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ABSTRACT
We investigate how to reconstruct social networks from voting data.
In particular, given a voting model that considers social network
structure, we aim to find the network that best explains the agents’
votes. We study two plausible voting models, one edge-centric and
the other vertex-centric.

For these models, we give algorithms and lower bounds, char-
acterizing cases where network recovery is possible and where it
is computationally difficult. We also test our algorithms on United
States Senate data.

Despite the similarity of the two models, we show that their re-
spective network recovery problems differ in complexity and in-
volve distinct algorithmic challenges. Moreover, the networks pro-
duced when working under these models can also differ signifi-
cantly. These results indicate that great care should be exercised
when choosing a voting model for network recovery tasks.

1. INTRODUCTION
One approach to investigating voting data assumes that agents’

votes are independent of one another, conditioned on some underly-
ing (sometimes probabilistic) model of ground truth. This is usually
an unrealistic assumption, leading to a more recent line of inquiry
which asks how the social network structure of the voters affects
the relationship between votes. Each agent in a social network ex-
presses a position (votes for or against a bill, prefers one brand
over another, etc.) that is influenced by their social connections. In
this view, it is possible to detect the organization and evolution of
voting communities by looking at the social network structure. The
literature on congressional and political voting networks focuses on
detecting community structure, partisanship, and evolutionary dy-
namics [1, 9, 11, 15, 20, 21], while the literature on idea propaga-
tion investigates how to best maximize the spread of ideas through
a population [3, 10].

However, it is often not necessarily clear how to build this so-
cial network graph. For example, Macon et al. give a few different
variants on how to define the social network of the voters of the
United Nations [11]. In this approach, different graphs may reveal
different aspects of the social network structure.

This corresponds neatly with a typical view in social choice the-
ory that votes are manifestations of subjective preferences. At the
other extreme, a voter votes according to a noisy estimate of the
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ground-truth qualities of the possible choices on which he or she is
voting. While both are over-simplified extremes, it is useful to con-
sider the extremes in order to investigate their consequences [4].

In this paper, as in previous work, we assume there is a fixed
probabilistic model which is used to determine the relationship be-
tween initial preferences for the possible choices and how each in-
dividual ends up voting for those choices. This probabilistic model
takes into account the social network structure in which the voters
are embedded.

In this approach, it is typically assumed that the social network
of the voters is known. The goal is then to find the correct choice
from votes, as tackled by Conitzer and then others [4, 16, 19]. This
can be made more difficult depending on the structure of a social
network, which may enforce the wrong choice by aggregating in-
dividual opinions over dense subgraphs, leading voters with low
degree to possibly change their mind to the majority view of the
subgraph.

In practice, the social network is usually not known and it is not
necessarily clear how to infer the graph. In this paper, we tackle
the problem of inferring the social network from the votes alone.
We discuss two similar but distinct voting models in the vein of
Conitzer [4], and show how to recover the graph given the votes un-
der these voting models and under several notions of what it means
to recover the graph. We show that your ability to learn the graph
from the votes is highly dependent on the underlying voting model
- in some settings, it is computationally hard to do so but not in oth-
ers. Moreover, we demonstrate that the resulting learned graphs can
differ significantly depending on which underlying voting model is
assumed.

2. MODELS AND RESULTS
We give results for two similar models: an edge-centric model,

which Conitzer calls the independent conversation model [4], and
a vertex-centric model, introduced in this paper, which we will call
the common neighbor model.

Similar to some existing models, the common neighbor model is,
for instance, equivalent to the "deterministic binary majority pro-
cess" run for one step (where the initial assignment is random). This
process was examined by Goles and Olivos [6] and related work,
e.g. by Frischknecht et al. [5], and it has been used in the press to
illustrate the disproportionate influence of certain voters [17]. The
models we consider herein also resemble settings in multiple previ-
ous works, e.g. by Grabisch and Rusinowska [7], Grandi et al. [8],
and Schwind et al. [18].

In both of our models, there is an unknown simple undirected
graph G on n vertices. Each vertex is an agent, who can vote “−1”
or “1”. Both models describe how each agent votes in one round
of voting. We consider m rounds of voting and in each round every
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vertex votes, leading to a sequence of vote sets V [m] = V1, . . . , Vm,
where each Vi is the set of votes from all voters. The problem is to
recover G from V [m].

First, we define the independent conversation model, a two-step
process where edges represent conversations between voting agents,
and each agent votes according to the majority outcome of his con-
versations.

DEFINITION 1 (INDEPENDENT CONVERSATION MODEL).
First, each edge flips a coin i.i.d. that with probability p is 1 and
with probability (1 − p) is −1. Then each vertex votes according
to the majority of its adjacent edges’ preferences. If there is a tie,
then it is broken in favor of voting 1 with probability q and−1 with
probability 1− q.

This process is depicted for a particular graph in Figure 1. Note
that the set of votes Vi only includes the final votes, not the initial
preferences.
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Figure 1: Left: the outcome of pairwise “conversations" between
connected neighbors. Right: the resulting votes. For simplicity, the
edge probabilities are not depicted.

