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ABSTRACT
We study the complexity of finding pure Nash equilibria in
voting games over well-known restricted preference domains,
such as the domains of single-peaked and single-crossing
preferences. We focus on the Plurality rule, and, following
the recent work of Elkind et al. [15], consider three popu-
lar tie-breaking rules (lexicographic, random-candidate, and
random-voter) and two types of voters’ attitude: lazy voters,
who prefer to abstain when their vote cannot affect the elec-
tion outcome, and truth-biased voters, who prefer to vote
truthfully in such cases. Elkind et al. [15] have shown that
for most of these combinations of tie-breaking rules and vot-
ers’ attitudes finding a Nash equilibrium is NP-hard; in con-
trast, we demonstrate that in almost all cases this problem
is tractable for preferences that are single-peaked or single-
crossing, under mild technical assumptions.
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1. INTRODUCTION
Since the famous Arrow’s impossibility theorem [1] and its
further consequences pointed out by Gibbard [21] and Sat-
terthwaite [27], we know that virtually every voting rule cre-
ates incentives for the voters to act strategically, i.e., to mis-
report their preferences in order to enforce a more preferable
outcome. These results are often viewed as disappointing,
since negative consequences of strategic voting may be dis-
astrous [19, 8]. Consequently, in order to understand various
voting rules and to make a conscious decision as to which
voting rule to use in a given scenario, one needs to study
how these rules operate in a strategic environment.
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As first pointed out by Farquharson [20], outcomes of elec-
tions with strategic voters can be better understood through
analyzing the corresponding voting games, and in particu-
lar by describing their Nash equilibria. This line of research
has received a considerable amount of attention in the so-
cial choice literature, see, e.g., [31, 3, 10]. Consequently, it
is important to investigate the computational complexity of
finding Nash equilibria in voting games: efficient algorithms
for this problem would allow to predict an outcome of a
specific election instance or to derive general conclusions by
analyzing the structure of equilibria for real data describing
voters’ preferences [23].

In this paper we focus on equilibria of the Plurality rule,
which is one of the most popular tools for making collective
decisions. Under Plurality, each voter specifies her most
preferred candidate or abstains from voting. If there ex-
ists a unique candidate who received the highest number of
votes, then she is the winner; otherwise, a tie-breaking rule
is used to select the winner from the set of top-scoring can-
didates. Popular tie-breaking rules include the lexicographic
rule, where we fix an order over the set of candidates and
select the candidate with the lowest rank in this order, the
random candidate rule, where the winning candidate is se-
lected uniformly at random from the set of top-scorers, and
the random voter rule, where the ties are resolved according
to the preferences of a single voter who is selected uniformly
at random (the random voter rule is used to break ties un-
der, e.g., the Schulze method [28]).

Unfortunately, Plurality voting admits highly counterin-
tuitive equilibria: e.g., if there are at least 3 voters, even if
all voters have identical rankings, the profile where they all
vote for a candidate they rank last is a Nash equilibrium.
Therefore, a common approach is to endow voters with sec-
ondary preferences over outcomes and study the equilibria
of the resulting game. Recent work focused on two types
of secondary preferences: lazy voters, who prefer to abstain
if their vote cannot influence the outcome of elections, and
the truth-biased voters, who prefer to vote truthfully in such
a case; see, e.g., [3, 6, 29, 13, 22, 24, 32]. In particular,
Elkind et al. [15], building on the earlier work of Desmedt
and Elkind [11] and Obraztsova et al. [26], characterized the
Nash equilibria of games that correspond to all six possi-
ble combinations of secondary preferences and tie-breaking
rules, and showed that for five of them finding Nash equi-
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libria is NP-hard (the only easy combination is lazy voters
and lexicographic tie-breaking).

While these intractability results are discouraging, they
rely on building complicated preference profiles. Therefore,
one may hope that they can be circumvented by imposing
additional structural constraints on voters’ preferences. In
particular, many problems in computational social choice
have recently been shown to become easier when the voters’
preferences are single-peaked [5] or single-crossing [25]; see,
e.g., the work by Faliszewski et al. [18], Brandt et al. [7] and
Faliszewski et al. [17] for results on manipulation, control
and bribery, and by Betzler et al. [4] and Skowron et al. [30]
on committee selection rules.

In this paper, we pursue this direction for the problem
of finding Nash equilibria of Plurality voting. Specifically,
we consider the five hard combinations of secondary pref-
erences and tie-breaking rules studied by Elkind et al. [15],
and, for each of them, investigate the complexity of finding
a Nash equilibrium under single-peaked or single-crossing
preferences. For almost all of these scenarios, we derive
polynomial-time algorithms for our problem, under a mild
technical assumption, which we refer to as tie-consistency.
We view our results as a first step towards designing algo-
rithms for finding Nash equilibria in realistic voting scenar-
ios: while we do not expect typical real-life elections to be
single-peaked or single-crossing, it is plausible that they are
often not too far from having these properties, for an appro-
priate notion of distance, and one may be able to develop
an efficient procedure for handling such ‘almost structured’
instances by building on our ideas.

2. PRELIMINARIES
Preferences, utilities, ballots. For each positive integer
t, we set [t] = {1, . . . , t}. Let N = [n] be a set of voters
and let C = {c1, . . . cm} be a set of candidates. Each voter
i ∈ N is endowed with a utility function ui : C → N: for
each cj ∈ C the quantity ui(cj) is the intrinsic utility that
i gains when cj becomes the unique election winner. We
assume that each voter assigns different utilities to different
candidates. A utility profile is a list u = (u1, . . . , un) of
utility functions of all voters. For each i ∈ N , the utility
function ui induces a preference order �i over C: we set
c �i c

′ if and only if ui(c) > ui(c
′). A preference profile

is a list of preference orders of all voters. For each voter
i ∈ N , let ai denote i’s most preferred candidate, and let
a = (a1, . . . , an).

