
Algorithms for Destructive Shift Bribery

Andrzej Kaczmarczyk
AGH University
Krakow, Poland

kaczmarczyk.andrzej@gmail.com

Piotr Faliszewski
AGH University
Krakow, Poland

faliszew@agh.edu.pl

ABSTRACT
We study the complexity of Destructive Shift Bribery.
In this problem, we are given an election with a set of candi-
dates and a set of voters (ranking the candidates from best
to worst, each), a despised candidate d (typically, one of
the current winners), a budget B, and prices for shifting d
down in voters’ rankings. The goal is to ensure that d is
not a winner of the election. We show that this problem is
polynomial-time solvable for all scoring protocols (encoded
in unary) and the Maximin rule, but is NP-hard for the
Copeland rule. This contrasts with the results for the con-
structive setting (known from the literature), for which the
problem is polynomial-time solvable for k-Approval family
of rules, but is NP-hard for the Borda, Copeland, and Max-
imin rules.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

Keywords
algorithms, computational complexity, voting, campaign man-
agement, bribery

1. INTRODUCTION
We study the complexity of the destructive variant of

the Shift Bribery problem. We consider the family of
all (unary encoded) scoring protocols (including the Borda
rule and all k-Approval rules), and the Copeland and max-
imin rules. It turns out that for all of them—except for
the Copeland rule—the problem can be solved in polyno-
mial time. This stands in sharp contrast to the constructive
case, where the problem is NP-hard [14] (and hard in the
parameterized sense [4]) for the Borda, Copeland, and Max-
imin rules (and is in P for the k-Approval family of rules).

The Shift Bribery problem was introduced by Elkind et
al. [14] to model (a kind of) campaign management problem
in elections. The problem is as follows: We are given an
election, i.e., a set of candidates and a set of voters that
rank the candidates from the most to the least desirable

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

one, a preferred candidate p, a budget B, and the costs for
shifting p up in voters’ rankings. Our goal is to decide if
it is possible to ensure p’s victory by shifting p up, without
exceeding the budget. In this paper we study a destructive
variant of the problem, where the goal is to ensure that a
given despised candidate d loses the election, by shifting him
or her down in voters’ rankings (but, again, each shift comes
at a cost and we cannot exceed the given budget).

Studying destructive variants of election problems where
the goal is to change the current winner (such as manipula-
tion [8], control [20], and bribery [16, 21, 6, 32]) is a com-
mon practice in computational social choice, but our setting
is somewhat special. So far, all the destructive variants of
the problems were defined by changing the goal from “en-
sure the victory of the preferred candidate” to “preclude the
despised candidate from winning,” but the set of available
actions remained unaffected e.g. in both the constructive
and the destructive problem of control by adding voters, we
can add some voters from a given pool of voters and in both
the constructive and the destructive bribery problem, we can
pay voters to change their votes in some way. In our case,
we feel that it is natural to divert from this practice and
change the ability of “shifting the distinguished candidate
up” to the ability of “shifting the distinguished candidate
down”. Below we explain why.

If, when defining our destructive problem, we stuck with
the “ability to shift up,” as in the Constructive Shift
Bribery problem, we would get the following problem: En-
sure that a given despised candidate does not win the elec-
tion by shifting him or her forward in some of the votes
(without exceeding the budget). However, for a monotone
voting rule, if a candidate is already winning an election,
then shifting him or her forward certainly cannot preclude
him or her from winning. This would make our problem
interesting only for a relatively small set of nonmonotone
rules.1 Further, the problem certainly would not be mod-
eling what one would intuitively think of as negative, de-
structive campaigning. Thus, while it certainly would be
interesting to study how to exploit nonmonotonicity of rules
such as STV and Dodgson to preclude someone from win-
ning, it would not be the most practical way of defining
Destructive Shift Bribery.

Related Work. In recent years, Constructive Shift
Bribery received quite some attention. The problem was
defined by Elkind et al. [14], as a simplified variant of Swap
Bribery (which itself received some attention, e.g., in the

1Nonetheless, there are interesting nonmonotone rules, such
as the single transferable rule (STV) and the Dodgson rule.

305

works of Dorn and Schlotter [12], Faliszewski et al. [17], and
papers regarding combinatorial domains, such as those of
Mattei et al. [23] and Dorn and Krüger [11]; importantly,
Shiryaev et al. [31] studied a variant of DestructivSwap
Bribery and we comment on their work later). Elkind et
al. have shown that Shift Bribery is NP-hard for Borda,
Copeland, and Maximin voting rules, but polynomial-time
solvable for the k-Approval family of rules. They also gave
a 2-approximation algorithm for the case of Borda, that was
later generalized to the case of all scoring rules by Elkind
and Faliszewski [13]. Chen et al. [4] considered parametrized
complexity of Constructive Shift Bribery, and have
shown a varied set of results (in general, parametrization by
the number of positions by which the preferred candidate
is shifted tends to lead to FPT algorithms, parametrization
by the number of affected voters tends to lead to hardness
results, and parametrization by the available budget gives
results between these two extremes). Very recently, Bred-
ereck et al. [5] studied the complexity of Combinatorial
Shift Bribery, where a single shift action can affect sev-
eral voters at a time. The paper is quite related to ours,
because it was the first one in which shifting a candidate
backward was possible (albeit as a negative side effect, since
the authors study the constructive setting).