The common neighbor model is similar, except here the initial
preferences are on the vertices, not the edges:

DEFINITION 2 (COMMON NEIGHBOR MODEL). Each vertex
initially flips a coin i.i.d. that with probability p is 1 and with prob-
ability 1− p is −1. Then each vertex votes 1 if more adjacent ver-
tices’ initial preferences were 1 then −1 and vice versa. If there is
a tie, then it is broken in favor of voting 1 with some probability q
and −1 with probability 1− q.

This process is illustrated in Figure 2.
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Figure 2: Left: the initial preferences of the nodes. Right: the re-
sulting votes. For simplicity, the preference probabilities are not
depicted.

It is straightforward to see how they are different. In the inde-
pendent conversation model, two vertices’ votes are independent
of each other if and only if they do not share an edge, while in the
common neighbor model, they are independent if and only if they
have no common neighbors.

Our main contribution consists of algorithms to recover the hid-
den graph G from the votes, lower bounds, and experiments for
both models.

Our results span a few different notions of what it means to
recover the unknown graph. First, we ask whether there exists a
polynomial-time algorithm that succeeds with high probability (given
only a polynomial number of votes in the number of voters) in find-
ing the unknown graph G when the votes were drawn from G. The
algorithm must take time polynomial in both the number of votes
given as input and the number of vertices. We refer to this as exact
learning. We show the following:

RESULT 1. In the independent conversation model, there is a
polynomial-time algorithm that exactly learns the unknown graph
when p = 1/2 (with high probability). Moreover, for constant p 6=
1/2, an exponential number of votes are required to exactly learn
the graph. (See Observation 1 and Theorem 2.)

Our algorithm is a statistical test for edges between pairs of ver-
tices by calculating sample covariances of their votes, which here
measures how likely it is that two voters vote the same way. This
is very similar to how voting networks are often constructed in the
literature [2, 11, 20]. This result can then be seen as a formal moti-
vation for why this type of method should be used.

RESULT 2. In the common neighbor model, no algorithm can
exactly recover the unknown graph. (See Observation 8.)

The above two results motivate us to consider other notions of
what it means to recover the graph because the graph is generally
not recoverable efficiently here. Moreover, in a setting where there
is not necessarily a ground-truth graph from which the votes were
drawn, we are still interested in finding a graph that explains the
votes.

We make this precise by asking for the maximum likelihood es-
timator (MLE) graph, that graph that maximizes the probability of
the observed votes over the distribution of votes induced by a fixed
voting model. As is standard for the maximum likelihood estima-
tor, we assume that the prior over graphs is uniform. We refer to
this as maximum likelihood learning. Under this model of learning,
votes do not necessarily need to come from any particular hidden
graph. Nevertheless, the goal is to produce the MLE graph under a
voting model for a set of input votes regardless of where the votes
came from.

RESULT 3. In the independent conversation model, there is a
polynomial-time bounded-probability random reduction from a #P-
complete problem to finding the likelihood of the MLE graph. How-
ever, if enough votes are drawn from a hidden graph G when p =
1/2, there is a polynomial-time algorithm that finds the MLE graph
on the votes with high probability. (See Theorem 5 and Theorem 7.)

This lower bound is an indication that computing the likelihood
of the MLE graph is difficult, since if there were an efficient al-
gorithm to compute this quantity then there would be an efficient
algorithm to solve a #P-complete problem that succeeds with high
probability.

On the other hand, merely trying to find the MLE graph is possi-
ble, at least if there is enough votes given as input (specifically, for
n voters, order n4 votes suffices).

In the common neighbor model, we investigate a third approach
to finding a graph that explains the votes. Given that we recover
graphs in the independent conversation model using covariances
between votes, it is natural to ask whether it is possible to find a
graph whose expected covariances are close to the observed co-
variances in the common neighbor model. We show that even if
you were to know the expected covariances exactly, it would still
be computationally difficult to find such a graph.
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RESULT 4. For the common neighbor model, finding a graph
with given expected covariances between votes is at least as hard as
recovering an adjacency matrix from its square. Moreover, a gen-
eralization of this problem, namely the generalized squared adja-
cency problem, is NP-hard. (See Observation 9 and Theorem 11.)

The squared adjacency problem and its generalized version are
defined as follows:

DEFINITION 3. The input for the squared adjacency matrix prob-
lem is a matrix B, and the decision problem asks if there is an ad-
jacency matrix A of a simple graph such that A2 = B.

DEFINITION 4. The input for the generalized squared adjacency
problem is a collection of n2 sets Sij , and the decision problem
asks if there is a simple graph whose adjacency matrix is A such
that A2

ij ∈ Sij for each entry A2
ij of A2.

To the best of our knowledge, the squared adjacency matrix prob-
lem is not known to be NP-hard nor is it known to be in P. It is a
difficult open problem in its own right, and other versions of it have
been proven NP-hard [12]. It is equivalent to the special case of the
generalized version where the set sizes are exactly one.