Under the Plurality rule each voter submits her ballot bi,
which is the name of a single candidate or, if i chooses to
abstain, bi = ∅. A ballot profile b = (b1, . . . , bn) is a list
of ballots of all voters. We write (b−i, b

′) to denote the
profile obtained from b by replacing the ballot of the i-th
voter, bi, with b′. Let sc(cj ,b) = |{i ∈ N | bi = cj}| denote
the score of candidate cj . Let M(b) = maxc∈C sc(c,b) be
the maximum score of a candidate in the ballot vector b.
The winning set W (b) = {c ∈ C | sc(c,b) = M(b)} is the
set of all candidates who received the highest score. The
winner is selected from the winning set according to a tie-
breaking rule. Additionally, we define the following sets that
will be useful in our analysis: H(b) = {c ∈ C | sc(c,b) =
M(b)− 1}, H ′(b) = {c ∈ C | sc(c,b) = M(b)− 2}.
Tie-breaking rules. A lottery over a candidate set X is
a vector p = (pj)j∈X with pj ≥ 0 for each j ∈ X and

∑
j∈X pj = 1. A tie-breaking rule returns a (possibly degen-

erate) lottery over the winning set. The expected utility of
a voter i ∈ N in an election with ballot profile b and tie-
breaking rule R is computed as

∑
j∈W (b) ui(cj)pj , where p

is the lottery returned by R.
We consider three ways of resolving ties. The lexicographic

rule RL outputs the candidate w ∈ W (b) with the lowest
index, i.e., if W (b) = {cj1 , . . . , cjk}, j1 < · · · < jk, it sets
pj1 = 1, pj` = 0 for ` = 2, . . . , k. The random candidate
rule RC returns the lottery p such that pj = 1/|W (b)| for
each cj ∈ W (b). Under the random voter rule RV we ask
a random voter to pick her most preferred candidate from
W (b). Formally, the random voter rule returns the lottery
p with pj = |B(cj ,W (b))|/n for each cj ∈ W (b), where
B(cj ,W (b)) is the number of voters whose favorite candi-
date in W (b) is cj .

Lazy and truth-biased voters. Following
Elkind et al. [15] (see also references therein), we con-
sider lazy voters, who prefer to abstain when their vote
has no effect on the election outcome, and truth-biased
voters, who prefer to vote truthfully in such a case. These
attitudes are formally captured by the formulas defining
agents’ overall utilities. Let ε be a constant satisfying
0 < ε < min{ 1

m2 ,
1
n2 }. Let p be the lottery produced by

the tie-breaking rule on the candidate set W (b). We say
that a voter i ∈ N is lazy if her utility at b is given by

Ui(b) =

{∑
cj∈W (b) pjui(cj) if bi ∈ C,∑
cj∈W (b) pjui(cj) + ε if bi = ∅;

we say that she is truth-biased if her utility at b is given by

Ui(b) =


∑

cj∈W (b) pjui(cj) if bi ∈ C \ {ai},∑
cj∈W (b) pjui(cj) + ε if bi = ai,

−∞ if bi = ∅.

Computational problems. From the above discussion we
see that the voting game is determined by three parameters:
the voters’ attitude (lazy or truth-biased), the tie-breaking
rule, and the voters’ utility profile. Formally, a voting game
is a triple (S, R,u), where S ∈ {L, T }, R ∈ {RC , RV , RL},
and u is the utility profile. The action space of each voter is
C∪{∅}. A ballot vector b is a pure Nash equilibrium (PNE)
of the game (S, R,u) if for each voter i ∈ N and each action
b′ ∈ C ∪ {∅} it holds that Ui(b) ≥ Ui(b−i, b

′) (where the
definition of Ui depends on S and R, as specified above).
We are now ready to define the computational problems we
consider.

Definition 1 (ExistNE, TieNE, SingleNE). Fix
S ∈ {L, T } and R ∈ {RC , RV , RL}. In (S, R)-ExistNE
we are given a utility profile u and ask whether the voting
game (S, R,u) admits a PNE. In (S, R)-TieNE and
(S, R)-SingleNE we are given a utility profile u and
a distinguished candidate cj ∈ C; in (S, R)-TieNE we
ask whether G admits a PNE b with |W (b)| > 1 and
cj ∈ W (b), and in (S, R)-SingleNE we ask whether G
admits a PNE b with W (b) = {cj}.

Note that polynomial-time algorithms for SingleNE and
TieNE can be used to solve ExistNE in polynomial time.

Structured preference domains. We will consider elec-
tions that are single-dimensional in the following sense: vot-
ers or candidates can be ordered along a single axis so that
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voters’ preferences are consistent with this axis. Formalizing
this idea gives rise to single-peaked [5] and single-crossing
[25] profiles.

Definition 2. Let � be a strict linear order over a can-
didate set C. A preference order � over C is single-peaked
with respect to � if for every triple of distinct candidates
a, b, c ∈ C it holds that if a � b � c then b � c or b � a.
A preference profile (�1, . . . ,�n) over C is single-peaked if
there exists a strict linear order � over C such that for ev-
ery i = 1, . . . , n the preference order �i is single-peaked with
respect to �.

Definition 3. A preference profile (�1, . . . ,�n) over a
candidate set C is called single-crossing with respect to a
voter order (i1, . . . , in) if for every pair of candidates a, b ∈
C such that a �i1 b there exists a p ∈ {1, . . . , n} such that
a �ik b for all k ≤ p and b �ik a for all k > p.

