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ABSTRACT
We introduce a new network model of the pollution control
problem and present two applications of this model. On a
high level, our model comprises a graph whose nodes repre-
sent the agents, that could be thought of as sources of pollu-
tion, and edges between agents represent the effect of spread
of pollution. The government as the regulator is responsible
to maximize the social welfare while setting bounds on the
levels of emitted pollution both locally and globally. Our
model is inspired by the existing literature in environmen-
tal economics that applies game theoretical methodology to
control pollution. We study the social welfare maximiza-
tion problem in our model. Our main results include hard-
ness results for the problem, and in complement, a constant
approximation algorithm on planar graphs. Our approxima-
tion algorithm leads to a truthful in expectation mechanism,
and it is obtained by a novel decomposition technique of pla-
nar graphs to deal with constraints on vertices. We note that
no known planar decomposition techniques can be used here
and our technique can be of independent interest.

Keywords
Algorithmic mechanism design; approximation algorithms;
planar graphs; pollution control

1. INTRODUCTION
Technology advance and commercial freedom have fused

and accelerated the development process in an unprecedented
scale. Environmental degradation however has accompanied
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this progress, resulting in global water and air pollution. In
many developing countries, this has caused wide public con-
cerns. As an example, in 2012, China discharged 68.5 bil-
lion tons of industrial wastewater, and the SO2 emissions
reached 21.2 million tons (National Bureau of Statistics of
China, 2013). China has become one of the most polluted
countries in the world, with industrial emissions as the main
source of its pollution. The recent annual State of the Air
report of the American Lung Association finds 47% of Amer-
icans live in counties with frequently unhealthy levels of ei-
ther ozone or particulate pollution, see [4]. The latest assess-
ment of air quality, by the European Environment Agency,
finds that around 90% of city inhabitants in the European
Union are exposed to one of the most damaging air pollu-
tants at harmful levels, see [1]. It is the role of regulatory
authorities to make efficient environmental policies in bal-
ancing economic growth and environment protection.

Our model and motivation. Pollution control regula-
tions are inspired by the managerial approaches in envi-
ronment policies, where models based on game theory are
proposed and analysed. Kwerel [25] proposed a mechanism
where firms, potential polluters, report their clean-up cost
information to the regulator. The regulator sells a fixed
number of pollution licences at a fixed price per licence and
offers a subsidy for those licences which firms hold in ex-
cess of emission, based on the cost information provided by
firms. In Kwerel’s mechanism truth-telling by all firms im-
plies a Nash equilibrium. Kwerel’s scheme maintains a mild
level of pollution by optimizing the social welfare (sum of the
global clean-up cost and damage cost of emitted pollution).

From a different viewpoint, Dasgupta, Hammond and Mas-
kin [11] focus on minimizing the sum of pollution damages,
abatement costs and individual rationality for consumers.
Spulber [36] develops a market model of environmental regu-
lation with interdependent production, pollution abatement
costs and heterogeneous firms who have private information
about costs and pursue Bayes-Nash strategies in communi-
cation with the regulator. Their paper illustrates that the
full information optimum cannot be attained unless gains
from trade in the product market net of external damages
exceed the information rents earned by firms, and aggre-
gate output and externality levels are lower at the regulated
equilibrium than at the full information social optimum.

Pollution has a diffusion nature: emitted at one source,
it will have an effect on its neighbours at some diminish-
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ing level. We consider two applications using a network
model. In the first application, the vertices represent pol-
lution sources and edges are routes of pollution transition
from one source to another similar to Belitskaya [9]. Our
model measures the pollution diminishing transition by ar-
bitrary weights on the edges, which is also present in the
model by Montgomery [28]. The polluters’ privately known
clean-up cost and damage of the emitted pollution in our
model are inspired by Kwerel. In the second application,
the vertices represent mayors of cities and edges the roads
between cities. The percentage of cars moving from one city
to another is represented by the weight of the corresponding
edge.

Our model covers both aforementioned applications with
details given in section 3. The government as the regula-
tor can decide to either shut down or keep open a pollution
source taking into account the diffusion nature of pollution.
It sets bounds on global and local levels of pollution, while
trying to optimize the social welfare. The emissions that ex-
ceed the licences, if any, must be cleaned-up (hence, agent’s
clean-up cost). Furthermore our model allows the regulator
to auction pollution licences for cars to mayors. In this case,
the pollution level of an agent (mayor), i.e., the number of
allocated licences, is set by the regulator together with the
prices that the agent pays to get them.

Finding an optimal social welfare maximizing solution to
our problem, which we call Pollution Game (PG), is NP-
hard, that is why we study polynomial time approximation
algorithms which can lead to incentive compatible (truthful)
mechanisms. We study linear cost and damage functions,
and derive approximation algorithms and truthful mecha-
nisms focusing on planar network topologies. In contrast,
Belitskaya assumes quadratic cost functions and linear dam-
age functions and derives optimal social welfare and Nash
equilibria solutions by explicit analytic formulas. We focus
our study on planar network topologies which model realistic
scenarios.

Most of the cited economics papers derive equilibria by
closed analytic formulas. Some of these papers provide com-
putational mechanisms without investigating polynomial run-
ning time. Our approach is algorithmic and focuses on effi-
ciently computing these solutions. We also analyse the com-
putational complexity/hardness, of computing the social op-
timum in our model. To the best of our knowledge, our work
is the first attempt to algorithmically analyze pollution con-
trol from the perspective of regulators by a network game
model with information asymmetry between regulators and
polluters.

Technical contributions. Our main algorithmic contri-
butions are for linear objective functions on planar graphs.
Baker’s shifting and tree-width decomposition techniques,
see, e.g., [6, 21], are used for designing PTASs 1 for various
problems on planar graphs. It seems impossible to design
a PTAS for PG with binary variables on planar graphs by
adapting these techniques. That is because they deal with
constraints on edges (e.g., for the independent set problem),
but PG’s constraints are imposed on vertices from its neigh-
bouring vertices. More precisely, given two optimal solutions
on two subgraphs (with common boundary vertices) of the
planar graph, combining them together may not result in a

1Polynomial Time Approximation Schemes

feasible solution for PG on the whole graph.This is due to
the possible infeasibility of local constraints of the bound-
ary vertices of these two subgraphs. We overcome this major
difficulty by introducing a new decomposition technique of
planar graphs, an (α, β)-decomposition. This new technique
is of independent interest and it may have further applica-
tions for the problems with constraints on vertices rather
than on edges.