3. THE INDEPENDENT CONVERSATION
MODEL

In this section, we show when there is a algorithm to recover the
hidden graph. We will also show that it is hard to find the likelihood
of the maximum likelihood graph for an input sequence of votes.
Before we present those two results, we start with the following
observation:

OBSERVATION 1. For constant p 6= 1/2, under the indepen-
dent conversation model, it takes exponentially many votes to dis-
tinguish with high probability between the complete graph and the
complete graph minus an edge.

This follows directly from the fact that in both the complete
graph and the complete graph minus an edge, if p 6= 1/2, with ex-
ponentially high probability every voter will vote 1. Our only hope
is that it becomes possible to recover the graph G when p = 1/2,
which we show to be the case.

3.1 An algorithm for p = 1/2

In this section, we prove the following:

THEOREM 2. Let p = q = 1/2. For any graph G on n vertices
and δ > 0, if m = Ω

(
n2
(
lnn+ ln 1

δ

))
votes are drawn from G

under the independent conversation model, there is a polynomial-
time algorithm that will recover G with probability at least 1− δ.1

Let Xu ∈ {1,−1} be the random variable representing the out-
putted vote of vertex u, so Xu = 1 if u votes 1 and −1 otherwise.
Now consider two vertices u and v. The votes of u and v are in-
dependent if and only if (u, v) is not an edge. This yields a natural
approach to determining if (u, v) is an edge ofG: measure the sam-
ple covariance between the votes of u and v and if this covariance
is sufficiently far away from zero, there must be an edge.

To formalize this, we need to calculate the covariance between
Xu and Xv if there is an edge between them:
1This result actually remains true for arbitrary values of q, but we
restrict the Theorem to q = 1/2 to simplify the proof in this ver-
sion.

LEMMA 3. For any edge (u, v) of G, let du and dv be the de-
grees of u and v. For convenience, let ρ = (1 − 2p)q + p. Then
Cov (Xu, Xv) is

4ρ2
(du−1
du−2

2

)(dv−1
dv−2

2

)
(p(1− p))

du+dv−2
2 , even du, dv

4ρ
(du−1
du−2

2

)(dv−1
dv−1

2

)
(p(1− p))

du+dv−1
2 , even du, odd dv

4ρ
(du−1
du−1

2

)(dv−1
dv−2

2

)
(p(1− p))

du+dv−1
2 , odd du, even dv

4
(du−1
du−1

2

)(dv−1
dv−1

2

)
(p(1− p))

du+dv
2 , odd du, dv.

PROOF. Consider an edge (u, v) ∈ E(G). Since u and v vote
independently given the vote of the edge (u, v), we will write the
probability that each of these vertices vote 1 given the edge vote.

Namely, call P 1
u = P (Xu = 1|edge (u, v) votes 1) and P−1

u =
P (Xu = 1|edge (u, v) votes -1) and similarly P 1

v , P
−1
v the analo-

gous probabilities for v.
We can write the covariance in terms of these four probabilities:

Cov (Xu, Xv) = 4p(1− p)(P 1
u − P−1

u )(P 1
v − P−1

v ).
To show this, it suffices to write the covariance as a function of

the joint probabilities P (Xu = 1, Xv = 1), etc., and then write
each joint probability as a function of the probabilities that a vertex
votes 1 given that how the adjacent edge votes. For example, by
conditioning on the vote of edge (u, v),

P (Xu = Xv = 1) = pP 1
uP

1
v + (1− p)P−1

u P−1
v .

The others are similar.
To complete the proof, all we need are formulae for P 1

u and P−1
u

(P 1
v and P−1

v are calculated analogously). This is done by choosing
edges to form the majority vote of u’s neighborhood.

Recall d(u) − 1 and d(v) − 1 are the degrees of u and v, re-
spectively, minus 1 (in order to discount the edge (u, v)). We then
have

P 1
u =


∑ d(u)−2

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i even d(u)

+ q
(d(u)−1

d(u)
2

)
(1− p)

d(u)
2 p

d(u)−2
2 ,∑ d(u)−1

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i, odd d(u).

and

P−1
u =


∑ d(u)−4

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i even d(u)

+ q
(d(u)−1
d(u)−2

2

)
(1− p)

d(u)−2
2 p

d(u)
2 ,∑ d(u)−3

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i, odd d(u),

The statement of the lemma then follows.

In the case where p = 1/2, the covariance will be sufficiently
large; namely that it will be Ω(1/n), where n is the number of
vertices of G:

COROLLARY 4. When p = 1/2 and (u, v) is an edge of G,

Cov (Xu, Xv) ≥ 1

2π

1√
dudv

≥ 1

2πn
.

PROOF. We simplify the formula for the covariance derived in
Lemma 3 by giving lower bounds for the central binomial coeffi-
cients, from which the result immediately follows: For any positive
integer k, the central binomial coefficient(s) satisfy(

k⌈
k−1

2

⌉) ≥ 2k√
πk
.

These lower bounds follow from Sterling’s approximation k! =√
2πk

(
k
e

)k (
1 +O

(
1
k

))
.
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Note this lower bound was only polynomial in 1/n because p =
1/2; otherwise, the exponential term (p(1 − p))n, for p constant,
ensures that the covariance goes to 0 exponentially quickly in n.