There exist polynomial-time algorithms that detect
whether a given preference profile is single-peaked [2, 12,
16] or single-crossing [12, 14, 9], and, if so, find an order
of candidates/voters that witnesses this. Therefore, in what
follows, when considering single-peaked profiles over a candi-
date set {c1, . . . , cm}, we assume that they are single-peaked
with respect to the candidate order c1 � . . .� cm, and when
considering single-crossing profiles, we assume that they are
single-crossing with respect to the voter order (1, . . . , n).

Tie-consistent utilities. If a ballot profile b results in a
tie, a voter i may change her vote to some c ∈ W (b) \ {bi}
to make c the unique election winner. In what follows, we
will consider voters who make all such decisions in the same
way, i.e., always prefer the lottery over W (b) induced by
the tie-breaking rule or always prefer their top candidate in
W (b) \ {bi}. Formally, we say that a voter i is tie-loving if
for every set of candidates X, |X| ≥ 3, she weakly prefers
the uniform lottery over X to her second most preferred
candidate in X being the unique winner; we say that i is
tie-hating if for every set of candidates X, |X| ≥ 3, she
weakly prefers her second most preferred candidate in X
being the unique winner to the uniform lottery over X. A
voter is tie-consistent if she is tie-loving or tie-hating. For
one of our proofs we need a stronger notion: we say that a
voter i is strongly tie-loving if for every set of candidates X,
|X| ≥ 3, she weakly prefers any lottery over X that assigns
the probability at least 1/m to her top candidate in X over
her second most preferred candidate in X being the unique
winner.

There are many utility functions that ensure tie-
consistency. For example, if a voter’s utility for a candi-
date declines quickly with the candidate’s position in that
voter’s preference order, she is likely to be tie-loving. More
precisely, we say that a utility function u over a candidate
set C, |C| = m, is exponentially decreasing if for every pair
of candidates c, c′ ∈ C it holds that u(c) > u(c′) implies
u(c) ≥ m · u(c′). If a voter’s utility function u is exponen-
tially decreasing, then she is strongly tie-loving: indeed, if
she ranks the candidates in X as c � c′ � . . . then un-
der the lottery over X that assigns probability at least 1

m

to c her utility is at least 1
m
u(c) and if c′ wins, her utility

is u(c′) ≤ 1
m
u(c). Conversely, if a voter’s utility declines

very slowly with the candidate’s ranking, she is likely to
be tie-hating. For instance, consider a voter whose utility

function is given by u(cj) = 2m − 2j for j ∈ [m]. If her
second most preferred candidate in a set X, |X| ≥ 3, is ck,
then her utility from the uniform lottery over X is at most
2m − 1

|X| (2 + 2k + (|X| − 2)2k+1) < 2m − 2k = u(ck). How-

ever, if a voter’s utility function is linear (i.e., she assigns a
utility of m− i to her i-th most preferred candidate) she is
neither tie-loving nor tie-hating: if |C| = 4 and she ranks
the candidates as a � b � c � d, she prefers b to the uniform
lottery over {a, b, d}, but she prefers the uniform lottery over
{a, c, d} to c.

For most of our results, we assume that all voters in the
input profile are tie-consistent; note that we allow profiles
where tie-loving and tie-hating voters coexist. We need this
assumption for technical reasons; while it is clearly restric-
tive, as argued above, it is satisfied by some interesting util-
ity functions. We believe that (strongly) tie-loving voters
are particularly natural: such voters are optimistic about
the coin tosses of the tie-breaking rule, and do not want to
deny their preferred candidate a chance of winning. Impor-
tantly, all hardness results of Elkind et al. [15] hold for vot-
ers with exponentially decreasing utilities, so tie-consistency
alone does not make our computational problems easy.

3. LAZY VOTERS
Elkind et al. [15] have shown that for lazy voters and lexico-
graphic tie-breaking, all our computational problems are in
P, and that (L, R)-SingleNE is easy even for randomized
tie-breaking rules. Therefore, we focus on ExistNE and
TieNE, and on randomized tie-breaking rules.

We say that a candidate set X = {c`1 , . . . , c`k} with
2 ≤ k ≤ min(n/2,m) is balanced with respect to a utility pro-
file u if the voters can be split into k groups N1, . . . , Nk of
size n/k each so that for all j ∈ [k], i ∈ Nj and c ∈ X \{c`j}
we have c`j �i c; we say that it is strongly balanced if, more-

over, 1
k

∑
c∈X ui(c) ≥ maxc∈X\{c`j }

ui(c). Elkind et al. [15]

characterize PNE of Plurality voting for lazy voters and ran-
domized tie-breaking.

Theorem 1 (Elkind et al. [15], Theorem 2). Let
u = (u1, . . . , un) be a utility profile over C, |C| = m, and
let R ∈ {RC , RV }. Then the game G = (L, R,u) admits a
PNE if and only if one of the following conditions holds:

1. all voters rank some candidate cj ∈ C first;

2. each candidate is ranked first by at most one voter, and
∀` ∈ N : 1

n

∑
i∈N u`(ai) ≥ maxi∈N\{`} u`(ai).

3. there exists a strongly balanced set of candidates for u.

Elkind et al. [15] use this characterization to show that
(L, R)-ExistNE and (L, R)-TieNE with R ∈ {RC , RV } are
NP-hard for general preferences, even if voters’ utilities are
exponentially decreasing. In contrast, we will now show that
for tie-consistent voters these problems become easy if the
voters’ preferences are single-crossing or single-peaked.