Even when polluters’ cost functions are linear with a sin-
gle parameter, simple monotonicity is not sufficient to turn
our algorithms into truthful mechanisms (see e.g. Chap-
ter 11 in [29]). This is because polluters’ utility functions
have externalities – they are affected by their neighbours.
Thus, we need to use general techniques to obtain truthful
mechanisms: maximal in range mechanisms (for determinis-
tic truthfulness) and maximal in distributional range mech-
anisms (for truthfulness in expectation).

Organization. In Section 2 we present a general overview
of literature on game theoretic approaches to pollution con-
trol. The reader can skip this section during first reading
with no harm to further reading. Section 3 contains defini-
tions, the problem formulation and two applications of our
model. In Section 4 we present the hardness results for the
pollution game and in Section 5 we present our technique
to get a constant approximation algorithm and a truthful in
expectation mechanism for planar graphs. We conclude in
Section 6 with a few open problems.

2. LITERATURE OVERVIEW
An invaluable source of pollution control regulations comes

from the managerial approaches in environment policies.
The majority of literature in this field dealt with symmetric
information. This problem however shows a fundamental
asymmetry between the regulatory bodies and pollutants.
The research contributions considering environmental pol-
icy with asymmetric information and the diffusion nature of
pollution have been limited until recently.

In order to control pollution, an incentive mechanism that
is environmentally friendly and resource efficient needs to be
designed and deployed by regulatory authorities. However,
it is not obvious how to design such a mechanism in presence
of asymmetric information; just as Hurwicz [18] put it: the
firms know that information will be used by the regulator to
design a policy which will affect their profits. Hence, they
have an incentive to manipulate reported information in or-
der to influence the content of the policy. In this context,
Farell [15] discusses the relevance of the Coase Theorem.
This theorem basically asserts that bargaining will lead to an
efficient outcome regardless of the initial allocation of prop-
erty if negotiation and trade in presence of externality are
possible and the transaction costs are sufficiently low. Con-
sidering the problems of incomplete information, this paper
shows that voluntary negotiation does not lead to the first-
best outcome that maximizes joint surplus in the presence
of two-sided private information. That is to say, centralised
economic institutions such as government control and inter-
vention, and decentralised institutions such as bargaining
and ownership rights, should be viewed as complementary
to each other. Therefore, a necessary condition for the gov-
ernment when designing an optimal pollution control plan
is the truthful information about firms.

Kwerel [25], Dasgupta et al. [11] and Spulber [36] have
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proposed mechanisms that implement truth telling by firms
to maintain a mild level of pollution. Under the assumption
that firms can communicate with the regulator but not with
one another, In Kwerel’s scheme [25] firms are informed in
advance that their messages will be translated into pollu-
tion taxes. The regulator issues a fixed number of transfer-
able pollution licences and offers a subsidy for those licences
which firms hold in excess of emission. Both the number of
licences to be issued and the subsidy rate offered are calcu-
lated on the basis of the cost information provided by firms.

Kim and Chang [22] constructed an optimal incentive
tax/subsidy scheme in an oligopoly market with pollution
and suggested a differential damages mechanism, which leads
to an optimal emission level. McKitrick [27] proposes a
Cournot Mechanism for pollution control under asymmet-
ric information, in which Nash Equilibrium exists, is stable,
and can be reached by iterative computations. Because firms
may attempt to manipulate the pollution level allocation to
their own advantage, the adjustment rule is exogenous and
depends on the actions of the firms. An approach in Karp
and Livernois [20] is related to that in Conrad and Wang [10]
who examine the steady-state properties of a tax adjustment
mechanism in situations where the government has no infor-
mation about firms’ abatement costs.

These prior studies provide an overall framework in the
administrative approach to control pollution. However, those
models are only a first level of approximation in characteriz-
ing the reality. Although, there is some literature studying
an economics environment consisting of firms or countries
with geographical distinction, few of them take the diffusion
nature of air and water pollution into consideration. For in-
stance, Petrosjan and Zaccour [30] study the problem of allo-
cation over time of total cost incurred by countries in a coop-
erative game of pollution reduction. Segerson [34] develops
a general incentive scheme for controlling nonpoint source
pollution2 that considers the diffusion nature, in which re-
wards for environmental quality above a given standard are
combined with penalties for substandard quality. Based on
the work of Petrosjan and Zaccour [30], Belitskaya [9] devel-
ops an n-person network game model of emission reduction.
Dorner et al. [14] create a multi-objective modeling sys-
tem using Bayesian probability networks to study nonpoint
source pollution. Both the work of Belitskaya and Dorner
et al. are different from the setting of this paper, in either
model assumption or function settings. In addition to these
works built on network framework, Dong et al. [13] mod-
els the water pollution problem as a cost sharing problem
on a tree network. However, none of the literature men-
tioned above takes into account the role of governments in
pollution abatement, more specifically how to make policies
assuming information asymmetry. A model that adequately
takes both factors into account is what we need to tackle
such problems in reality.

Few other papers have studied air pollution in relation to
network models. Singh and Datta [35] use artificial neural
network method to identify unknown pollution sources in the

2Nonpoint source (NPS) pollution refers to both water and
air pollution from diffuse sources, that is sources without a
specified fixed location. For instance, nonpoint source water
pollution affects a water body from sources such as polluted
runoff from agricultural areas draining into a river, or wind-
borne debris blowing out to sea. Our paper deals mainly
with point source pollution.

groundwater. Gianessi et al. [17] analyze the national water
pollution control policies. And, finally, Trujillo and Hugh
[39] study multi-objective air pollution monitoring network
design. These papers use networks in a very different context
than ours.

Turning into current practice, emissions trading is a market-
based approach used to control pollution by providing eco-
nomic incentives for achieving reductions in the emissions of
pollutants. Various countries have adopted emission trad-
ing systems as one of the strategies for mitigating climate-
change by addressing international greenhouse-gas emission
[38].