We are now ready to prove Theorem 2, which uses the Hoeffding
bound to establish that the sample covariance converges quickly
enough to its expectation, which if there is an edge is given in
Lemma 3 and if there is no edge is just 0.

PROOF OF THEOREM 2. Recall that in the independent conver-
sation model, we are givenm votesXu,i

i.i.d.∼ Xu for i = 1, . . . ,m
and all u in G, where Xu is the {−1, 1}-valued random variable
found by taking the majority vote of the initial votes of u’s neigh-
borhood.

For p = q = 1/2, E (Xu) = 0 for each vertex u, which means
that Cov (Xv, Xu) = E (XuXv). This means that the sample co-
variance between u and v is

Cmu,v =
1

m

m∑
i

Xu,iXv,i.

The algorithm to recover G from the m votes is straightforward:
For each pair of vertices u, v, calculate the sample covarianceCmu,v .
If Cmu,v > 1

4πn
, then the algorithm claims there is an edge between

u and v, and otherwise, the algorithm claims there is no such edge.
We call this the covariance test. It suffices to show that the prob-
ability that the covariance test is wrong is low. Using Corollary 4,
we get for edge (u, v),

P
(
Cmu,v <

1

4πn

)
≤ P

(
Cmu,v − E

(
Cmu,v

)
< − 1

4πn

)
,

and for (u, v) /∈ E(G),

P
(
Cmu,v >

1

4πn

)
= P

(
Cmu,v − E

(
Cmu,v

)
>

1

4πn

)
.

By the Hoeffding bound each of these two terms is bounded above
by e−

cm
n2π2 for some constant c.

Let G′ be the network inferred by the above algorithm. Then the
probability that G′ is not G is no more than∑

u,v∈E

P
(
Cmu,v <

1

4πn

)
+
∑
u,v/∈E

P
(
Cmu,v >

1

4πn

)
,

which is bounded from above by
(
n
2

)
e
− cm
n2π2 .

Hence, for any δ > 0, setting m = Ω
(
n2
(
lnn+ ln 1

δ

))
suf-

fices so that
(
n
2

)
e
− cm
n2π2 < δ.

3.2 Moving from exact learning to maximum
likelihood learning

In the previous section, we showed that exact learning is possi-
ble when p = q = 1/2. We now show that it is possible to not
only exactly learn the graph, but also find the maximum likelihood
graph for the votes when p = q = 1/2, assuming we are given
enough data. Recall the maximum likelihood graph (which we will
also refer to as the MLE graph) is the graph that maximizes the
probability of the observed votes over the distribution of votes.

THEOREM 5. Let p = q = 1/2. For any graph G on n vertices
and δ > 0, if m = Ω

(
n2
(
n2 + ln 1

δ

))
votes are drawn from G

under the independent conversation model, there is a polynomial-
time algorithm that will find the maximum likelihood graph on the
drawn votes with probability at least 1− δ.

In other words, if the votes really do come from a hidden graph
and we are given order n4 votes, we can find the maximum like-
lihood graph. Specifically, what we show is that if you are given

this many votes from a hidden graph, then the MLE graph is the
hidden graph with high probability. The proof of Theorem 5 then
follows from applying Theorem 2, i.e. using the covariance test
to find the hidden graph, which is the MLE graph. This moves a
statement about exact learning to a statement about maximum like-
lihood learning.

We now prove (Lemma 6) that the MLE graph is the hidden
graph for a sufficiently large set of votes drawn from a hidden
graph. Indeed, we show something stronger: the hidden graph will
be more likely (under this model) than any other graph by an ar-
bitrarily large factor α (where the number of votes given as input
needs to increase logarithmically in α). This stronger result will
also be needed for the proof of Theorem 7.

The statement of this will need some notation: For any graph
G on n vertices, let VG be the distribution over a set of n votes
induced by G under the independent conversation model for p =
q = 1/2. For convenience we will denote the m-product distribu-
tion VG × . . .× VG as V [m]

G . That is, for any vote V ∈ {−1, 1}n,
PVG(V ) = P (V |G) is the probability mass of V under VG. Simi-

larly, for a sequence of votes V [m], PV[m]
G

(
V [m]

)
= P

(
V [m]|G

)
is the probability mass of V [m] under V [m]

G .

LEMMA 6. For δ > 0, α > 1,

P
V [m]∼V[m]

G

(
P
(
V [m]|G

)
≤ α max

G′ 6=G
P
(
V [m]|G′

))
< δ

for m = Ω
(
n2
(
n2 + ln 1

δ
+ lnα

))
.

PROOF. Fix α > 1 and denote by E the event that

maxG′ 6=G P(V [m]|G′)
P(V [m]|G)

≥ 1

α
.

(If P(V [m]|G) = 0, then this event occurs, so we can safely
assume the converse.) The idea of this proof is that we will show
the probability ofE happening is small by conditioning on what the
vote sequence V [m] looks like when drawn fromG. Specifically, in
the proof of Theorem 2, we show that the covariance test would
have successfully found G with high probability, so we condition
on this happening.