Theorem 2. (L, R)-ExistNE and (L, R)-TieNE with
R ∈ {RC , RV } admit polynomial-time algorithms if voters
are known to be tie-consistent and the preference profile in-
duced by u is single-crossing with respect to the voter order
(1, . . . , n).

Proof. We will show that for single-crossing preferences
the conditions of Theorem 1 can be verified in polynomial
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time. Conditions (1) and (2) are straightforward to check.
Further, it is easy to check if any of the voters is tie-hating
(given that a voter is tie-consistent, we can check if she is
tie-hating by checking her utilities for at most two triples
of candidates), and if that is the case, no set is strongly
balanced. Finally, for tie-loving voters every balanced set is
strongly balanced. Hence, in the rest of the proof we will
show how to check if u admits a balanced set of a fixed size
k ∈ {2, . . . ,min(n/2,m)}. We assume that k divides n, since
otherwise the answer is obviously “no”.

We first prove that the voter partition witnessing that X
is balanced has to be such that the voters in each group form
a block in (1, . . . , n).

Lemma 1. If a voter partition N1, N2, . . . , Nk witnesses
that a subset of candidates X is balanced, then the groups of
voters can be renumbered so that for each j ∈ [k] we have
Nj = {(j − 1)k + 1, . . . , jk}.

Proof. Assume for the sake on contradiction that there
exist c, c′ ∈ X and 1 ≤ i < i′ < i′′ ≤ n such that voters i and
i′′ prefer c to all other candidates in X, but voter i′ prefers
c′ to all other candidates in X. But then the pair (c, c′)
violates the condition in Definition 3, a contradiction.

We will now use Lemma 1 to develop a graph-theoretic algo-
rithm for our problem. Our solution characterizes all size-k
winning sets for PNE ballot vectors as paths in a certain
graph.

Assume that Nj = {(j − 1)k + 1, . . . , jk} for j ∈ [k]. We
construct a directed graph Gk = (Vk, Ek) as follows. Let

Vk = {s, t} ∪ {(j, `) | j ∈ [k], c` ∈ C}.

The set Ek contains edges (s, (1, `)) and ((k, `), t) for each
c` ∈ C. Further, for each j ∈ [k − 1] and every c`, cr ∈ C
there is an edge from (j, `) to (j + 1, r) if and only if the
last voter in Nj prefers c` to cr, but the first voter in Nj+1

prefers cr to c`. This completes the description of Gk.
By construction, every s–t path in Gk is of the form

P = (s, (1, `1), . . . , (k, `k), t).

We claim that for any such path r 6= j implies `r 6= `j , i.e., P
corresponds to a subset of candidates X(P ) = {c`1 , . . . , c`k}
of size k. Moreover, for every set X ⊆ C of size k there is
a path P in Gk such that X = X(P ) if and only if there
exists a one-to-one mapping π between {N1, . . . , Nk} and X
such that for each j ∈ [k] all voters in Nj prefer π(Nj) to all
other candidates in X.

Indeed, consider a path P = (s, (1, `1), . . . , (k, `k), t) and
a mapping π given by π(Nj) = c`j for all j ∈ [k]. We will
argue that for each j ∈ [k] all voters from the set Nj prefer
c`j to c`r for all r ∈ [k] \ {j}; this also shows that `r 6= `j
whenever r 6= j. Indeed, pick an arbitrary j ∈ [k] and a
voter i ∈ Nj . Consider a candidate c`r with r < j. Since
((r, `r), (r + 1, `r+1)) is an edge of P , the last voter in Nr

prefers c`r to c`r+1 , but the first voter in Nr+1 prefers c`r+1

to c`r . Since our election is single-crossing, it follows that
voter i prefers c`r+1 to c`r . As this holds for any r < j and
i’s preference order is transitive, it follows that i prefers c`j
to c`r for all r < j. The case r > j is analyzed similarly.

Conversely, consider a setX = {c`1 , . . . , c`k} and a one-to-
one mapping π such that for each j ∈ [k] all voters from the
set Nj prefer π(Nj) to all other candidates in X. By renum-
bering the candidates in X, we can assume that π(Nj) = c`j

for all j ∈ [k]. We will argue that (s, (1, `1), . . . , (k, `k), t) is
a path in Gk. Indeed, by construction Gk contains edges
(s, (1, `1)) and ((k, `k), t). Now, consider some r ∈ [k − 1].
The voters in Nr prefer c`r to all other candidates in X.
Thus, in particular, the last voter in Nr prefers c`r to c`r+1 .
On the other hand, the voters in Nr+1 prefer c`r+1 to all
other candidates in X. Thus, in particular, the first voter in
Nr+1 prefers c`r+1 to c`r . This means that G contains the
edge ((r, `r), (r+1, `r+1)). As this holds for every r ∈ [k−1],
our claim is proved.

To find a balanced set of candidates of size k, we construct
the graph Gk as described above and check if it has a path
from s to t. We output “yes” if this is the case for at least
one value of k ∈ {2, . . . ,min(n/2,m)}. For each k, this check
can be performed in polynomial time. This completes the
proof for (L, R)-ExistNE.

For (L, R)-TieNE, we modify our algorithm as follows. It
is straightforward to check if cp can be in W (b) for some
equilibrium ballot vector b corresponding to condition (2).
To see whether cp is contained in a strongly balanced set, we
first verify that all voters are tie-loving. Then, for each k =
2, . . . ,min(n/2,m) we construct the graph Gk as described
above and, for each i ∈ [k], check whether Gk contains an s–t
path passing through (i, p). We output “yes” if the answer is
positive for some values of k and i. Clearly, this procedure
can be implemented in polynomial time.