Shift Bribery falls into the general group of bribery-
related problems, that were first studied by Faliszewski et
al. [15] (see also the work of Hazon et al. [19] for a simi-
lar problem), and that received significant attention within
computational social choice literature (see the survey of Fal-
iszewski and Rothe [18]). Briefly put, in the regular Bribery
problem, the goal is to ensure that a given candidate is a
winner of an election by modifying—in an arbitrary way—
up to k votes, where k is part of the input. Many types of
bribery problems were already studied, including—in addi-
tion to Swap and Shift Bribery—Support Bribery [30],
Extension Bribery [2, 17], and others (e.g., in judgment
aggregation [1], and in the setting of voting in combinato-
rial domains [23, 11, 22]). However, from our point of view
the most interesting variant of the problem is Destructive
Bribery first studied by Faliszewski et al. [16], and then
later—independently—by Magrino et al. [21] and Cary [6],
and followed by Xia [32] and Dey and Narahari [10], under
the name of Margin of Victory. The idea behind the
Margin of Victory problem is that it can be very help-
ful in validating election results: If it is possible to change
the election result by changing (bribing) relatively few votes,
then one may suspect that—possibly—the election was tam-
pered with. Bribery problems are also related to lobbying
problems [7, 3, 25].

A variant of Destructive Swap Bribery was studied
by Shiryaev et al. in their work about robustness of win-
ners [31]. They presented an analysis of the case where
every swap has a unit price and a budget, which cannot be
exceeded, is given. Authors show that the problem is easy
for scoring protocols and the Condorcet rule. This work is
very closely related to ours but the definition of the problem
is somewhat different (more general types of swaps, but less
general price functions).

Our Contribution. We believe that Destructive Shift
Bribery is worth studying for three main reasons. First,
it simply is a natural variant of the Constructive Shift
Bribery problem, which received quite some attention al-
ready. Second, it models natural negative campaigning ac-

tions, aimed at decreasing the popularity of a given candi-
date. Third, it serves a similar purpose as the Margin of
Victory problem [21, 32]: If it is possible to preclude a
given candidate from winning through a low-cost destruc-
tive shift bribery, then it can be taken as a signal that the
election was tampered with, or that some agent performed
(possibly) an illegal form of campaigning. Below we sum-
marize the main contributions of this paper:

1. We define the Destructive Shift Bribery problem
and justify why a definition that diverts from the usual
way of defining destructive election problems is appro-
priate in this case.

2. We show that Destructive Shift Bribery is a
significantly easier problem than constructive shift
bribery. To this end, we show polynomial time al-
gorithms for destructive shift bribery for k-Approval
family of rules, for Borda, and for Maximin.

3. We show that in spite of our easiness results, there still
are voting rules for which the problem is computation-
ally hard. We exemplify this by proving NP-hardness
for the case of Copelandα family of rules.

We believe that Destructive Shift Bribery is an inter-
esting problem and it is worthwhile to study it in detail.

2. PRELIMINARIES
For each positive integer t, by [t] we mean the set
{1, . . . , t}. We assume the reader is familiar with stan-
dard notions regarding algorithms and complexity theory, as
presented in the textbook of Papadimitriou [29]. Occasion-
ally, we will also use basic knowledge regarding parametrized
complexity (see, e.g., the textbooks of Niedermeier [26] and
Cygan et al. [9]). Below we present the necessary back-
ground regarding elections, and define our problem.

2.1 Elections and Election Rules
An election is a pair E = (C, V), where C = {c1, ..., cm}

is a set of candidates and V = {v1, ..., vn} is a multiset of
voters. Each voter is associated with his or her preference
order �i, i.e., a strict ranking of the candidates from the
best to the worst (according to this voter). For example,
we may have election E = (C, V) with C = {c1, c2, c3} and
V = {v1, v2}, where v1 has preference order v1 : c1 � c2 �
c3. If c is a candidate and v is a voter, we write posv(c) to
denote the position of c in v’s ranking (e.g., in the preceding
example we would have posv1(c1) = 1). Given an election
E = (C, V), by NE(c, d), where c and d are two candidates,
we mean the number of voters who prefer c over d.

An election rule R is a function that given an election
E = (C, V) outputs a set W ⊆ C of tied election winners
(typically, we expect to have a single winner, but due to
symmetries in the profile, it is necessary to allow for the
possibility of ties). We use the unique-winner model, i.e.,
we require a candidate to be the only member of R(E) to
be considered E’s winner (see the works of Obraztsova et
al. [27, 28] for various other tie-breaking mechanisms and
algorithmic consequences of implementing them; there are
situations where the choice of the tie-breaking rule affects
the complexity of election-related problems).

We consider the following voting rules (for the description
below, we consider election E = (C, V) with m candidates;

306

for each rule we describe the way it computes candidates’
scores, so that the candidates with the highest score are the
winners):

Scoring protocols. A scoring protocol is defined through
vector α = (α1, . . . , αm) of nonincreasing, nonnegative
integers. The α-score of a candidate c ∈ C is defined
as
∑
v∈V αposv(c)

. The most popular scoring protocols
include the family of k-Approval rules (for each k, k-
Approval scoring protocol is defined through vector of
k ones followed by zeros) and the Borda rule, defined
by vector (m − 1,m − 2, . . . , 0). 1-Approval is known
as the Plurality rule.

Copeland . Let α, 0 ≤ α ≤ 1, be a rational number. The
score of a candidate c in Copelandα election is defined
as:

|{d ∈ C \ {c} | NE(c, d) > NE(d, c)}|
+α|{d ∈ C \ {c} | NE(c, d) = NE(d, c)}|.

In other words, candidate c receives one point for each
candidate that he or she defeats in their head-to-head
contest (i.e., to which c is preferred by a majority of
voters) and α points for each candidate with whom c
ties their head-to-head contest.

Maximin. The Maximin score of candidate c is defined as
mind∈C\{c}NE(c, d).

We write scoreE(c) to denote the score of candidate c in
election E (the election rule will be clear from the context).