Fix a graph G′ 6= G. We will want to show that the probability
that V [m] is pulled fromG′ (instead ofG) is sufficiently small. The
covariance test failed if V [m] were pulled from G′: the covariance
test returned G on V [m] instead of G′. And again, the probabil-
ity that the covariance test failed is low, as showed in the proof of
Theorem 2, so the probability that V [m] is pulled from G′ must be
small.

We denote the set of vote sequences for which the covariance test
returns G by ΦG. Using this notation, we condition on V [m] being
in ΦG or not and then get an immediate upper bound:

PV[m]
G

(E) ≤ PV[m]
G

(
E|V [m] ∈ ΦG

)
+ PV[m]

G

(
V [m] 6∈ ΦG

)
.

We then bound each of these two terms. The probability that the
covariance test failed on V [m] is small: By inspecting the proof of
Theorem 2, we have that for some constant c,

PV[m]
G

(
V [m] 6∈ ΦG

)
≤

(
n

2

)
e
− cm
n2π2 . (1)

Otherwise, the covariance test succeeded and we condition on
V [m] ∈ ΦG. We now show that

PV[m]
G

(
E|V [m] ∈ ΦG

)
≤ α

(
2(n2) − 1

)(n
2

)
e
− cm
n2π2 . (2)
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Markov’s inequality gives

PV[m]
G

(
maxG′ 6=G P(V [m]|G′)

P(V [m]|G)
≥ 1

α

∣∣∣∣V [m] ∈ ΦG

)
≤

α · EV[m]
G

(
maxG′ 6=G P(V [m]|G′)

P(V [m]|G)

∣∣∣∣V [m] ∈ ΦG

)
.

It is then enough to expand this expected value using the defini-
tion to get that

PV[m]
G

(
E|V [m] ∈ ΦG

)
≤ α

∑
V [m]∈ΦG

max
G′ 6=G

P
(
V [m]|G′

)
.

Now we group the terms of the sum by which graph G′ 6= G

maximizes the probability P
(
V [m]|G′

)
. There may be many terms

in the sum that any one graphG′ maximizes, but certainly each vote
sequence associated with each term is in ΦG. There are of course
2(n2) − 1 such graphs, so∑
V [m]∈ΦG

max
G′ 6=G

P
(
V [m]|G′

)
≤

∑
G′:G′ 6=G

∑
V [m]∈ΦG

P
(
V [m]|G′

)
=
(

2(n2) − 1
)
P
(
V [m] ∈ ΦG|G′

)
.

If V [m] were in ΦG but V [m] was pulled from G′, then the covari-
ance test has failed at returning G′. So

P
(
V [m] ∈ ΦG|G′

)
≤

(
n

2

)
e
− cm
n2π2 ,

implying Equation 2. Combining Equations 1 and 2, we get

PV[m]
G

(E) ≤ α2(n2)

(
n

2

)
e
− cm
n2π2 .

For PV[m]
G

(E) to be upper-bounded by δ > 0, it suffices to set

m = Ω
(
n2
(
n2 + ln 1

δ
+ lnα

))
.

3.3 Hardness of computing the MLE
As we have seen, when p = q = 1/2, distinguishing between

graphs can be done in polynomial time. This might give hope that,
in this case, computing the likelihood of the MLE graph, given a
set of votes, may be easy. That is, given a graph G which is the
maximum likelihood graph for a set of input votes V [m] over G,
we wish to compute P(V [m]|G). Alas, we give hardness results
indicating this is not easy to do.

We reduce from Conitzer’s problem of computing P (V ∗|G),
where V ∗ is a vote produced by a given graphG [4].2 He shows that
this is problem is #P-hard by reducing from counting the number
of perfect matchings in a bipartite graph. Surprisingly, our proof of
this hardness result uses the easiness of finding the MLE graph in
polynomial time in the case when p = q = 1/2. Namely, we use
Lemma 6 to be able to say when the input G is the maximum like-
lihood graph for a set of votes V [m], which in turn says when the
oracle will successfully compute P(V [m]|G) . Formally, we prove
the following theorem:

THEOREM 7. There is a randomized polynomial-time oracle
reduction from computing the MLE of the maximum likelihood graph
from a sequence of votes with high probability to counting the num-
ber of perfect matchings in a balanced bipartite graph.
2While the problem Conitzer considers is slightly different than
computing P (V ∗|G), in the case where p = 1/2, his problem re-
duces to computing P (V ∗|G).

PROOF SKETCH. It suffices to consider the case where p =
q = 1/2. Instead of directly reducing from the #P-hard prob-
lem of counting the number of perfect matchings in a balanced
bipartite graph, we reduce from the #P-hard problem of comput-
ing P (V ∗|G) given a graph G and vote V ∗ on n voters under the
independent conversation model.

The idea of the proof is going to be to build a sequence of votes
V [m] whose MLE we know to be the input G, and then compute

P(V ∗|G) =
P(V [m], V ∗|G)

P(V [m]|G)
.