Theorem 3. (L, R)-ExistNE and (L, R)-TieNE with
R ∈ {RC , RV } admit polynomial-time algorithms if voters
are known to be tie-consistent and the preference profile in-
duced by u is single-peaked with respect to the candidate or-
der c1 � . . .� cm.

Proof. Just as in the proof of Theorem 2, it suffices to
show how to find a balanced set of candidates of size k, for a
value of k that divides n. Fix k ≥ 2. For each s ∈ [k] \ {1},
i ∈ [m], j ∈ [m] \ [i], set A[s, i, j] = 1 if there is a set
of candidates Y = {c`1 , c`2 , . . . , c`s} with `1 < `2 < . . . <
`s such that c`s−1 = ci, c`s = cj , and each candidate in
Y \ {cj} is preferred to all other candidates in Y by exactly
n/k voters; otherwise, set A[s, i, j] = 0. Clearly, there exists
a balanced set X of size k if and only if A[k, i, j] = 1 for some
i, j ∈ [m]; indeed, if Y is a set witnessing that A[k, i, j] = 1,
we can set X = Y . We will now show how to compute the
quantities A[s, i, j] inductively.

Clearly, we have A[2, i, j] = 1 if and only if exactly n/k
voters prefer ci to cj . For the inductive step, we use the
following lemma.

Lemma 2. For any s = 2, . . . , k, any i = 1, . . . ,m and
any j = i+ 1, . . . ,m we have A[s+ 1, i, j] = 1 if and only if
there exists an r < i such that A[s, r, i] = 1 and exactly n/k
voters prefer ci to both cr and cj.

Proof. If A[s + 1, i, j] = 1, let Y = {c`1 , c`2 , . . . , c`s+1}
be a set that witnesses this, where c`s = ci, c`s+1 = cj . Let
r = `s−1. By construction exactly n/k voters prefer ci to all
candidates in Y , and, in particular, to cr and cj . Further,
the set Y \ {cj} witnesses that A[s, r, i] = 1.

Conversely, suppose that A[s, r, i] = 1 for some r such
that exactly n/k voters prefer ci to both cr and cj . Let Y ′

be a set witnessing that A[s, r, i] = 1 and set Y = Y ′ ∪{cj}.
We need to show that each candidate in Y ′ is preferred to
all candidates in Y by exactly n/k voters. Consider first
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candidate ci. There are exactly n/k voters who prefer ci
to cr and cj . Since our election is single-peaked and r <
i, each of these voters prefers ci to any candidate cp with
p < r, and hence to all candidates in Y . Now, consider a
candidate cp ∈ Y ′ \ {ci}. There are exactly n/k voters who
prefer cp to any candidate in Y ′, and, in particular, to ci.
Since our election is single-peaked and i < j, each of these
voters has to prefer ci to cj , so by transitivity each of these
voters prefers cp to any candidate in Y . This completes the
proof.

Using Lemma 2, we can efficiently compute A[`, i, j] for
all s ∈ [k] \ {1}, i ∈ [m], j ∈ [m] \ [i]. We output “yes” if
A[k, i, j] = 1 for some i, j ∈ [m]. This completes the proof
for (L, R)-ExistNE.

We now consider (L, R)-TieNE. As argued in the proof of
Theorem 2, it suffices to design an efficient algorithm that,
given a value of k ∈ {2, . . . ,min(n/2,m)}, checks whether
cp ∈ X for some set balanced X of size k. To solve this
problem, we modify our dynamic program as follows. For
each q ∈ [p], we set Aq[s, i, j] = 1 if there exists a set Y =
{c`1 , c`2 , . . . , c`s} with `1 < `2 < . . . < `s such that c`s−1 =
ci, c`s = cj , each candidate in Y \ {cj} is preferred to all
other candidates in Y by exactly n/k voters, and if q ≤ s
then `q = p; otherwise, set Aq[s, i, j] = 0. The quantities
Aq[s, i, j] can be computed similarly to A[s, i, j]. Specifically,
for s < q we have Aq[s, i, j] = A[s, i, j], for s = q we have
Aq[s, i, j] = 1 if A[s, i, j] = 1 and j = p and Aq[s, i, j] = 0
otherwise, and for s > q we have Aq[s, i, j] = 1 if Aq[s −
1, r, i] = 1 for some r < i and exactly n/k voters prefer ci to
both cr and cj , and Aq[s, i, j] = 0 otherwise. Now it is easy
to see that cp ∈ X for some balanced set X of size k if and
only if Aq[k, i, j] = 1 for some q ≤ p and some i, j ∈ [m].

4. TRUTH-BIASED VOTERS
We will now consider truth-biased voters. We first present
our results for randomized tie-breaking. Again, we build
on the work of Elkind et al. [15], who characterize PNE of
Plurality voting for this case. Their characterization are
presented below (Theorem 4 deals with ties, and Theorem 5
describes equilibria with a unique winner).

Theorem 4 (Elkind et al. [15], Theorem 4). Let
u = (u1, . . . , un) be a utility profile over C, |C| = m, and
let R ∈ {RC , RV }. The game G = (T , R,u) admits a PNE
with a winning set of size at least 2 if and only if one of the
following conditions holds:

1. each candidate is ranked first by at most one voter,
and, moreover, 1

n

∑
i∈N u`(ai) ≥ maxi∈N\{`} u`(ai)

for each ` ∈ N ;

2. there exists a strongly balanced set of candidates for u.

Further, if condition (1) holds, then G has the truthful ballot
vector a as a PNE, and if condition (2) holds for some set
X, then G has a PNE where each voter votes for her favorite
candidate in X. The game G has no other PNE.