2.2 Destructive Shift Bribery
The Destructive Shift Bribery problem for a given

election rule R is defined as follows. We are given an elec-
tion E = (C, V), a despised candidate d ∈ C (typically, the
current election winner), budget B (a nonnegative integer),
and the prices for shifting d backward for each of the voters
(see below). The goal is to ensure, by shifting d backward,
that he or she is not the unique R-winner of the resulting
election (without exceeding the budget).

We model the “prices for shifting d backward” as destruc-
tive shift-bribery price functions. Let us fix an election
E = (C, V), with C = {c1, ..., cm}, V = {v1, ..., vn}, and
let the despised candidate be d. Let v be some voter and
let j = posv(d). Function ρ : N → N ∪ {+∞} is a destruc-
tive shift-bribery price function for voter v if it satisfies the
following conditions:

1. ρ(0) = 0,

2. for each two i, i′, i < i′ ≤ m − j, it holds that ρ(i) ≤
ρ(i′) for i < i′ ≤ m− j, and

3. ρ(i) = +∞ for i > m− j

For each i, we interpret the value ρ(i) as the price for shifting
d down by i positions on v’s preference order. The value +∞
indicates that shifting d below the last position is impossible.
We assume that in each instance, the price functions are
encoded by simply listing their values for all arguments for
which it is not +∞.

Example 1. Let us consider an instance of Destructive
Shift Bribery, for the Borda rule, with the following elec-
tion:

v1 : b � a � c � d, v2 : d � b � a � c,
v3 : d � c � a � b, v4 : d � a � b � c.

We take d to be the despised candidate, and assume that each
voter has the same price function, ρ(i) = i. In this election,
candidate d wins with 9 points (the second-best candidate, a,
has 6 points). However, if we shift d two positions backward
in v4’s preference order, then d’s score will decrease to 7
and a’s score will increase to 7. Thus, d will no longer be
the unique winner. Thus, for budget B = 2 this would be
a “yes”-instance of Shift Bribery, whereas for B = 1 it
would be a “no”-instance.

3. RESULTS
We now present our main results regarding the Destruc-

tive Shift Bribery problem. We show polynomial-time
algorithms for the k-Approval family of rules, the Borda
rule, all scoring protocols (provided that they are encoded
in unary or that the destructive shift bribery price func-
tions are encoded in unary), and the Maximin rule. For the
Copelandα family of rules, we prove NP-hardness.

3.1 The k-Approval Family of Rules
We start with the k-Approval family of rules. In this case,

our algorithm is very simple: If d is the despised candidate
then in each vote we should either shift him or her from
one of the top k positions (where each candidate receives a
single point) to the (k+1)’st position (where he or she would
receive no points), in effect shifting the candidate previously
at the (k+1)’st position one place up, or we should not shift
d at all. Choosing which action to do for each particular
voter is easy via the following greedy/brute-force algorithm.

Theorem 1. For each k ∈ N, the Destructive Shift
Bribery problem for the k-Approval rule is in P.

Proof. Let E = (C, V) be the input election with C =
{c1, . . . , cm} and V = {v1, . . . , vn}, let d ∈ C be the de-
spised candidate, let B be the budget, and let (ρ1, . . . , ρn)
be the destructive shift-bribery price functions for the vot-
ers. Our algorithm works as follows.

For every candidate c ∈ C \{d}, we test if it is possible to
guarantee that the score of c is at least as high as that of d,
by spending at most B units of budget, as follows:

1. We partition the voters into three groups Vd,c, Vd, and
V ′ such that: Vd,c contains exactly the voters that rank
c on the (k + 1)’st position and that rank d above c,
Vd contains the remaining voters that rank d among
top k positions, and V ′ contains the other remaining
voters.

2. We guess two numbers, a and b, such that |Vd,c| ≤ a
and |Vd| ≤ b.

3. We pick a voters from Vd,c for which shifting d to the
(k + 1)’st position is least expensive, and perform the
shift. Similarly, we pick b voters from Vd for which
shifting d to the (k + 1)’st position is least expensive
and perform the shift.

307

4. If d is not the unique winner in the resulting election
and the total cost of performed shifts is smaller than
or equal to budget B, then we accept. Otherwise, we
either try a different candidate c or different values of
a and b. After trying all possible combinations, we
reject.

The algorithm runs in polynomial time. It requires try-
ing at most O(m) different candidates and O(n2) different
values of a and b. All the other parts of the algorithm re-
quire polynomial time (in fact, a careful implementation can
achieve running time O(mn2)).

A proof of correctness is pretty straightforward. Certainly,
it is never beneficial to shift d below position k+1. Further,
an optimal solution after which some candidate c has at least
as high a score as d can consist solely of actions that shift d
backward from one of the top k positions to the (k + 1)’st
one, in effect either promoting c to the k’th position (shifts in
voter group Vd,c), or promoting some other candidate (shifts
in voter group Vd). We simply guess how many of each type
of the shifts to perform and execute the least costly ones.

The polynomial time algorithm for Constructive Shift
Bribery, due to Elkind et al. [14], is based on a similar idea.

3.2 The Borda Rule and All Scoring Rules
Let us now consider the Borda rule and then move to the

discussion of all scoring rules. For the case of the Borda
rule, we also obtain a polynomial-time algorithm, but this
time we resort to dynamic programming.

Theorem 2. The Destructive Shift Bribery problem
for the Borda rule is in P.

Proof. Let E = (C, V) be the input election with C =
{c1, . . . , cm} and V = {v1, . . . , vn}, let d ∈ C be the despised
candidate, let B be the budget, and let (ρ1, . . . , ρn) be the
destructive shift-bribery price functions for the voters. As
in the case of the proof of Theorem 1, we give an algorithm
that first guesses some candidate c ∈ C\{d} and then checks
if it is possible to ensure—by shifting d backward without
exceeding budget B—that c has at least as high a score as
d. The algorithm performing this test is based on dynamic
programming. However, before we describe it, we need to
introduce some additional notation.