Our oracle will give us the values of the right-hand side. This ap-
proach will work if P(V ∗|G) 6= 0.

So we first test for the case if P(V ∗|G) = 0. Conitzer pro-
vides a way to do this for a similar problem when the vertices of
the graph have all odd degree: his reduction is from the maximum
weighted b-matching problem, which we can adapt to the so-called
“c-capacitated” version that we need [4, 14].

Else, P (V ∗|G) 6= 0. We draw a sequence of votes V [m] i.i.d.∼
VG × . . . × VG. Lemma 6 immediately implies that G will be the
MLE for V [m] with failure probability less than δ/2 when m =
Ω(n2(n2 + ln 2

δ
)). In other words, with just Ω(n4) votes we will

successfully query the oracle for P(V [m]|G) with high probability.
It suffices to ensure that with high probability we will also suc-

cessfully query the oracle for them+1-length sequence V [m], V ∗.
Recall that since P(V ∗|G) is the sum, over all satisfying edge votes,
of the quantity

(
1
2

)|E(G)|, where E(G) is the edge set of G and
p = 1/2. There must be at least one satisfying edge-vote assign-
ment since P(V ∗|G) 6= 0, so P(V ∗|G) ≥

(
1
2

)|E(G)|
. In addition,

again by Lemma 6, for any G′ 6= G, P(V [m]|G)

P(V [m]|G′) > α with failure

probability no more than δ/2 whenm = Ω(n2(n2 +ln 2
δ

+lnα)).
Then for any G′ 6= G,

P(V [m], V ∗|G′) <
(

1

α
P(V [m]|G)

)(
2|E(G)|P(V ∗|G)

)
=

2|E(G)|

α
P(V [m], V ∗|G).

Setting α = Ω(en
2

) suffices to ensure that α > 2|E(G)|. Thus
setting

m = Ω(n2(n2 + ln
2

δ
+ lnα))

as above for this setting ofα, a query to the oracle for P(V [m], V ∗|G)
will fail with probability less than δ/2. Setting δ to be, say, Θ( 1

2n
),

yields that m = Ω(n4). The oracle reduction, once it tests for the
existence of at least one valid edge vote, simply consists of drawing
m votes from G and then querying the oracle for P(V [m], V ∗|G)

and P(V [m]|G). The reduction then succeeds with probability at
least 1− δ.

4. THE COMMON NEIGHBOR MODEL
We now turn our attention to the common neighbor model. Again,

we ask if it is possible to recover G by seeing only polynomially
many votes. In general, it is not possible to recover G at all, let
alone with only polynomially many votes:

OBSERVATION 8. Under the common neighbor model, no al-
gorithm can distinguish between two different perfect matchings.

If G is a matching between the vertices, each vertex will vote
how its neighbor votes, meaning that each vertex votes i.i.d. with
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probability p regardless. Thus there is no way to distinguish be-
tween different matchings.

4.1 Recovering A2 from covariances
Given the impossibility of recovering the graph, we relax the

problem to the following: Find a graph that is likely to produce the
given votes in the sense that the expected covariances of this graph
should be as close as possible (under some norm) to the covariances
of the observed votes. This problem is motivated by the algorithm
for the independent conversation model which finds a graph whose
expected covariances match the measured covariances.

Yet even if we were to know the expected covariances of the
input votes, finding a graph whose expected covariances are close
to those input covariances remains challenging:

OBSERVATION 9. For the common neighbor model, finding a
graph with given expected vote covariances is at least as hard as
recovering an adjacency matrix from its square.

To prove this observation, it suffices to show that the expected
covariances are a function solely of the entries of A2. Then re-
covering A from A2 consists of using the entries of A2 to com-
pute the expected covariances, at which point the adjacency ma-
trix of a graph with those covariances will be exactly A. The i, jth
entry of A2 is the number of length-two paths between i and j,
so it is enough to write the covariances of a graph in terms of
the following: For Γ(v) the neighborhood of a vertex v, denote
duv = |Γ(v) ∩ Γ(u)|, du = |Γ(u) \ (Γ(v) ∩ Γ(u))|, and dv anal-
ogously. The covariances are a function of du, dv , and duv . For the
sake of simplicity we will assume that |Γ(u)| and |Γ(v)| are odd,
but it is straightforward to modify the formula given below in the
cases when they are not.

LEMMA 10. Assume |Γ(u)| and |Γ(v)| are odd. For p = 1/2,

Cov(Xu, Xv) =
1

2duv−2

(
duv∑
k=0

(
duv
k

)
Pu,v(k)Pv,u(k)

)
− 1,

where, for θu,v = (duv + du + 1)/2− k,

Pu,v(k) =


1

2du

∑du
i=θu,v

(
du
i

)
if 0 ≤ θu,v ≤ du

0 if θu,v > du
1 if θu,v ≤ 0.

PROOF. Let Xu represent vertex u’s vote. When p = 1/2,
E[Xu] = 0, and P (Xu = Xv = 1) = P (Xu = Xv = 0),
so the covariance Cov(Xu, Xv) is

E[XuXv] = 2P (Xu = Xv)− 1 = 4P (Xu = Xv = 1)− 1.

