35.804);
while α ∪ β ∪ δ were selected by SNARES (expected damage =

U(t1) = 95
U(t2) = 75
k = 4

Figure 9: An example of non-optimal solution.

35.774). Contrary to expectations, a non-minimum cut, δ , must be
selected. δ shares more edges with α and β than γ does, which
seems important in this subtle balance of conditions.

6.5 Warm-Starting SNARES
For some situations in which it is mandatory to guarantee opti-

mality of the solution, MiCANS should still be useful for gener-
ating initial sets of the pure strategies for SNARES, which orig-
inally used mincut-fanout. Defender allocations on the reduced
graph computed by MiCANS can be mapped directly to the original
graph. Attacker paths on the reduced graph, however, cannot be re-
stored easily; therefore, we used the shortest paths from the source
to the critical targets. They are not optimal and will limit the ef-
fectiveness of warm-starting even though defender allocations are
optimal. Our preliminary experiments of replacing mincut-fanout
with this warm-starting method on small GRE and random geomet-
ric graphs showed that computation speed of SNARES is increased
five times on average.

7. CONCLUSIONS
A practical approach of simplifying massive urban network se-

curity games so that they can be solved within a realistic time was
proposed and evaluated. The key idea underpinning this approach
is to restrict the defender’s pure strategies to potential ones before
calculating an equilibrium solution. This restriction can be tight-
ened for faster computation and loosened for better solutions. Out-
put of the proposed method always gives a feasible mixed strategy,
which shows an upper bound of the expected damage.

Efficient techniques to solve the problems by using weighted
edges to suppress combinatorial explosion of the strategy space
were also proposed. These techniques can naturally cope with an
extension of the game to one taking width of roads into account,
where multiple resources are required for defense.

The weighted edges, however, introduced further level of dif-
ficulty in the defender’s best-response oracle. It was resolved by
identifying the defender’s pure strategies that are not essential for
optimal solutions and then converting the oracle to an easier prob-
lem.

Furthermore, an algorithm called MiCANS, which automatically
reduces the original graph to a very small one by abstracting edges
that are not essential for the defender’s optimal strategy, was pro-
posed. It is shown empirically that MiCANS sometimes fails to
find optimal solutions, while the quality of its result is close to the
optimal one, even if it is not optimal. Immediate future work will
be focused on finding a good bound of the solution quality.

Acknowledgments
This research was partially supported by KAKENHI 26280081.

212



REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Third Edition. MIT press, 2009.
[2] J. Edmonds and R. M. Karp. Theoretical improvements in

algorithmic efficiency for network flow problems. Journal of
the ACM (JACM), 19(2):248–264, 1972.

[3] D. Eppstein and M. T. Goodrich. Studying (non-planar) road
networks through an algorithmic lens. In Proceedings of the
16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’08,
pages 16:1–16:10, 2008.

[4] F. Fang, A. X. Jiang, and M. Tambe. Optimal patrol strategy
for protecting moving targets with multiple mobile resources.
In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 957–964, 2013.

[5] M. Haklay and P. Weber. Openstreetmap: User-generated
street maps. Pervasive Computing, IEEE, 7(4):12–18, 2008.

[6] M. Jain, V. Conitzer, and M. Tambe. Security scheduling for
real-world networks. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 215–222, 2013.

[7] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pěchouček,
and M. Tambe. A double oracle algorithm for zero-sum
security games on graphs. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 327–334, 2011.

[8] M. Jain, K. Leyton-Brown, and M. Tambe. The
deployment-to-saturation ratio in security games. In
Conference on Artificial Intelligence (AAAI), pages
1362–1370, 2012.

[9] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and
M. Tambe. Computing optimal randomized resource
allocations for massive security games. In International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 689–696, 2009.

[10] H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the
presence of cost functions controlled by an adversary. In
International Conference on Machine Learning, pages
536–543, 2003.

[11] W. Peng, G. Dong, K. Yang, and J. Su. A random road
network model and its effects on topological characteristics
of mobile delay-tolerant networks. IEEE Transactions on
Mobile Computing, 13(12):2706–2718, 2014.

[12] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus. Deployed
armor protection: the application of a game theoretic model
for security at the los angeles international airport. In
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 125–132, 2008.

[13] D. A. Schult and P. Swart. Exploring network structure,
dynamics, and function using networkx. In Proceedings of
the 7th Python in Science Conferences (SciPy 2008), volume
2008, pages 11–16, 2008.

[14] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin,
J. DiRenzo, B. Maule, and G. Meyer. Protect: A deployed
game theoretic system to protect the ports of the united
states. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 13–20, 2012.

[15] M. Tambe, A. X. Jiang, B. An, and M. Jain. Computational
game theory for security: Progress and challenges. In AAAI
Spring Symposium on Applied Computational Game Theory,
2014.

[16] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordonez, and M. Tambe.
Iris-a tool for strategic security allocation in transportation
networks. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2009.

[17] J. Tsai, Z. Yin, J.-y. Kwak, D. Kempe, C. Kiekintveld, and
M. Tambe. Urban security: Game-theoretic resource
allocation in networked physical domains. In Conference on
Artificial Intelligence (AAAI), pages 881–886, 2010.

[18] H. Von Stackelberg. Marktform und Gleichgewicht. J.
Springer, 1934.

[19] A. Washburn and K. Wood. Two-person zero-sum games for
network interdiction. Operations Research, 43(2):243–251,
1995.

[20] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games:
Interchangeability, equivalence, and uniqueness. In
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1139–1146, 2010.

213