Theorem 5 (Elkind et al. [15], Theorems 5 & 6).
Let u = (u1, . . . , un) be a utility profile over C, let
R ∈ {RC , RV }, and consider a ballot vector b with
W (b) = {cj} for some cj ∈ C. If b = a, then b is a PNE

of the game G = (T , R,u) if and only if for every i ∈ N
and every ck ∈ H(a) \ {ai} it holds that cj �i ck. On the
other hand, if b 6= a, then b is a PNE of G = (T , R,u) if
and only if all of the following conditions hold:

1. bi ∈ {ai, cj} for all i ∈ N ;

2. H(b) 6= ∅;

3. cj �i ck for all i ∈ N and all ck ∈ H(b) \ {bi};

4. for each candidate c` ∈ H ′(b) each voter i ∈ N with
bi = cj prefers cj to the lottery where a candidate is
chosen from H(b) ∪ {cj , c`} according to R.

Finally, Proposition 1 establishes a useful property of PNE
for truth-biased voters.

Proposition 1 (Elkind et al. [15], Proposition 2).
For every R ∈ {RL, RC , RV } and every utility profile u, if
a ballot vector b is a PNE of (T , R,u) then for every voter
i ∈ N either bi = ai or bi ∈W (b).

Elkind et al. [15] show that ExistNE, TieNE and Sin-
gleNE are NP-complete for truth-biased voters and ran-
domized tie-breaking, even if voters’ utilities are exponen-
tially decreasing. We will now show that these hardness re-
sults disappear when preferences are single-peaked or single-
crossing, under an appropriate assumption on the voters’ at-
titude to ties. Interestingly, for TieNE it suffices to assume
that voters are tie-consistent, whereas for SingleNE (which
is not even concerned with ties!) we need the stronger as-
sumption that all voters are (strongly) tie-loving.

Theorem 6. (T , R)-TieNE with R ∈ {RC , RV } (respec-
tively, (T , RC)-SingleNE and (T , RV )-SingleNE) admits
a polynomial-time algorithm if all voters are tie-consistent
(respectively, tie-loving and strongly tie-loving) and the
preference profile induced by u is single-peaked or single-
crossing. (T , R)-ExistNE with R ∈ {RC , RV } is in P
whenever (T , R)-SingleNE is in P.

Proof. Theorem 4 is very similar (though not identical)
to Theorem 1, so the algorithms described in the proofs of
Theorem 2 (for single-crossing preferences) and Theorem 3
(for single-peaked preferences) can be used to solve (T , R)-
TieNE for R ∈ {RC , RV } in polynomial time when voters
are tie-consistent. Thus, from now on we focus on (T , R)-
SingleNE.

We first consider single-peaked preferences. Fix R ∈
{RC , RV }. We will describe an efficient algorithm that,
given a utility profile u, a candidate cj ∈ C and a score
s, decides whether the game G = (T , R,u) has a PNE b
with W (b) = {cj} such that sc(cj ,b) = s and ai 6= bi for
some i ∈ N . To solve (T , R)-SingleNE, we check whether
the truthful profile a is a PNE (which is easy), and then run
our algorithm for cp and for all s ∈ [n].

We will first describe a few key properties of PNE for
truth-biased voters. Suppose that G = (T , R,u) has a PNE
b with W (b) = {cj} such that sc(cj ,b) = s and ai 6= bi for
some i ∈ N . Then by Theorem 5 H(b) = {c | sc(c,b) =
s− 1} 6= ∅. Further, sc(cj ,a) < s by Proposition 1.

Let X = {c | sc(c,a) ≥ s}, Y = {c | sc(c,a) = s−1}\{cj},
Z = {c | sc(c,a) = s− 2} \ {cj}.

Lemma 3. sc(c,b) ≤ s− 3 for all c ∈ X, sc(c,b) ≤ s− 3
or sc(c,b) = s−1 for all c ∈ Y , sc(c,b) ≤ s−2 for all c ∈ Z.
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Proof. In b candidate cj is the unique winner with s
points, and, by Proposition 1, all voters that vote non-
truthfully vote for him. This implies that sc(c,b) ≤ s − 2
for every c ∈ Z. sc(c,b) ≤ s − 1 for every c ∈ Y , and
sc(c,b) ≤ s − 1 for every c ∈ X. Now, if c ∈ X and
sc(c,b) = s − 1, then there exists a voter i with ai = c,
bi = cj . But then c ∈ H(b) and c �i cj , a contradiction
with condition (3) of Theorem 5. Similarly, if c ∈ X and
sc(c,b) = s − 2, then c ∈ H ′(b) and there exists a voter i
with ai = c, bi = cj . If this voter changes her vote back to
c, the outcome will be chosen from H(b)∪ {c, cj} according
to R. If R = RC , then i has to choose between the uni-
form lottery over H(b)∪{c, cj} and cj . Since i is tie-loving,
she would choose the lottery, a contradiction with b being
a PNE. Now, suppose that R = RV . In the new ballot vec-
tor candidate c would be ranked first by s − 1 voters, and
all other candidates would be ranked first by at most s− 1
voters, so n ≤ (s − 1)m, and hence under RV candidate
c is selected with probability at least 1/m. Thus, since i is
strongly tie-loving, she would choose the lottery, a contradic-
tion with b being a PNE. By the same argument, for every
c ∈ Y we have either sc(c,b) = s− 1 or sc(c,b) ≤ s− 3.