A central authority (usually a governmental body) sets
a limit or cap on the amount of a pollutant that may be
emitted. The limit or cap is allocated and/or sold by the
central authority to firms in the form of emissions permits
which represent the right to emit or discharge a specific
volume of the specified pollutant [37]. Permits (and pos-
sibly also derivatives of permits) can then be traded on sec-
ondary markets. For example, the European Union Emis-
sions Trading Scheme (EU ETS) trades primarily in Euro-
pean Union Allowances (EUAs), the Californian scheme in
California Carbon Allowances, the New Zealand scheme in
New Zealand Units and the Australian scheme in Australian
Units [2]. Firms are required to hold a number of permits (or
allowances or carbon credits) equivalent to their emissions.
The total number of permits cannot exceed the cap, limit-
ing total emissions to that level. Firms that need to increase
their volume of emissions must buy permits from those who
require fewer permits [37, 38]. Currently a simple auction
mechanism for selling EUAs is adopted in Europe, see, e.g.,
[3]. Furthermore in order to limit the automobile pollution,
governments use policies of car taxation [19], [16]. A radical
transport policy introduced in the UK and first applied in
Central London resulted in 19% reduction of CO2 emissions
(see table 2 in [7]).

3. PRELIMINARIES

3.1 Model and applications
We introduce our model in context of our first application

where given an area of pollution sources (e.g. factories) each
one owned by an agent, the goal of the government as a reg-
ulator is to optimize the social welfare while restricting the
levels of emitted pollution. More formally, given a weighted
digraph G = (V,E), where V is the set of n pollution sources
(players, agents) and edge (u, v) ∈ E represents the fact
that u and v are geographic neighbours i.e. (u, v) ∈ E if
and only if the pollution emitted by u affects v (No geo-
metric assumptions are made.) For each (u, v) ∈ E weight
w(u,v) = wuv denotes a discount factor of the pollution dis-
charged by player u affecting its neighbour v. Without loss
of generality, we may suppose wuv ∈ (0, 1], ∀(u, v) ∈ E.

The government sets the total pollution quota discharged
to the environment (by the number of pollution sources that
remain open) to be p ≥

∑
v∈V xv, where xv ∈ {0, 1} de-

notes whether pollution source v ∈ V will be shut down or
not. Each agent v has a non-decreasing benefit function bv :
R≥0 −→ R≥0, where bv(xv) is a concave increasing function
(economic diminishing marginal utility phenomenon) with
bv(0) = 0 which represents the benefit incurred by v. Each
v has a non-decreasing damage function dv : R≥0 −→ R≥0,
and bv is concave increasing (the damaging effect of more
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emitted pollution is accelerating),3 bv(0) = 0 and dv is con-
vex increasing [25]. Player v’s total welfare rv is v’s benefit

minus his damage cost: bv(xv)−dv
(
xv +

∑
u∈δ−

G
(v)
wuvxu

)
,

where, δ−G(v) = {u ∈ V : (u, v) ∈ E}, δ+G(v) = {u ∈ V :
(v, u) ∈ E}. Thus, player v is affected via the damage func-
tion by his own discharged pollution if xv = 1 and by the to-
tal discounted pollution of his neighbours. This models that
pollution spreads along the edges of G. We assume that the
government decides on the allowable local level of pollution
pv, for every v ∈ V . This imposes the following constraints
for every player v ∈ V : xv ≤ qv, xv +

∑
u∈δ−

G
(v)
wuvxu ≤

pv. Our first application assumes xv ∈ {0, 1} and qv = 1,
∀v ∈ V . In the second application xv ∈ {0, 1, . . . , qv} and
qv ∈ N.

The problem of social welfare maximization can be formu-
lated in the general form by the following integer program:

max R(x) =
∑
v∈V

bv(xv)− dv

xv +
∑

u∈δ−
G

(v)

wuvxu


 (1)

s.t.
∑
v∈V

xv ≤ p (2)

xv +
∑

u∈δ−
G

(v)

wuvxu ≤ pv, ∀v ∈ V (3)

xv ∈ {0, 1, . . . , qv}, ∀v ∈ V (4)

where (2) is called global constraint and (3) are local con-
straints. We call xv +

∑
u∈δ−

G
(v)
wuvxu the local level of

pollution of v. The bound qv is decided by the government
and for this application has value of 1. The above convex in-
teger program is called a pollution game (PG) on G. We call
this problem PG with integer variables (if xv ∈ Z) or with
binary variables (if xv ∈ {0, 1}). For an instance I of PG, |I|
denotes the number of bits to encode I, and if q ∈ poly(|I|),
where q = maxv∈V {qv}+1, we call this problem PG with
polynomial size integer variables.

In our second application formulated by the above convex
program we consider an area of n cities each one adminis-
tered by its mayor (agent) where there are available obser-
vations of car traffic patterns. More precisely we consider a
network represented by a weighted digraph G = (V,E,w),
where V is the set of n agents (mayors of the cities), E is the
set of roads connecting cities s.t. (u, v) ∈ E if and only if u
and v are neighbouring cities, and w : E → R represents the
percentage of cars entering a city from a neighboring one i.e.
wuv denotes the percentage of cars driving from u to v in
some time interval measured by observations. The duty of
the regulator is to allocate a number of licences to the agents
(mayors) such that the total welfare is maximized while ful-
filling a number of constraints. We denote by xu the number
of licences allocated to agent u. The agent with xu licences
gains a benefit of bu(xu) which is a monetary income com-
ing from selling these xu licences to car drivers (our model
does not model this explicitly but just assumes for simplicity

3[25] uses cost function rather than benefit function, which
can be viewed as Mv − bv(xv), with Mv a large constant for
any v ∈ V . The author assumes that cost function is convex
decreasing and it is equivalent to bv(xv) being a concave
increasing function. We use benefit function rather than
cost function for ease of analysis.

that all xu licences are sold). The pollution damage caused
in the area of agent u is given by du(xu +

∑
v∈δ−

G
(u)

wvuxv).

The total welfare that the regulator aims to maximize is:∑
u∈V bu(xu)− du(xu +

∑
v∈δ−

G
(u)

wvuxv).

The total number of licences is bounded by a number p
given in the input of the problem. Naturally a percentage
of cars with licences from city u remains in u and the rest
is split and drives into the neighboring cities. We denote
by wu the percentage of cars remaining in u and w′vu the
percentage of cars entering u from neighbouring city v. The
maximum number of cars (maximum number of licences)
allowed at any moment in city u is bounded by p′u also given
in the input. This is represented by the local constraint:
wuxu +

∑
v∈δ(u) w

′
vuxv ≤ p′u. If wu 6= 0 the last inequality

can equivalently be written as xu +
∑
v∈δ(u) wvuxv ≤ pu,

where wvu = w′vu/wu and pu = p′u/wu. There is also a
bound qu on the number of licences issued in city u, ∀u ∈ V ,
thus we can model this second application as (1)− (4).