To determine P (Xu = Xv = 1), we condition on the number of
common neighbors that voted 1:

Assuming some k common neighbors vote 1, in order for u to
vote 1, u needs an additional duv+du+1

2
− k neighbors to vote 1.

If k is already at least duv+du+1
2

, then the probability of voting
1 is already 1; on the other hand if there aren’t enough remaining
vertices to vote 1, then the probability is 0. This yields Pu,v(k) as
the probability that u votes 1 given that k common neighbors of u
and v voted 1.

Now we can write P (Xu = Xv = 1) as

duv∑
k=0

(
duv
k

)
pk(1− p)duv−kPu,v(k)Pv,u(k),

completing the proof.

When recovering a graph from a sequence of input votes, we are
not even given the expected covariances of the input votes. Instead
we can calculate the measured covariances, from which we can de-
termine A2. At this point, we have a function inversion problem
on our hands: We can find A2 merely by recovering these duv’s
and du’s from the covariances, but given that the formula given in
Lemma 10 is not closed, this is not trivial. Since there are only poly-
nomially many possible values for duv and du, we can simply try
all values to find the covariance closest to the observed value. How-
ever, there may be covariances that are exponentially close to each
other, making it impossible to distinguish between these values for
given duv , du. In this case the values recovered for the entries of
A2 may not be unique, which in the worst case leads to the general-
ized squared adjacency problem. Even in the case when we recover
unique values, it still reduces to the squared adjacency problem.

While the squared adjacency problem is open, we show the fol-
lowing:

THEOREM 11. The generalized squared adjacency problem is
NP-hard.

PROOF. The reduction is from CLIQUE, which asks if there is
a clique of size k on the input graph. Given a graph G = (V,E)
and an integer k, we construct a set system {Sij} with (n + 1)2

sets, where n = |V |. We then show that G has a clique of size k if
and only if there is a graph G′ = (V ∪{v}, E′) such that the i, jth
entry of A(G′)2 is in Si,j , where A(G′) is the adjacency matrix of
G′. The (n+ 1)2-sized set system {Si,j} is defined as follows:

Sij =



{0, 1} if i 6= j and i, j 6= v and (i, j) ∈ E(G)
{0} if i 6= j and i, j 6= v and (i, j) 6∈ E(G)
{0} if i = v and j 6= v
{0} if j = v and i 6= v
{k} if i = j = v
{0, 1} if i = j and i, j 6= v

Assume there is a clique of size k in G. Then G′ is defined as
follows: Denote the vertex set of the clique in G by C. G′ will
have an edge between v and all members of C, and no other edges.
It is straightforward to check that the i, jth entry of A(G′)2 is in
Sij by noting that the diagonal entries of A(G′)2 are the vertices’
degrees and the off-diagonal entries counts the number of common
neighbors.

In the other direction, assume there is such a graph G′ whose
squared adjacency matrix satisfies the constraints imposed by the
set system {Si,j}. In this case, the clique of size k in G will be
exactly the neighborhood of v in G′ (not including v itself). Call
N(v) the neighborhood of v inG′. Note the degree of v inG′ must
be k, by definition of Svv , i.e. |N(v)| = k. Consider a distinct pair
of vertices i, j in N(v). The vertices i and j have at least one com-
mon neighbor in G′, namely v, because both are in N(v), meaning
that A(G′)2

ij ≥ 1. But if (i, j) is not an edge in G then Sij = {0}
by the definition of Sij , a contradiction, forcingN(v) to be a clique
as required.

4.2 A heuristic approach
Unlike in the independent conversation model, we have no effi-

cient algorithm for producing the social network under the common
neighbor model. Hence, we employ a heuristic to find a graph that
satisfies or comes close to satisfying the constraints imposed on it
by the measured covariances.

Because of the computational hardness of this problem, we pro-
pose a heuristic approach to learn networks under the common
neighbor model. This heuristic will be used in our experimental
results in Section 5. Our heuristic, Algorithm 1, finds those pairs of
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(a) 101st Congress (1989-1990) (b) 106th Congress (1999-2000) (c) 113th Congress (2013-2014)

Figure 3: Graphs of the US Senate for three congressional terms under the independent conversation model. Democrats are colored blue,
Republicans are red, and Independents are green.

(a) 101st Congress (1989-1990) (b) 106th Congress (1999-2000) (c) 113th Congress (2013-2014)

Figure 4: Graphs of the US Senate for three congressional terms under the common neighbor model. Democrats are colored blue, Republicans
are in red, and Independents are in green.
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(a) Average degree. The blue and red lines are the average degree of
the Democrats and the Republicans, respectively.
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(b) Modularity between Democrats and Republicans. (Independents are in-
cluded with the party with which they caucus.)

Figure 5: Data for the 101st-113th Congress. Dashed and solid lines are statistics for the independent conversation model and common
neighbor model, respectively. Error bars represent one standard deviation, over 20 trials.

vertices whose current expected covariance (assuming p = 1/2) is
farthest away from the measured covariance and modifies the graph
to decrease that gap.