We fix c to be the candidate that we want to have score
at least as high as d. For each j ∈ [n] and each k ∈ [m], we
write P (j, k) to denote the cost of shifting candidate d on
vj ’s preference order by k positions down (if moving d by k
positions is impossible, we have P (j, k) = ∞). Further, for
each j ∈ [n] and k ∈ [m], we set A(j, k) to be 1 if vj ranks c
among first k positions below d, and we set it to be 0 oth-
erwise. Finally, we write s to denote the difference between
the scores of d and c, i.e., s = scoreE(d)− scoreE(c) (it must
be that s > 0; otherwise we could accept immediately since
d would not be the unique winner of the election).

For each j ∈ [n] and each positive integer k, we define
f(j, k) to be the smallest cost for shifting d backward in the
preference orders of the voters from the set {v1 . . . , vj}, so
that, if E′ is the resulting election, it holds that:

s− (scoreE′(d)− scoreE′(c)) ≥ k.

In other words, f(j, k) is the lowest cost of shifting d
backward in the preference orders of voters from the set

{v1, . . . , vj} so that the relative score of c with respect to
d increases by at least k points. Our goal is to compute
f(n, s); if it is at most B then it means that we can ensure
that c has at least as high a score as d by spending at most
B units of the budget.

Before we give an algorithm for computing the values
f(·, ·), we make the following observation.

Observation 1. Shifting candidate d backward by some k
positions decreases the score of d by k points and, if d passes
c, increases the score of c by one point. In effect, relative to
d, c gains, respectively, k or k + 1 points.

Now, we can express function f as follows. We have that
f(0, 0) = 0 and for each positive k we have f(k, 0) =∞ (for
technical reasons, whenever k < 0, we take f(j, k) = 0). For
each j ∈ [n], we have:

f(j, k) = min
k′≤k

f(j − 1, k − (k′ +A(j, k′)) + P (j, k′).

To explain the formula, we make the following observations:

1. The minimum is taken over the value k′; k′ gives the
number of positions by which we shift d backward in
vote vj .

2. When we shift d backward by k′ positions, relative to
d, candidate c gains k′ +A(j, k′) points.

3. The cost of this shift is P (j, k′).

Based on these observations, we can conclude that the for-
mula is correct. It is clear that based on this formula and
standard dynamic programming techniques, we can compute
f(n, s) in polynomial time with respect to n and m. This
means that we can test in polynomial time, for a given can-
didate c, if it is possible to ensure that c’s score is at least
as high as that of d.

Our algorithm for the Destructive Shift Bribery for
Borda simply considers each candidate c ∈ C \{d} and tests
if, within budget B, it is possible to ensure that c has at
least as high a score as d. If this test succeeds for some c,
we accept. Otherwise we reject.

A careful inspection of the above proof shows that there
is not much in it that is specific to the Borda rule (as op-
posed to other scoring protocols). Indeed, there are only the
following two dependencies:

1. The fact that the difference between the scores of can-
didate d and candidate c (value s) can be bounded by
a polynomial of the number of voters and the num-
ber of candidates (dynamic programming requires us
to store a number of values of the function f that is
proportional to s, so it is important that this value is
polynomially bounded).

2. The way we compute the increase of the score of c,
relative to d, in the recursive formula for f(j, k).

Since it is easy to modify the formula for f(j, k) to work
for an arbitrary scoring protocol α, we have the following
corollary (the assumption about unary encoding of the input
scoring protocol ensures that the first point in the above list
of dependencies is not violated).

308

Corollary 1. There exists an algorithm that given as input
a scoring protocol α (for m candidates) encoded in unary and
an instance I of the Destructive Shift Bribery problem
(with the same number m of candidates), tests in polynomial
time if I is a “yes”-instance for the voting rule defined by the
scoring protocol α.

What can we do if, in fact, our scoring protocol is imprac-
tical to encode in unary (e.g., if our scoring protocol is of the
form (2m−1, 2m−2, . . . , 1))? In this case, it is easy to show
the following result.

Corollary 2. There exists an algorithm that given as input
a scoring protocol α (for m candidates) and an instance I of
the Destructive Shift Bribery problem (with the same
number m of candidates), with price functions encoded in
unary, tests in polynomial time if I is a “yes”-instance for
the voting rule defined by the scoring protocol α.

To prove this result, we use the same argument as before,
but now function f has slightly different arguments: f(j, t)
is the maximum increase of the score of c, relative to d, that
one can achieve by spending at most t units of budget (us-
ing such “dual” formulation is standard for bribery problems
and was applied, e.g., by Faliszewski et al. [15, Theorem 3.8]
in the first paper regarding the complexity of bribery prob-
lems).

On the other hand, if the scoring protocol is encoded in
binary and the price functions are encoded in binary, and
the scoring protocol is part of the input, then the problem
is NP-complete. (This follows via a simple reduction from
the standard Partition problem.)

3.3 The Copeland Rule
Let us now move on to the case of Copelandα family

of rules. We show that irrespective of the choice of α,
0 ≤ α ≤ 1, the Destructive Shift Bribery problem
is NP-complete for Copelandα. We give a reduction from
the classic NP-complete problem, Exact Cover by 3-Sets
(X3C).

Definition 1. In the X3C problem, we are given a set
U = {u1, u2, ..., u3k} and family S = {s1, s2, . . . , sn} of
three-element subsets of U . We ask if there exists a fam-
ily S′, S′ ⊆ S, such that |S′| = k and U =

⋃
si∈S′ si.