Planar graphs are close to real applications, and it is natu-
ral to study our second application on planar networks [40].
Imagine a collection of cities (each being a contiguous ge-
ographic area) and roads connecting them. This defines a
planar map where we only consider edges (roads) between
neighbouring cities, which implies a planar graph. We dis-
regard other roads and we consider only frequent driving
patterns in a time interval measured by observations. They
correspond to frequent commuters, e.g., between house and
work, which typically are neighbouring cities.

In the following sections we assume that bv and dv are
both linear functions with slopes s0v and s1v respectively, i.e.
bv(x) = s0vx and dv(y) = s1vy, for any v ∈ V . The so-
cial welfare function is R(x) =

∑
v∈V ωvxv, where ωv =

s0v − s1v −
∑
u∈δ+

G
(v)
s1uwvu (R(x) =

∑
v∈V bv(xv)− dv(xv +∑

u∈δ−
G

(v)
wuvxu) =

∑
v∈V s

0
vxv−s1v(xv+

∑
u∈δ−

G
(v)
wuvxu) =∑

v∈V ωvxv).

3.2 Basic definitions
Let I = (G,b,d,p,q) be an instance of PG, where b =

(bv)v∈V , d = (dv)v∈V , p = (pv)v∈V and q = (qv)v∈V (bv
is assumed private information of v and other parameters
are public). Let I be the set of all instances, and X the set
of feasible allocations. Given a digraph G = (V,E), Gun =
(V,Eun), where Eun = {(u, v) : (u, v) ∈ E or (v, u) ∈ E}. A
mechanism φ = (X,P ) consists of an allocation X : I → X
and payment function P : I → R|V |≥0 (X(I) satisfies (2)–

(4)). For any vector x, x−u denotes vector x without its
u-th component. Note, rv(X(I)) = bv(Xv(I))− dv(Xv(I) +∑
u∈δ−

G
(v)
wuvXu(I)) is the welfare of player v under X(I).

A mechanism φ = (X,P ) is truthful, if for any b−v, bv
and b′v, rv(X(bv, b−v)) − Pv(bv, b−v) ≥ rv(X(b′v, b−v)) −
Pv(b′v, b−v). A randomized mechanism is truthful in expec-
tation if for any b−v, bv and b′v, E(rv(X(bv, b−v))−Pv(bv, b−v))
≥ E(rv(X(b′v, b−v))−Pv(b′v, b−v)), where E(·) is over the al-

gorithm’s random bits. OPT frG (PG) (OPT inG (PG), resp.)
denotes the value of the optimal fractional (integral, resp.)
solution of PG on G. A mechanism is individually rational
if each agent v has non-negative utility when he declares
bv, regardless of the other agents’ declarations. The in-

tegrality gap of PG on G is defined as
OPT

fr
G

(PG)

OPT in
G

(PG)
. The

approximation ratio of an algorithm A w.r.t. OPT inG (PG)
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(resp. OPT frG (PG)) is ηin(A) =
OPT inG (PG)

R(A)
(ηfr(A) =

OPT
fr
G

(PG)

R(A)
), where R(A) is the objective value of the A’s

solution. If unspecified, the approximation ratio refers to
ηin. An FPTAS (PTAS, EPTAS, resp.) 4 for a problem P
is an algorithm A that for any ε > 0 and any instance I of
P, outputs a solution with the objective value at least (1−
ε)OPT inI (P) and terminates in time poly( 1

ε
, |I|) (( 1

ε
|I|)g(

1
ε
)

and g( 1
ε
)poly(|I|), resp.), where g is a function indepen-

dent from I. Let γk = min{2k2 + 2, 8k, k

(1− 1
k
(1+( 2

k
)
1
3 ))k
} =

(e+ o(1))k = O(k), and [n] = {1, . . . , n}.

Algorithms for packing problems. A linear constraint
ax ≤ b with x ∈ Nn≥0 an integer vector, and a, b ∈ Rn≥0

are vectors, is called a packing constraint. A linear (resp.
convex) maximization programming problem with packing
constraints is called a linear (resp. convex) packing program-
ming problem. A k-column-sparse packing integer program
is one in which each variable j participates in at most k
constraints.

Proposition 1 ([8],[31]). There is a polynomial time
deterministic algorithm for k column sparse linear packing
programming problem with binary variables, achieving the
approximation ratio ηfr = γk.

Proposition 2 ([26]). For any linear packing program-
ming problem, if there is a polynomial deterministic algo-
rithm with the approximation ratio ηfr for this problem,
then there is a polynomial, randomized, individually rational,
ηfr-approximation mechanism for the same problem that is
truthful in expectation.

4. HARDNESS
PG is weakly NP-hard even on trees without global con-

straint. Suppose that the underlying graph is a star. We
observe that we can reduce to PG the knapsack problem,
where the weights wuv are the sizes of the items.

We also note that inequality (2) can also be written as
equality ∑

u∈V

xu = p (2′)

since the upper limit of the total amount of the pollution is
controlled by the government. If

∑
v∈V xv < p in the final

allocation, then the government can simply set p equal to∑
v∈V xv without any changes. However, for computational

issues, these two representations lead to different compu-
tational complexity. If inequality (2) is replaced by (2′),
then even finding a feasible solution of PG is NP-complete.
Therefore, unless stated otherwise, we always suppose in-
equality (2) as a constraint of PG.

Theorem 1. Finding a feasible solution which satisfies
constraints (2′) and (3) to PG when pv = 1 ∀v ∈ V and
wuv > 0 for any (u, v) ∈ E is NP-complete.

Proof. It is straight forward that the problem is in NP.
Consider now a formula of monotone 1-in-3 SAT where an in-
stance of this problem consists of n Boolean variables and m
4Fully Polynomial Time Approximation Scheme, Polyno-
mial Time Approximation Scheme and Efficient Polynomial
Time Approximation Scheme respectively

clauses. A YES instance is one in which an assignment to its
Boolean variables is such that exactly one literal from each
clause is true. The problem is known to be NP-Complete
even when there are no negations [33]. The following proof
is inspired by the reduction of 3-SAT to Independent Set (p.
248 [12]).