The proof of Lemma 3 uses the assumption that vot-
ers are (strongly) tie-loving. This lemma implies that
H(b) ⊆ Y , H ′(b) ⊆ Z. Now, let C1 = {c1, . . . , cj−1},
C2 = {cj+1, . . . , cm}, Y1 = Y ∩C1, Y2 = Y ∩C2, Z1 = Z∩C1,
Z2 = Z ∩ C2, H1 = H(b) ∩ C1, H2 = H(b) ∩ C2,
H ′1 = H ′(b) ∩ C1, H ′2 = H ′(b) ∩ C2.

For two candidate sets A,B ⊆ C with A ⊆ B, we say
that A forms a prefix of B if ` < r, c`, cr ∈ B and cr ∈ A
implies c` ∈ A; we say that A forms a suffix of B if ` < r,
c`, cr ∈ B and c` ∈ A implies cr ∈ A. The proof of the
following lemma again uses the assumption that voters are
(strongly) tie-loving.

Lemma 4. H1 forms a prefix of Y1, H2 forms a suffix of
Y2, H ′1 forms a prefix of Z1, and H ′2 forms a suffix of Z2.

Proof. We provide the proof for H1 and Y1; other cases
are similar (for H ′1 and Z1 and for H ′2 and Z2 we need the
assumption that voters are (strongly) tie-loving). If cr ∈ H1,
but c` 6∈ H1, there exists a voter i with ai = c`, bi = cj .
Since i’s preferences are single-peaked with respect to �,
she ranks c` first, and ` < r < j, it follows that cr �i cj ;
since cr ∈ H(b), voter i can profitably deviate to voting cr,
a contradiction.

We are now ready to describe our algorithm. Given a pro-
file u, a candidate cj , and a score s, we check that sc(cj ,a) <
s, and reject if this is not the case. We then determine the
sets Y1, Y2, Z1, and Z2. Then, for each y1 = 0, . . . , |Y1|,
y2 = 0, . . . , |Y2|, z1 = 0, . . . , |Z1|, z2 = 0, . . . , |Z2|, we per-
form the following procedure.

If y1+y2 = 0, we discard the 4-tuple (y1, y2, z1, z2). Other-
wise, we let H1 be the size-y1 prefix of Y1, let H2 be the size-
y2 suffix of Y2, let H ′1 be the size-z1 prefix of Z1, let H ′2 be
the size-z2 suffix of Z2, and set H = H1∪H2, H ′ = H ′1∪H ′2.
We then check that for each i ∈ N we have cj �i c` for every
c` ∈ H\{ai}, and reject if this is not the case. Next, for each
cr ∈ X ∪ (Y \H)∪ (Z \H ′) we try to select sc(cr,a)− s+ 3
voters who rank cr first and, for every candidate c` ∈ H ′,
prefer cj to the lottery where a candidate is chosen from
H ∪ {cj , c`} according to R. We reject if for some cr there

are not enough voters whose preferences satisfy this require-
ment. Otherwise, let s′ be the number of voters picked so
far. If s′ > s− sc(cj ,a), we reject, and if s′ < s− sc(cj ,a),
we try to pick additional s − sc(cj ,a) − s′ voters who rank
some candidate in C \ (H ∪ H ′ ∪ {cj}) first and, for every
candidate c` ∈ H ′, prefer cj to the lottery where a candidate
is chosen from H ∪ {cj , c`} according to R. If we succeed,
we terminate and report success, and otherwise we proceed
to the next 4-tuple (y1, y2, z1, z2).

There are at most m4 tuples to consider, and for each of
them our procedure can be performed in polynomial time.
Thus, the running time of our algorithm is polynomial.

It is not hard to see that if we report success, then there
exists a non-truthful PNE where cj wins with s points. In-
deed, consider the 4-tuple (y1, y2, z1, z2) on which the al-
gorithm terminates and the sets H and H ′ constructed for
these values of y1, y2, z1, and z2, and let S be the set of
voters picked in the respective iteration of our algorithm.
Set bi = cj for i ∈ S, bi = ai for i 6∈ S. By construction
we have H(b) = H 6= ∅, H ′(b) = H ′, sc(cj ,b) = s, and
bi 6= ai for some i ∈ N . Further, our procedure ensures that
all conditions of Theorem 5 are satisfied.

Conversely, suppose that there exists a non-truthful PNE
b where cj wins with s points. Let H1 = H(b) ∩ C1, H2 =
H(b) ∩ C2, H ′1 = H ′(b) ∩ C1, H ′2 = H ′(b) ∩ C2, and set
y1 = |H1|, y2 = |H2|, z1 = |H ′1|, z2 = |H ′2|. Lemmas 3 and 4
imply that, when considering the 4-tuple (y1, y2, z1, z2), our
procedure would report success.

For single-crossing preferences, we can prove an analogue
of Lemma 4 for the ordering of the candidates in A = {ai |
i ∈ N} induced by the order of the voters, which enables us
to use essentially the same algorithm as above; we omit the
details.

It remains to consider truth-biased voters and lexico-
graphic tie-breaking. For general preferences, this setting
has been studied in detail by Obraztsova et al. [26], and
subsequently Elkind et al. [15] have shown that the compu-
tational problems (T , RL)-ExistNE, (T , RL)-TieNE and
(T , RL)-SingleNE are NP-complete. Our results for this
model differ from the results in the rest of the paper: on
the one hand, for single-peaked preferences we obtain a
polynomial-time algorithm even without assuming that vot-
ers are tie-consistent, and on the other hand, we have not
been able to obtain efficient algorithms for our problems for
single-crossing preferences.

Theorem 7. (T , RL)-ExistNE, (T , RL)-TieNE and
(T , RL)-SingleNE admit polynomial-time algorithms if the
input profile is single-peaked.