We use the following notation in the proof below. By
putting some subset of U in a preference order (where U is
the set from an X3C instance), we mean listing the contents
of the set in the order of increasing indices (i.e., if we wrote
U in a preference order, it would mean u1 � u2 � · · · � u3k).
In the proof below, we sometimes also list sets other than
subsets of U within preference orders; in their case we also
mean listing their members in the order of increasing indices.

Theorem 3. For each (rational) value of α, 0 ≤ α ≤ 1, the
Destructive Shift Bribery problem for the Copelandα

rule is NP-complete.

Proof. We can immediately claim that our problem belongs
to NP (we can guess in which votes to shift the despised
candidate and by how many positions; checking if this en-
sures that the despised candidate is not the unique winner
is an easy, polynomial-time task). It remains to show that
the problem is NP-hard.

q

d

U

F

L

Figure 1: A graph presenting the relations between
candidates in the constructed election.

Let us fix a value of α. We give a reduction from
the X3C problem. Consider an instance I of X3C with
U = {u1, . . . , u3k} and S = {s1, . . . , sn}. We construct an
election E = (C, V) as follows. We let the set of candi-
dates be C = {d, q}∪U ∪F ∪L, where F = {f1, f2, ..., f3k},
L = {l1, l2, ..., l3k} are dummy candidates needed for our
construction. We introduce the following voters:

1. For each i ∈ [n], we introduce a single voter, vi, with
preference order vi : d � si � q � U \ si � F � L, and
a single voter v′i whose preference order is the reverse
of that of vi.

2. We additionally introduce 6k + 1 voters with the fol-
lowing preference orders:

k votes : U � d � F � L � q
k votes : U � d � F � L � q
k votes : d � L � U � F � q
k votes : q � d � L � U � F
k votes : F � L � U � q � d
k votes : d � F � L � U � q
1 vote : q � d � U � F � L

We set the budget to be B = k, and we set the price func-
tions as follows. For each of the voters v1, . . . , vn, we use
price function ρ such that ρ(0) = 0, ρ(1) = ρ(2) = ρ(3) = 1,
and ρ(t) = B + 1 for all t ≥ 4. For all the other voters, we
use price function ρ′ such that ρ′(0) = 0 and ρ′(t) = B + 1
for all t ≥ 1.

To clarify the relations between the candidates in our elec-
tion, we provide Figure 1 with the following graph: The ver-
tices correspond to particular candidates or groups of can-
didates and the edges are pointing from a candidate (or a
group of candidates) that is winning the given head-to-head
contest to a candidate (or a group of them) that is losing
(e.g., an edge from d to F means that d wins his or her head-
to-head contests against each member of F). Solid edges
represent the results of head-to-head contests that cannot
change by applying shifts within given budget.

Figure 1 does not show results of the head-to-head con-
tests between candidates within particular sets. Nonethe-
less, given the graph, the description of the voters, and
the convention regarding putting sets in preference orders

309

(see the paragraph just before the theorem statement), it is
straightforward to calculate the scores of all the candidates.
We present them in Table 1 (and below explain how it to
verify these values easily; note that the number of voters is
odd and so the value of α is irrelevant).

We see that d wins with every other candidate and q loses
with everyone. For candidates from U , F , and L, the situa-
tion is symmetric so let us consider some candidate ui ∈ U .
He or she wins their head-to-head contest with candidate q
and all the candidates from L. This gives him or her 3k+ 1
points. Moreover, ui wins with all the candidates uj ∈ U
such that j > i. This give him or her 3k − i points. Alto-
gether, the score of ui is 6k + 1− i.

We set up the election in such a way that the only re-
sults of head-to-head elections that can change due to shifts
(within the budget) are between d and members of U . In
Table 2 we summarize the values of function NE(·, ·). The
major conclusion from Table 2 is as follows:

N(d, ui) = N(ui, d) + 1 (1)

Based on the above discussion, we now make a series of
observations:

Observation 2. The only voters in whose preference orders
d can be shifted without exceeding the available budget are
voters v1, . . . , vn.

Observation 3. Only the candidates from U can have their
scores increased as a result of (within budget) shifts, and
only d can have its score decreased by such shifts (this is, in
particular, due to Equation (1)).

Observation 4. We can shift d in the preference orders
of at most k voters. Each time, we can shift d below, at
most, 3 (distinct) candidates from U . This means that d
can be shifted below at most 3k distinct candidates from U .
(This is due to the value of the budget, the nature of our
price functions, and the structure of preferences of the voters
v1, . . . , vn.)

Observation 5. The lowest score that candidate d can have
after (within budget) shifts is 6k + 1. This happens if and
only if he or she passes each candidate from U at least once.

Observation 6. The highest score a candidate from U may
have is 6k + 1. This happens if d is shifted below u1.

candidate score

d 9k + 1
q 0

ui ∈ U 6k + 1− i
fi ∈ F 6k + 1− i
li ∈ L 6k + 1− i

Table 1: Table containing scores of all of the candi-
dates in the constructed election.

N(·, ·) d ui ∈ U
d – n+ 3k + 1

ui ∈ U n+ 3k –

Table 2: Table presenting values of function N for
candidate d and candidates in U .

By combining the above observations, we see that d can
stop being the unique winner of our election if and only if
there is a sequence of shifts, on the preference orders of the
voters v1, . . . , vn, each moving d by three positions down,
such that d passes each member of U . However, this is
possible if and only if there is a solution for the input X3C
instance. Since the reduction is computable in polynomial
time, this completes the proof.