Let us represent a clause, say (x ∨ y ∨ z), by a triangle
with vertices labeled x, y, z. Repeat this construction for
all clauses. Next consider one of the literals, say x, which
appears in k clauses Ci1 , . . . , Cik . Let Tri1 , . . . , T rik be the
triangles of the clauses Ci1 , . . . , Cik respectively. Then con-
nect x of Tri1 with all the vertices of Tri2 , . . . , T rik except
those labeled with x. Repeat this construction for x in all
these triangles and for all literals. For example consider the
formula Φ = (x1∨x2∨x3)(x1∨x4∨x5) (see Figure 1). First
construct the triangles labeled x1, x2, x3 and x1, x4, x5 for
the two clauses respectively. Then connect vertex x1 of the
first clause with the vertices x4 and x5 of the second clause.
In the same way connect vertex x1 of the second clause with
the vertices x2 and x3 of the first clause.

x1

x2 x3

x1

x4 x5

Figure 1: A gadget of reduction

Consider now an instance of 1-in-3 SAT which is true and
let G = (V,E) be the corresponding graph constructed as
above. Furthermore for every vertex u ∈ V , let pu = 1
and p = m. Suppose that we have a truth assignment which
satisfies all the clauses. Then this means we choose p vertices
in G without violating any of the constraints. Indeed if two
vertices have the same label then they are not connected.
If they have different labels, say x from clause C1 and y
from clause C2 and they are connected, this is because their
corresponding clauses have a common literal, either x or y.
Thus if one of them has value true, the other will have value
false for the formula to be satisfiable. Finally if two vertices
belong to the same clause, only one of them will have the
value true.

Suppose now that we can decide in polynomial time whether
there is a solution in an instance of a graph constructed by a
formula as described above with p = m vertices when pv =
1, ∀v ∈ V . Then setting the literal in the set {v : xv = 1} is
a solution of 1-in-3 SAT. The argument is as follows, in each
triangle, there is exactly one vertex such that its value is
one since at most one vertex in each triangle can be selected
and there are m triangles and p = m. By the construction
of G, these vertices consist of a solution of 1-in-3 SAT. Thus
exactly one literal in every clause has the value true in the
formula.

Theorem 2. There is no EPTAS for PG with binary vari-
ables on the directed planar graph G = (V,E) when bv and
dv are both linear functions, for any v ∈ V .

Proof. Consider PG on the following simple planar graph.
There are n + 2 vertices labeled as {o1, o2, 1, 2, ..., n} and
the edge set E = {(i, oj), i ∈ [n], j ∈ [2]}. Weights wioj ,
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i ∈ [n], j ∈ [2]. For any two dimensional knapsack problem,
there exists an instance of PG with binary variables with-
out the global constraint on such a simple graph exactly
corresponding to this two dimensional knapsack problem.
According to [24], there is no EPTAS for two dimensional
knapsack. Hence, there is no EPTAS for PG on this simple
planar graph.

5. CONSTANT APPROXIMATION ON
PLANAR GRAPHS

5.1 Algorithms for (α, β)-decomposition
Given a digraph G = (V,E) and a subset U ⊂ V , we

call significant neighbours of U , SNG(U), all the vertices in
V \U with at least two neighbours in U (see figure 2). Con-
sider a partition {V i}αi=1 of V . Now let SNGun(V i) = {u /∈
V i | ∃v ∈ V i, s.t.u is a significant neighbour of vw.r.t.V i}
denote the significant neighbours of V i in Gun. Let Gi be
the induced subgraph of V i ∪ SNGun(V i) in Gun. A par-
tition {V i}αi=1 of V is called an (α, β)-partition (or (α, β)-
decomposition) of G if for any i ∈ [α] and v ∈ V i, |δGi(v)| ≤
β, where α, β are two given positive integers.

According to the following Lemma 1, we can obtain a
constant approximation for PG with integer variables for
any graph with (α, β)-decomposition. Such a decomposition
of planar graphs will be presented later.

Lemma 1. If a directed graph G has an (α, β)-decompo-
sition, then there is a deterministic (ηfr = αγβ+2 + 1)-
approximation algorithm for PG with integer variables, and,
a truthful in expectation mechanism for the same problem
with the same approximation.

Proof. If there is an ηfr-approximation algorithm for a
linear packing problem with binary variables, then there is
an (ηfr + 1)-approximation algorithm for the same problem
with integer variables [8]. Hence, it is sufficient to show
that there is an (ηfr = αγβ+2)-approximation algorithm for
PG with binary variables. Now we consider PG with binary
variables. Let {V i}αi=1 be an (α, β)-decomposition of graph
G. Let x∗ be the optimal fractional solution of PG with
binary variables. Then R(x∗) ≤ αmaxi∈[α]{R(x∗V i)}, where
x∗V i is a fractional solution such that its value is equal to x∗v,

for any v ∈ V i and 0 otherwise. Let PGi denote the PG on
G by setting xv = 0, for any v /∈ V i. Note that x∗V i is a fea-

sible solution for PGi, which gives R(x∗V i) ≤ OPT
fr(PGi).

W.l.o.g. we suppose wuv ≤ pv, for any (u, v) ∈ E and v ∈ V
(otherwise xv ≡ 0 for PG). Observe that in PGi, only xv,
v ∈ V i are variables. Now for any v ∈ V i, let us see how
many constraints in PGi contain xv. Suppose u ∈ V \V i
is a neighbour of v in Gun. If u is not a significant neigh-
bour of v, since wvu ≤ pu, we can remove the constraint
wvuxv ≤ pv in PGi. Hence, only the local constraints of the
significant neighbours of v remain containing variable xv.
As {V i}αi=1 is an (α, β)-decomposition of graph G, there
are at most β + 1 local constraints containing variable xv
(which includes the local constraint of vertex v itself). To-
gether with the global constraint, we know xv appears in
at most β + 2 constraints in PGi, for any v ∈ V i, which
means PGi is β + 2 column sparse. Therefore, by Proposi-
tion 1, there is a polynomial deterministic algorithm for PGi
with binary variables, finding an integer solution yi for PGi
such that γβ+2R(yi) ≥ OPT fr(PGi), for any i ∈ [α]. Then

αγβ+2 maxi∈[α]{R(yi)} ≥ αmaxi∈[α]{OPT fr(PGi)} ≥
αmaxi∈[α]{R(x∗V i)} ≥ R(x∗) = OPT fr(PG). A truthful in
expectation mechanism with the same approximation ratio
is guaranteed by Proposition 2.

v1

v2
v3

v4

v5

v6

v7 v8

SN(V 1)

V 1

Figure 2: Significant neighbours SN(V 1) = {v2, v4, v6} of
V 1 = {v3, v5, v7, v8} in the graph of solid black lines.