The local changes we want to make clearly cannot just consist of
adding/removing single edges: Say the covariance between a given
pair of vertices needs to go up and those vertices’ neighborhoods
are currently empty. The only way to increase the covariance is to
add at least two edges: (i, v) and (v, j) for some other vertex v. The

natural compromise is then to add or remove the minimal number
of edges (either one or two) to change the covariance, as seen in
Algorithm 2.

5. EXPERIMENTAL RESULTS
In this section, we test our algorithms on United States Senate

roll call votes. We examine each two-year congressional session as
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Algorithm 1 Common neighbor heuristic

Input: {ĉij}, measured covariances between voters i and j, and T ,
the number of iterations to run.
G ∼ G(n, 1/2), Gbest := ∅
{cij} := {σ(i, j)} # calculate expected covariances
for 0 to T do
i, j := argmaxi,j |cij − ĉi,j |
G := ModifyG(G, i, j, ĉij , cij)
{cij} := {σ(i, j)} # update the expected covariances
if
∑
i,j cij − ĉij is smallest so far then Gbest := G

end for
return Gbest

Algorithm 2 ModifyG

Input: Graph G; vertices i, j; ĉij , cij the measured and expected
covariances between i and j.
unconnected := V (G) \ (Γ(i) ∪ Γ(j) ∪ {i, j})
cn := Γ(i) ∩ Γ(j)
if cij − ĉij > 0 then

randomize among whichever of these are available:
1: x := random(i, j), y := random(unconnected)

add edge (x, y) to G
2: x := random(i, j), y := random(cn).

delete edge (x, y) from G
3: y := random(cn)

delete edges (i, y) and (j, y) from G
else if cij − ĉij < 0 then

randomize among whichever of these are available:
1: y := random(unconnected)

add edges (i, y) and (j, y) to G
2: y := random(Γ(i) \ cn)

add (i, y) or delete (j, y) from G randomly
3: y := random(Γ(j) \ cn)

add (j, y) or delete (i, y) from G randomly
end if
return G
# where random(.) selects an element of its input u.a.r.

one voting network. Each Senate member is an agent who either
votes for the bill in question, against, or does not vote (either be-
cause the senator served only part of the term or because the senator
just didn’t vote on the bill), yielding votes from the set {−1, 0, 1}.

Obviously, our models are simplifications — they don’t take into
account evolution of opinion, nor do they take into account the pos-
sibility of anti-correlated voters. Even assuming that either model
is representative, when presented real data, the parameter p is not
given, as is assumed above. The algorithms we present assume that
p = 1/2, which is not necessarily the case. Finally, we are given a
fixed amount of data, independent of the number of voters.

Despite these limitations, for the independent conversation model,
our covariance test, which forms the basis for Theorem 2, results in
intuitive behavior. Note that while our model assumes binary votes,
our covariance test is general enough to handle such votes — co-
variance is calculated between the {−1, 0, 1}-valued votes and the
threshold remains the same as in the original covariance test.3 Ex-
amples of the results from this covariance test on the US Senate

3We do, however, use the unbiased sample covariance instead of
the biased sample covariance, as the assumption that p = 1/2 no
longer necessarily holds, despite the analysis of the algorithm as-
suming it.

are shown in Figure 3. Given the highly structured nature of these
graphs, it is possible to recover senators’ places on the left/right
political spectrum, but since this is not the focus of this paper, we
do not go into any further detail here.

For the common neighbor model, we use Algorithm 1. Exam-
ples of results of this heuristic run on US Senate data are shown
in Figure 4. Graphs under this model appear to be very different
from those found using the covariance test under the independent
conversation model.

To demonstrate these marked differences, in Figure 5 we give
modularity values and average degrees of Democrats and Republi-
cans under both models for the period 1989-2014 (corresponding
to the 101st through 113th Congresses). Modularity is a standard
measure of the amount of division between communities [13]. Both
average degree and modularity are much higher under the indepen-
dent conversation model (dashed lines in Figure 5) than under the
common neighbor model (solid lines). Since the heuristic is ran-
domized, we average these statistics over twenty graphs, each of
which is an independent run of the heuristic with 100,000 rounds.

6. CONCLUSION
In this paper we derive algorithms and lower bounds for recov-

ering graphs from their vertices’ votes under two distinct models.
We also present experiments on the U.S. Senate voting network. In
the independent conversation model, we show when the graph is re-
coverable using only a polynomial number of votes. However, if we
want to instead take a maximum likelihood approach to recovering
graphs, then the task becomes computationally hard.

The common neighbor model, on the other hand, leads to sig-
nificantly different results. Not only is it impossible to recover the
graph using only polynomially many votes, finding a graph whose
votes’ covariances are close to the observed covariances leads to
having to solve a hard problem (the generalized squared adjacency
problem).

This implies that these models really are very different from each
other, despite their very similar definitions. This is strong evidence
that much care needs to be taken when choosing voting models
for network inference. Experiments on U.S. Senate roll call data
support this conclusion.
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