The above result and proof requires some comments. As
a technical remark, the reader may wonder what the role
of candidate q is. For the result as we state it, it would be
possible to simply remove him or her. However, our con-
struction allows for a simple tweak: If we extended the price
functions of voters v1, . . . , vn to allow shifting d backward
one position more, to pass q, our proof would work for the
case where we have to ensure that the resulting election has
a unique winner (this is not a requirement in our model, but
we find it appealing that the result appears to be immune
to various tie-breaking tweaks).

The fact that Destructive Shift Bribery is NP-
complete immediately raises the question about its parame-
terized complexity. While in this paper we, mostly, focus on
classic complexity results, the proof of Theorem 3 allows us
to make some conclusions. First, instead of reducing from
X3C, we could have given a reduction from SetCover (a
problem where neither the size of U nor the sizes of the sets
in the family S are constrained, and where k—the number
of sets one can use in the solution—is an additional part
of the input) with only minor modifications. Since Set-
Cover is well-known to be W [2]-hard for the parameter k
and since our construction uses budget B = k, we immedi-
ately get that Destructive Shift Bribery for Copelandα

rules is W [2]-hard when parameterized by the budget value,
or when parameterized by the total number of affected vot-
ers (see the work of Chen et al. [4] for a discussion of these
parameters; for other parameters considered by Chen et al.,
such as the number of unit shifts used or the number of vot-
ers, our proof does not apply and we would need additional
constructions).

Corollary 3. For each (rational) value of α, 0 ≤ α ≤ 1, the
Destructive Shift Bribery problem for the Copelandα

rule is W [2]-hard for the parametrization by the budged
value, and for the parametrization by the number of affected
voters.

3.4 The Maximin Rule
In spite of the hardness results from the previous sec-

tion, it certainly is not the case that Destructive Shift
Bribery is hard for all Condorcet-consistent rules. We now
show a polynomial time algorithm for the case of Maximin.

Theorem 4. The Destructive Shift Bribery problem
for the Maximin rule is in P.

Proof. Let E = (C, V) be the input election with C =
{c1, . . . , cm} and V = {v1, . . . , vn}, let d ∈ C be the de-
spised candidate, let B be the budget, and let (ρ1, . . . , ρn)
be the destructive shift-bribery price functions for the vot-
ers. Before we give our algorithm for the problem, we first
identify a certain property that we can assume our solutions
to have.

A solution for our instance of Destructive Shift
Bribery can be understood as a vector of n integers,

310

(k1, . . . , kn), each specifying by how many positions we shift
d back on the preference order of the respective voter. So,
let (k1, . . . , kn) be some solution for our instance, and let
E′ = (C, V ′) be an election that we obtain after, for each
i ∈ [n], we shift d back by ki positions on vi’s preference
order. We denote the voters in V ′ as v′1, . . . , v

′
n, where for

each i ∈ [n], v′i corresponds to vi.
Let w ∈ C \ {d} be a Maximin winner of E′ (we can

assume that w 6= d because (k1, . . . , kn) is a solution for the
problem). Also, let t be a candidate such that scoreE′(d) =
NE′(d, t). That is, t is the candidate that “implements” the
score of d in the final election. We claim that we can assume
that for every voter v′i such that ki 6= 0, it holds that either
v′i ranks w just above d, or v′i ranks t just above d (we refer
to solutions where this holds as tight). Below we argue why
this is the case.

Let us consider some voter v′i. We consider the following
cases:

1. If v′i ranks d above both w and t, then we modify
the solution (k1, . . . , kn) so that ki = 0 (i.e., we undo
whatever shift was applied to vi). The reason is that
since d did not pass either w or t, the shift within vi
could not have affected the scores of w and d (due to
our choice of t). Thus, even after undoing this shift, w
still has at least as high a score as d.

2. If v′i ranks d below w, or below t, or below both of
them, then we decrease ki so that d either ranks d just
below w or just below t (whichever requires decreasing
ki by a smaller value). If this is impossible (e.g., be-
cause the relative order of d, t, and w is the same for
both vi and v′i) then we set ki = 0. The reasoning is
the same as in the above step: The introduced change
does not affect the scores of d and w.

The changes to the solution described above, when imple-
mented for each of the voters, do not change the scores of
d and w, but may lower the cost of the solution. Thus it is
correct to assume that whenever there is some solution for
our instance, there is also a tight one.

Our algorithm proceeds by first guessing the candidates
w and t (from C \ {d}) and then checks if there is a tight
solution for them that does not exceed the budget. We use
the following notation. For each two candidates c1, c2, we
write Pref (c1, c2) to denote the set of voters (from V) that
prefer c1 over c2. Let us Pr(v, c) be the cost of shifting
candidate d just behind c in v’s preference order.

Since we are looking for a tight solution, we focus on vot-
ers in the set Pref (d,w) ∪ Pref (d, t) = {v′′1 , · · · , v′′` } (i.e.,
voters who prefer d to at least one of w and t). For given
candidates w, t, w 6= t, and integers j, x, y ∈ {0, . . . , `}, we
define function fw,t, so that fw,t(j, x, y) is the lowest cost
for shifting d backward in the preference orders of the vot-
ers from {v′′1 , . . . , v′′j } so that d moves x times below w and y
times below t. Given function fw,t, we will be able to check
for an existence of a tight solution for w and t. Before we
describe how to do it, let us argue that we can compute the
values of function fw,t in polynomial time. To this end, we
use dynamic programming.