Planar graphs. The integrality gap of PG on planar graphs
is at least 4 as shown by a complete graph with four ver-
tices. For a small ε > 0, let wuv = ε, for any (u, v) ∈ E, and
pv = ωv = 1, for any v ∈ V . There is no global constraint.
The optimal integer solution of PG on this graph is xv = 1
for some v ∈ V and xu = 0 for all u 6= v, implying the
optimal objective value 1. However, setting xv = 1− 4ε, for
any v ∈ V provides a feasible fractional solution, which gives
the objective value 4 − 16ε. Therefore, the integrality gap
is at least 4, meaning that our LP relaxation cannot lead to
better than 4 (e.g., PTAS) approximations.

We provide an (α, β)-decomposition of any planar graph,
with α = 18, β = 6 or α = 54, β = 4. We did not attempt
to optimize these two parameters.

Theorem 3. There is an (α, β)-decomposition of a di-
rected planar graph G = (V,E), where (α, β) = (18, 6) or
(54, 4).

Proof. Let G′ = Gun. Suppose G′ is connected, other-
wise we can run the algorithm on each connected compo-
nent respectively. Define the sequence of vertex sets {Ni}i
of G′ as follows. Fix an arbitrary vertex v0 ∈ V , and let
N1 = {v0}, and Ni is defined recursively as

Ni+1 = {v ∈ V \
i⋃

j=1

Nj | (v, u) ∈ G′, for someu ∈ Ni},

for i = 1, 2, ..., |V |. By this definition, for any v ∈ Ni and
u ∈ Nj , if |i − j| ≥ 2, then (u, v) /∈ E′. We also observe
that Ni is the set of vertices with distance i− 1 to v0 in G′

(i.e., the shortest path distance with respect to the number
of edges). Suppose the length of the sequence {Ni}i is K.
Let Si = {j ≡ i (mod 3) | j ∈ [K]}, i ∈ [3]. Let also S0 = S3,
and V i =

⋃
j∈Si Nj , i ∈ [3]. We will now need the following

Lemmas 2, 3 and 4.

Lemma 2. For each v ∈ Nj, the number of significant
neighbours of v in Nj−1 w.r.t. Nj is at most two.

Proof. Suppose there exists v1 6= v2 6= v3 ∈ Nj−1 ∩
δG′(v) and v 6= u1, u2, u3 ∈ Nj such that (ui, vi) ∈ G′, i ∈ [3]
(see Figure 3). By the definition of Nj , there is a path from
v0 to vi, i ∈ [3], and (v, vi) ∈ G′, i ∈ [3]. W.l.o.g. suppose v2
is inside the circle constructed from the path of v0 to v1, v3
and edges (v, v1) and (v, v3) in the planar embedding. Then
(u2, v2) will intersect this circle, which contradicts that G′

is planar.
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v1 v2 v3
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u1 v u2 u3

. . . layer Nj−1

layer Nj

Figure 3: An illustration of relations between Nj and Nj−1.

Next, we partition Nj into two sets N1
j and N2

j such

that each vertex in N i
j has at most two significant neigh-

bours in Nj+1 w.r.t. N i
j , i ∈ [2]. We say two vertices

v, u ∈ Nj are connected by a zigzag path if there exists a
path (v, v1, v2, v3, .., vs, u) in G′ such that vi and vi+1 alter-
natively belong to Nj+1 and Nj , i.e., v1 ∈ Nj+1 and v2 ∈ Nj .
Note that s must be odd. We define the zigzag length of this
zigzag path as s+1

2
. The zigzag distance between v and u,

denoted dzuv, is defined as the zigzag length of the shortest
zigzag path between v and u if there exists one and∞ other-
wise. Note that the zigzag distance of v to itself is zero. The
partition algorithm PA1 works as follows (see Algorithm 1).
Let N1

j = A1 and N2
j = A2, where A1, A2 is output of PA1.

(Note that PA1 is run for each j ∈ [K].)

Algorithm 1: (PA1)

Input: A1, A2 ← ∅, B ← Nj
Output: A1, A2

while B 6= ∅ do
Select a vertex v ∈ B;
Find B1, B2 below by BFS.
B1 ← {u ∈ Nj | dzuv is odd};
B2 ← {u ∈ Nj | dzuv is even};
A1 ← A1 ∪B1; A2 ← A2 ∪B2;
B ← B\(B1 ∪B2);

Algorithm 2: (PA2)

Input: A1, A2, A3 ← ∅, B ← N i
j

Output: A1, A2, A3

while B 6= ∅ do
Select a vertex v ∈ B;
Find Bk’s below by BFS.
for k ← 1 to 3 do

Bk ← {u ∈ N i
j | d

Nj
uv ≡ k(mod 3)}

Ak ← Ak ∪Bk;

B ← B\(B1 ∪B2 ∪B3);

Lemma 3. For each v ∈ N i
j , v has at most two significant

neighbours in Nj+1 w.r.t. N i
j , i ∈ [2].

Proof. First, note that if v and u are selected in different
iterations of the while loop in Algorithm 1, there is no zigzag
path between them. Therefore, for a single iteration of the
while loop, suppose v ∈ B is selected. We only need to
show that for any u ∈ Bi, u has at most two significant
neighbours in Nj+1 w.r.t. Bi, i ∈ [2]. First, note that
v ∈ B2 (its zigzag distance to itself is 0). Since all the other

v v′′ u1

v′ v1 v2 v3
. . .

layer Nj

layer Nj+1

Figure 4: Relations between Nj and Nj+1

vertices in B2 have zigzag distance to v at least two, v has
no significant neighbours w.r.t. B2 in Nj+1. Now fix i ∈ [2].
Consider any two vertices u1, u2 ∈ Bi, u1 and u2 connect to
the same vertex in Nj+1 only if they have the same zigzag
distance to v. Suppose there exists three different vertices
v1, v2, v3 ∈ Nj+1, such that they are significant neighbours
of u1 w.r.t. Bi (see Fig. 4). By similar arguments as above,
there exists zigzag paths from v to vi, i ∈ [3]. Also note
that edges (u1, vi) ∈ G′, i ∈ [3]. W.l.o.g. suppose v2 is in
the circle constructed from the zigzag paths v to v1, v3 and
edges (u1, v1) and (u1, v3). Since the graph G′ is planar,
there exists no edge between v2 and another vertex in Bi
with the same zigzag distance as u1. Therefore, u1 has at
most two significant neighbours w.r.t. Bi in Nj+1.

Next we will partition each set N i
j , i ∈ [2], j ∈ [K] into

a constant number of sets {N ik
j }k such that each vertex in

N ik
j has at most a constant number of significant neighbours

w.r.t. N ik
j in Nj . We provide two partition algorithms.