Proof sketch. We only give a brief sketch of the algo-
rithm for the TieNE problem. Suppose the target winner
is candidate c`. Recall that we want to check if there exists
a PNE b such that c` ∈ W (b) and W (b) > 1. Starting
from the truthful preference profile, the algorithm will try
to construct the desirable PNE b if one exists.

First, we can assume that we seek a PNE where the winner
has at least 4 points (we can check in polynomial time if
there exists a PNE b where the score of c` is at most 3).

The algorithm will iterate through all possible values for
the winning score of c`. Let s be the score we examine
in a fixed iteration (s ≥ 4). The algorithm performs the
following steps in each iteration:
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Step 1: Building the set of potential threshold can-
didates. We construct the set S, which consists of all
potential threshold candidates with score s (the possible
candidates who could tie with c` at equilibrium). This
is essentially the s-eligible threshold set, as defined by
Obraztsova et al. [26]. We then examine each candidate
from S and check if any of them can be made to be an ac-
tual threshold candidate at the equilibrium we are looking
for. We start by considering the lowest-indexed candidate.
In each subsequent iteration we examine the candidate from
S who has the lowest index among the ones we have not
examined yet. Let t be the candidate we examine in a given
iteration over S. We call t the main threshold candidate.
Note that the tie-breaking rule should favor c` over t, since
they both have the same score.

Step 2a: Reducing the support of candidates with
high enough score. Given the score s and the main
threshold candidate t, we will now start blocking other can-
didates from being winners at the PNE b that we are try-
ing to construct and also from threatening the stability of
b. Given a candidate c, we say that we “block” c when we
modify the votes of her supporters one by one so as to vote
for c` , always starting from the votes where c` is ranked
higher in the switched vote than in any other vote with the
same top choice (ties are broken arbitrarily). This blocking
procedure continues until c has s− 2 points. We apply this
procedure to each candidate who cannot become the winner
with a unilateral deviation if he reaches s − 2 points. We
denote by T the set of all s-eligible threshold candidates who
are either beaten by t in tie-breaking or have s − 1 points.
We apply the blocking procedure as follows:

• Block all candidates who have more than s points in
the truthful ballot vector.

• Block all candidates with exactly s points that are not
included in T ∪ {t}.

• Block all candidates who have exactly s−1 points, beat
c` in tie-breaking, and are not included in T ∪ {t}.

If b′ is the profile that has been obtained after blocking
candidates as above, we refer to a vote as a modified vote in
b′ if we have already changed it from its initial value at this
point in the algorithm.

Step 2b: remaining candidates with s − 1 points.
Given b′, we denote by D(b′) the set of all candidates c in
the profile b′ such that

• sc(c,a) = s− 1;

• the tie-breaking rule favors c` over c and c over t;

• c appears above c` in at least one modified vote;

• c is not blocked in b′.

We will now block the candidates from D(b′), updating
this set at every step until it becomes empty. If after this
step the score of c` is larger than s, the algorithm reports
that there is no PNE with t being the threshold candidate.
If the score is exactly s, the algorithm returns “yes” and
outputs the current ballot vector.

Step 3: gaining additional support for c`. The chal-
lenging case is when the current score of c` is less than s.

RL RC RV

L any [15] SP/SC (tc) SP/SC (tc)

T SP SP/SC (tl) SP/SC (stl)

Table 1: Summary of our results: the cells of the

table indicate sufficient conditions for the existence

of polynomial-time algorithms for ExistNE. SP stands

for ‘single-peaked’, ‘SC’ stands for ‘single-crossing’, tc

stands for ‘tie-consistent’, tl stands for ‘tie-loving’, stl

stands for ‘strongly tie-loving’.

In this case, we need to further modify the votes in b′ in
favor of c` so as to make her a winner with score s. This is
a more subtle task, for which we need to use the fact that
preferences are single-peaked.

Towards this, we define a set of safe votes, which are the
pool of votes that we will be allowed to change in favor of c`
in the attempt to construct the desired equilibrium b. Let
B be the set of candidates that have been blocked so far. We
say that a vote is safe if its top-ranked candidate is neither
c` nor t and the intersection of the set of candidates above
c` in the vote and D(a) \ B is empty; we denote the set of
safe votes by S(b′).

The rest of the algorithm proceeds by trying to find a large
enough set of safe votes to change in favor of c`. This is done
by identifying an appropriate pair of candidates in the axis
of the single-peaked preferences, one to the left of c` and
one to the right of c`, say, cL and cR, respectively. We then
block all the candidates within the interval between cL and
cR who have not already been blocked. Doing so provides
us with a set of safe votes that we can transform in favor
of c`, if this is a “yes”-instance. We omit further details of
identifying this appropriate interval from this version.

5. CONCLUSIONS AND FUTURE WORK
We have shown that for single-peaked/single-crossing pref-
erences PNE of Plurality voting games can be found in
polynomial time for almost all scenarios considered by
Elkind et al. [15], under the assumption of tie-consistency
and its variants; our results are summarized in Table 1. The
most obvious open problems suggested by our work are re-
laxing the assumption of tie-consistency, and extending our
results to preferences that are almost single-peaked/single-
crossing, to capture a broader and more realistic range of
social choice scenarios.

From the point of view of social choice theory, single-
peaked and single-crossing preferences are considered to be
‘good’ as they ensure that the majority relation is transitive.
Our work, together with the recent work on manipulation,
control, bribery and committee selection rules (see references
in Section 1) provides a new perspective on these preference
domains, by demonstrating that they are also attractive for
purely algorithmic reasons (which appear to be unrelated to
transitivity of majority preferences).
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