First, we note that for each j, x, y ∈ {0, . . . , `}, we have
fw,t(j, 0, 0) = 0 and, if x > 0 or y > 0, fw,t(0, x, y) = ∞
(to indicate the impossibility). For other values of the ar-
guments, we express the value fw,t(j, x, y) recursively as fol-

lows. Let us fix some values of j ∈ [`], and x, y ∈ {0, . . . , `}.
There are three cases to consider:

Case 1: If v′′j ∈ Pref (d,w) \Pref (d, t), i.e., if v′′j prefers d
to w, but not to t, then we have:

fw,t(j, x, y) = min

{
fw,t(j − 1, x, y),
fw,t(j − 1, x− 1, y) + Pr(w)

}
.

To see the correctness of the formula, note that to ensure
that d moves x times below w and y times below t for the
voters v′′1 , . . . , v

′′
j , we either ensure that this happens already

for the voters v′′1 , . . . , v
′′
j−1 and leave v′′j intact, or we ensure

that d moves x − 1 times below w and y times below t for
voters v′′1 , . . . , v

′′
j−1, and moves once below w in the the pref-

erence order of v′′j (from now on we will omit such detailed
description, but the general idea for each of the cases is the
same).

Case 2: If v′′j is in Pref (d, t) \ Pref (d,w), then we have:

fw,t(j, x, y) = min

{
fw,t(j − 1, x, y),
fw,t(j − 1, x, y − 1) + Pr(t)

}
.

Case 3: If v′′j is in Pref (d,w)∩Pref (d, t) and v′′j prefers d
to w and w to t, then we have:

fw,t(j, x, y) = min

 fw,t(j − 1, x, y),
fw,t(j − 1, x− 1, y) + Pr(w),
fw,t(j − 1, x− 1, y − 1) + Pr(t)

 .

On the other hand, if v′′j prefers d to t and t to w then we
have:

fw,t(j, x, y) = min

 fw,t(j − 1, x, y),
fw,t(j − 1, x, y − 1) + Pr(t),
fw,t(j − 1, x− 1, y − 1) + Pr(w)

 .

Given this discussion, it is clear that using standard
dynamic-programming approach it is possible to compute
function fw,t in polynomial time.

Finally, using function fw,t, we can compute the cost of
the cheapest tight solution for candidates w and t. It suffices
to try all values x, y ∈ {0, . . . , `}. For each such pair it is
immediate to compute the score that candidates d and w
would have after d shifted x times below w and y times
below t. We would accept if the score of w were at least as
high as that of d and we had fw,t(`, x, y) ≤ B. We reject if
there is no choice of w, t, x, and y that leads to acceptance.
(Technically, we should also consider the case where w = t.
It is straightforward to adapt the description of function fw,t
to this case.) This concludes our proof.

It is interesting to ask what feature of the Maximin rule—
as opposed to the Copeland rule—lead to the fact that
Destructive Shift Bribery is polynomial-time solvable.
We believe that the reason is that it is safe to focus on a
small number of candidates (the candidates w and t). For
Copeland elections, on the other hand, one has to keep track
of all the candidates that the despised candidate passes, be-
cause each such pass could, in effect, decrease the despised
candidate’s score. (Interestingly, the same is true for the
Borda rule—each time the despised candidate passes a can-
didate, the despised candidate’s score decreases. However,
in the case of Borda this process is unconditional, whereas
in the case of Copeland’s rule, the decrease may or may not
happen, depending on shifts in other preference orders).

311

Constructive Destructive
Election rule Shift Bribery Shift Bribery

Plurality P P
k-Approval P P

Borda NP-com. P
Maximin NP-com. P
Copelandα NP-com. NP-com.

Table 3: The complexity of Shift Bribery for various
election rules. The results for the constructive case
are due to Elkind et al. [14] and the results regarding
the destructive case are due to this paper.

4. CONCLUSIONS
We have introduced and studied a destructive variant of

the Shift Bribery problem. In our problem, we ask if it is
possible to preclude a given candidate from being the winner
of an election by shifting this candidate backward in some of
the votes (at a given cost, within a given budget), whereas
in the constructive variant of the problem one asks if it is
possible to ensure a given candidate’s victory by shifting him
or her forward. Thus, our approach to defining Destruc-
tive Shift Bribery is somewhat nonstandard: Not only
we change the goal (from the constructive to the destructive
one), but also we modify the set of available actions. We do
so, because otherwise our problem would be meaningful only
for non-monotone rules and would be quite unnatural (in-
creasing the support for a given candidate to preclude him
or her from winning, while possible and indeed occurring in
real life, e.g., in STV elections, is quite a tricky, and perhaps
controversial, issue).

We have shown that Destructive Shift Bribery is
polynomial-time solvable for the k-Approval family of rules
(in effect, including the Plurality rule), the Borda rule, all
scoring protocols (as long as either the protocol or the price
functions can be assumed to be encoded in unary), and the
Maximin rule. On the other hand, we have shown that for
each rational value of α, the problem is NP-complete for
Copelandα (and we have drawn initial conclusions regard-
ing the problem’s parameterized complexity in this case).
We summarize our results in Table 3.

Our work leads to several open questions. First, one could
always study more elections rules. Second, at a technical
level, it is tempting to study the parameterized complex-
ity of our problem for Copeland in more depth. Third, it
would be interesting to perform an empirical test to mea-
sure, for example, by how much we need to shift back the
election winner to change the result under various assump-
tions regarding the voters’ preference orders (and in real-life
elections, such as those collected in PrefLib [24]).

Acknowledgments
We are grateful to AAMAS reviewers for their helpful com-
ments. The authors were supported by the AGH University
grant 11.11.230.124 (statutory research).

REFERENCES
[1] D. Baumeister, G. Erdélyi, and J. Rothe. How hard is

it to bribe judges? A study of the complexity of

bribery in judgement aggregation. In Proceedings of
the 2nd International Conference on Algorithmic
Decision Theory, pages 1–15. Springer-Verlag Lecture
Notes in Computer Science #6992, Oct. 2011.