Both algorithms in spirit are similar to Algorithm 1. For
any two vertices v, u ∈ N i

j , we say they are connected by
a Nj-path if there exists a path (v, v1, v2, · · · , vs, u) in G′

such that v` ∈ Nj , ∀` ∈ [s]. Nj-distance of two vertices

v, u ∈ N i
j , denoted d

Nj
uv , is defined as the number of edges

of the shortest Nj-path between v and u if there exists one
and ∞ otherwise. The process works as PA2 (Algorithm 2).
Note that v ∈ B3, because the Nj-distance from v to itself
is zero. Let N ik

j = Ak, k ∈ [3] (where A1, A2, A3 are a

partition of N i
j output by PA2).

Lemma 4. For any k ∈ [3], and each v ∈ N ik
j , v has at

most 2 neighbours in Nj, or has no neighbours in N ik
j nor

significant neighbours w.r.t. N ik
j in Nj\N ik

j .

Proof. First, note that if v and u are selected in different
iterations of while loop in Algorithm 2, there is no Nj-path
between them. Therefore, for a single iteration of the while
loop, suppose v ∈ B is selected. Since v ∈ B3 (Nj distance
to itself is 0), v has no neighbours in B3 nor significant
neighbours w.r.t. B3 in Nj\B3 by PA2. Now fix k ∈ [3].
Consider any two vertices u1, u2 ∈ Bk, u1 and u2 connect
to the same vertex in Nj only if they have the same Nj-
distance to v. Next we will show for any u1 6= v and u1 ∈ Bk,
for any k, u1 has at most two neighbours in Nj . Suppose
there exist three different vertices u1, u2, u3 ∈ Nj , such
that (u1, u2) ∈ G′ and (u1, u3) ∈ G′. By similar arguments
as above, there exists Nj-paths from v to ui, i ∈ [3]. Since
ui ∈ Nj , i ∈ [3], there exist paths in G′ from v0 to ui, i ∈ [3].
We observe that it is only possible that u1 is in the circle
constructed from the Nj paths v to u2, u3 and paths from
v0 to u2 and u3 (the case where u2 or u3 is in the circle
constructed by the other two vertices with v and v0 will
violate the planarity of G′) (see Fig. 5). Since graph G′ is
planar, there exists no edge between u1 and another vertex
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Figure 5: Relations between Nj and Nj .

in Nj (due to that such a vertex will have a path to v and
v0 respectively). Therefore, u1 has at most two neighbours
in Nj .

Combining Lemmas 2, 3 and 4, {N ik
j }ijk is an (α, β)- de-

composition of G with (α, β) = (18, 6). The second partition
procedure is based on Algorithm 2 and we just sketch it here.
We can partition N ik

j into another three sets, e.g. N ik`
j ,

` ∈ [3] by the same arguments as above by just partitioning
it according to the length of path (mod 3) such that each
vertex in N ik`

j will not have any neighbours in N ik`
j . This

procedure is exactly the same as Algorithm 2 where N i
j is re-

placed with N ik
j . Thus {N ik`

j }ijk` is a (54, 4)-decomposition
of G, which finishes the proof of Theorem 3.

By Theorem 3 and Lemma 1, and observing that 18 min{γ8,
3γ6} = 18γ8 = O(1), we have

Theorem 4. There is a randomized, individually rational
and truthful in expectation (18γ8 + 1)-approximation mech-
anism for PG on planar graphs with integer variables.

5.2 Better approximation under some mild
condition

We will use the 4-color theorem for planar graphs to present
an improved (6 + ε)-approximate truthful in expectation
mechanism for PG under the following natural (and mild)
assumption: ∑

u∈δ−
G

(v)

wuv ≤ pv (5)

This constraint means that if each of v’s neighbours emits
only one unit amount of pollution, the level of pollution
in v will not exceed v’s local level of pollution. Let x1 be
the optimal fractional solution of PG with binary variables
without global constraint on planar graph G.

Theorem 5. Suppose condition (5) holds and R(x1) ≥ 1.
There is a randomized, individually rational, (ηfr = 6 + ε)-
approximation mechanism that is truthful in expectation for
PG on planar graphs with integer variables, terminating in
time poly(|I|, log( 1

ε
)).

Proof. Note that if condition (5) holds, then every in-
dependent set is a feasible solution for PG with binary vari-
ables without global constraint. By 4-color theorem [5, 32]
for planar graphs, there is an independent set S ⊂ V such
that 4R(zS) ≥ R(x1) where zS is defined by zv = 1 if v ∈ S
and zv = 0 otherwise. Further there is an O(|V |2) algorithm
finding zS [32]. By theorem 3 of [23] and R(x1) ≥ 1, there
is a deterministic (ηfr = 5 + ε)-approximation algorithm for
PG with binary variables, running in poly(|I|, log( 1

ε
)) time.

Then there is a deterministic (ηfr = 6 + ε)-approximation
algorithm for PG with integer variables, running in time
poly(|I|, log( 1

ε
)) [8]. By Proposition 2, this (ηfr = 6 + ε)-

approximation mechanism is truthful in expectation for PG
with integer variables.

6. CONCLUSION AND DISCUSSION
We present a new network model for the pollution con-

trol problem which is studied on planar networks. These
networks can be applied to model air pollution from diffuse
sources. Our results include computational hardness results,
a constant approximation algorithm and truthful in expec-
tation mechanisms. We obtain these results by introducing
novel algorithmic techniques for planar graphs which are of
independent interest. Many interesting open problems arise:

1. Determine whether PG with binary variables on planar
graphs admits a PTAS or is APX-hard.

2. What about lower bounds on truthful (deterministic,
universal, truthful in expectation) mechanisms for PG?
Can externality be used to obtain such lower bounds?

3. How to generalize our results to other graphs, e.g.,
Euclidean graphs?

REFERENCES
[1] Air quality in Europe - 2014 Report. European

Environment Agency Report No. 5/2014
http://www.eea.europa.eu/publications/

air-quality-in-europe-2014.

[2] Emissions trading schemes around the world. http://
parlinfo.aph.gov.au/parlInfo/download/library/

prspub/2501441/upload_binary/2501441.pdf, 2013.

[3] Emissions auctions.
https://www.theice.com/emissions/auctions, 2014.

[4] State of the Air 2014 Report. American Lung
Association, 30 April, 2014.
http://www.stateoftheair.org/2014/key-

findings/.

[5] K. I. Appel and W. Haken. Every planar map is four
colorable, volume 98. American mathematical society
Providence, RI, 1989.

[6] B. S. Baker. Approximation algorithms for
NP-complete problems on planar graphs. J. of the
ACM, 41(1):153–180, 1994.

[7] D. Banister. The sustainable mobility paradigm.
Transport policy, 15(2):73–80, 2008.

[8] N. Bansal, N. Korula, V. Nagarajan, and
A. Srinivasan. Solving packing integer programs via
randomized rounding with alterations. Theory of
Computing, 8(1):533–565, 2012.

[9] A. Belitskaya. Network Game of Pollution Cost
Reduction. Contributions to Game Theory and
Management, 6(0):24–34, 2013.

[10] K. Conrad and J. Wang. On the design of incentive
mechanisms in environmental policy. Environmental
and Resource Economics, 3(3):245–262, 1993.

[11] P. Dasgupta, P. Hammond, and E. Maskin. On
imperfect information and optimal pollution control.
The Review of Economic Studies, pages 857–860, 1980.

[12] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani.
Algorithms. McGraw-Hill, Inc., 2006.

[13] B. Dong, D. Ni, and Y. Wang. Sharing a polluted river
network. Environmental and Resource Economics,
53(3), 2012.

[14] S. Dorner, J. Shi, and D. Swayne. Multi-objective
modelling and decision support using a bayesian

30

http://www.eea.europa.eu/publications/air-quality-in-europe-2014
http://www.eea.europa.eu/publications/air-quality-in-europe-2014
http://parlinfo.aph.gov.au/parlInfo/download/library/prspub/2501441/upload_binary/2501441.pdf
http://parlinfo.aph.gov.au/parlInfo/download/library/prspub/2501441/upload_binary/2501441.pdf
http://parlinfo.aph.gov.au/parlInfo/download/library/prspub/2501441/upload_binary/2501441.pdf
https://www.theice.com/emissions/auctions


network approximation to a non-point source
pollution model. Environmental Modelling & Software,
22(2):211–222, 2007.

[15] J. Farrell. Information and the coase theorem. The
Journal of Economic Perspectives, 1(2):113–129, 1987.

[16] D. Fullerton and S. E. West. Can taxes on cars and on
gasoline mimic an unavailable tax on emissions?
Journal of Environmental Economics and
Management, 43(1):135–157, 2002.

[17] L. P. Gianessi, H. M. Peskin, and G. K. Young.
Analysis of national water pollution control policies:
1. a national network model. Water Resources
Research, 17(4):796–802, 1981.

[18] L. Hurwicz. The design of mechanisms for resource
allocation. The American Economic Review, pages
1–30, 1973.

[19] R. Innes. Regulating automobile pollution under
certainty, competition, and imperfect information.
Journal of Environmental Economics and
Management, 31(2):219–239, 1996.

[20] L. Karp and J. Livernois. Using automatic tax
changes to control pollution emissions. Journal of
Environmental Economics and Management,
27(1):38–48, 1994.

[21] S. Khanna and R. Motwani. Towards a syntactic
characterization of ptas. In Proc. of the 28th STOC,
pages 329–337. ACM, 1996.

[22] J. Kim and K. Chang. An optimal tax/subsidy for
output and pollution control under asymmetric
information in oligopoly markets. Journal of
Regulatory Economics, 5(2):183–197, 1993.

[23] A. Kulik and H. Shachnai. On lagrangian relaxation
and subset selection problems. In Approximation and
Online Algorithms, pages 160–173. Springer, 2009.

[24] A. Kulik and H. Shachnai. There is no eptas for
two-dimensional knapsack. Information Processing
Letters, 110(16):707–710, 2010.

[25] E. Kwerel. To tell the truth: Imperfect information
and optimal pollution control. The Review of
Economic Studies, pages 595–601, 1977.

[26] R. Lavi and C. Swamy. Truthful and near-optimal
mechanism design via linear programming. Journal of
the ACM (JACM), 58(6):25, 2011.

[27] R. McKitrick. A cournot mechanism for pollution
control under asymmetric information. Environmental
and Resource Economics, 14(3):353–363, 1999.

[28] D. W. Montgomery. Markets in licenses and efficient
pollution control programs. J. of economic theory,
5(3):395–418, 1972.

[29] N. Nisan, T. Roughgarden, E. Tardos, and V. V.
Vazirani. Algorithmic game theory, volume 1.
Cambridge University Press Cambridge, 2007.

[30] L. Petrosjan and G. Zaccour. Time-consistent shapley
value allocation of pollution cost reduction. Journal of
Economic Dynamics and Control, 27(3):381–398, 2003.

[31] D. Pritchard and D. Chakrabarty. Approximability of
sparse integer programs. Algorithmica, 61(1):75–93,
2011.

[32] N. Robertson, D. Sanders, P. Seymour, and
R. Thomas. A new proof of the four-colour theorem.
Electronic Research Announcements of the American
Mathematical Society, 2(1):17–25, 1996.

[33] T. J. Schaefer. The complexity of satisfiability
problems. In Proceedings of the tenth ACM STOC,
pages 216–226. ACM, 1978.

[34] K. Segerson. Uncertainty and incentives for nonpoint
pollution control. Journal of environmental economics
and management, 15(1):87–98, 1988.

[35] R. M. Singh and B. Datta. Artificial neural network
modeling for identification of unknown pollution
sources in groundwater with partially missing
concentration observation data. Water resources
management, 21(3):557–572, 2007.

[36] D. F. Spulber. Optimal environmental regulation
under asymmetric information. Journal of Public
Economics, 35(2):163–181, 1988.

[37] R. N. Stavins. Policy instruments for climate change:
how can national governments address a global
problem. University of Chicago Law School, page 293,
1997. Discussion Paper 97-11.

[38] R. N. Stavins. Experience with market-based
environmental policy instruments. Handbook of
environmental economics, 1:355–435, 2003.

[39] A. Trujillo-Ventura and J. Hugh E. Multiobjective air
pollution monitoring network design. Atmospheric
Environment. Part A. General Topics, 25(2):469–479,
1991.

[40] M. P. Viana, E. Strano, P. Bordin, and
M. Barthelemy. The simplicity of planar networks.
Scientific reports, 3, Article number 3495, 2013.

31


	Introduction
	Literature overview
	Preliminaries
	Model and applications
	Basic definitions

	Hardness
	Constant approximation on planar graphs
	Algorithms for (,)-decomposition
	Better approximation under some mild condition

	Conclusion and discussion