[2] D. Baumeister, P. Faliszewski, J. Lang, and J. Rothe.
Campaigns for lazy voters: Truncated ballots. In
Proceedings of AAMAS-12, pages 577–584.
International Foundation for Autonomous Agents and
Multiagent Systems, June 2012.

[3] D. Binkele-Raible, G. Erdélyi, H. Fernau,
J. Goldsmith, N. Mattei, and J. Rothe. The
complexity of probabilistic lobbying. Discrete
Optimization, 11:1–21, 2014.

[4] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein,
and R. Niedermeier. Prices matter for the
parameterized complexity of shift bribery. In
Proceedings of AAAI-14, pages 1398–1404. AAAI
Press, 2014.

[5] R. Bredereck, P. Faliszewski, R. Niedermeier, and
N. Talmon. Large-scale election campaigns:
Combinatorial shift bribery. In Proceedings of
AAMAS-15, pages 67–75, 2015.

[6] D. Cary. Estimating the margin of victory for
instant-runoff voting. Presented at the 2011 Electronic
Voting Technology Workshop/Workshop on
Trustworthy Elections, 2011.

[7] R. Christian, M. Fellows, F. Rosamond, and A. Slinko.
On complexity of lobbying in multiple referenda.
Review of Economic Design, 11(3):217–224, 2007.

[8] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate?
Journal of the ACM, 54(3):Article 14, 2007.

[9] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Sprigner, 2015.

[10] P. Dey and Y. Narahari. Estimating the margin of
victory of an election using sampling. In Proceedings
of the 24th International Joint Conference on
Artificial Intelligence, pages 1120–1126, July 2015.

[11] B. Dorn and D. Krüger. On the hardness of bribery
variants in voting with CP-nets. Annals of
Mathematics and Artificial Intelligence, To appear.

[12] B. Dorn and I. Schlotter. Multivariate complexity
analysis of swap bribery. Algorithmica, 64(1):126–151,
2012.

[13] E. Elkind and P. Faliszewski. Approximation
algorithms for campaign management. In Proceedings
of the 6th International Workshop On Internet And
Network Economics, pages 473–482. Springer-Verlag
Lecture Notes in Computer Science #6484, Dec. 2010.

[14] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery.
In Proceedings of the 2nd International Symposium on
Algorithmic Game Theory, pages 299–310.
Springer-Verlag Lecture Notes in Computer Science
#5814, Oct. 2009.

[15] P. Faliszewski, E. Hemaspaandra, and
L. Hemaspaandra. How hard is bribery in elections?
Journal of Artificial Intelligence Research, 35:485–532,
2009.

[16] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. Llull and Copeland voting
computationally resist bribery and constructive

312

control. Journal of Artificial Intelligence Research,
35:275–341, 2009.

[17] P. Faliszewski, Y. Reisch, J. Rothe, and L. Schend.
Complexity of manipulation, bribery, and campaign
management in Bucklin and fallback voting.
Autonomous Agents and Multiagent Systems,
29(6):1091–1124, 2015.

[18] P. Faliszewski and J. Rothe. Control and bribery in
voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 7. Cambridge
University Press, To appear.

[19] N. Hazon, R. Lin, and S. Kraus. How to change a
group’s collective decision? In Proceedings of the 23rd
International Joint Conference on Artificial
Intelligence, pages 198–205. AAAI Press, 2013.

[20] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Anyone but him: The complexity of precluding an
alternative. Artificial Intelligence, 171(5–6):255–285,
2007.

[21] T. Magrino, R. Rivest, E. Shen, and D. Wagner.
Computing the margin of victory in IRV elections.
Presented at 2011 Electronic Voting Technology
Workshop/Workshop on Trushworthy Elections, Aug.
2011.

[22] A. Maran, N. Maudet, M. Pini, F. Rossi, and
K. Venable. A framework for aggregating influenced
cp-nets and its resistance to bribery. In Proceedings of
AAAI-13, pages 668–674. AAAI Press, 2013.

[23] N. Mattei, M. Pini, F. Rossi, and K. Venable. Bribery
in voting over combinatorial domains is easy. In
Proceedings of AAMAS-12, pages 1407–1408.
International Foundation for Autonomous Agents and
Multiagent Systems, June 2012.

[24] N. Mattei and T. Walsh. Preflib: A library for
preferences. In Proceedings of the 3nd International
Conference on Algorithmic Decision Theory, pages
259–270, 2013.

[25] I. Nehama. Complexity of optimal lobbying in
threshold aggregation. In Proceedings of the 4th
International Conference on Algorithmic Decision
Theory, pages 379–395. Springer-Verlag Lecture Notes
in Computer Science #9346, Sept. 2015.

[26] R. Niedermeier. Invitation to Fixed-Parameter
Algorithms. Oxford University Press, 2006.

[27] S. Obraztsova and E. Elkind. On the complexity of
voting manipulation under randomized tie-breaking.
In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 319–324,
July 2011.

[28] S. Obraztsova, E. Elkind, and N. Hazon. Ties matter:
Complexity of voting manipulation revisited. In
Proceedings of AAMAS-11, pages 71–78, May 2011.

[29] C. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[30] I. Schlotter, P. Faliszewski, and E. Elkind. Campaign
management under approval-driven voting rules.
Algorithmica, To appear.

[31] D. Shiryaev, L. Yu, and E. Elkind. On elections with
robust winners. In Proceedings of AAMAS-13, pages
415–422. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[32] L. Xia. Computing the margin of victory for various
voting rules. In Proceedings of the 13th ACM
Conference on Electronic Commerce, pages 982–999.
ACM Press, June 2012.

313

