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ABSTRACT
Cooperative matching games have drawn much interest
partly because of the connection with bargaining solutions in
the networking environment. However, it is not always guar-
anteed that a network under investigation gives rise to a sta-
ble bargaining outcome. To address this issue, we consider a
modification process, called stabilization, that yields a net-
work with stable outcomes, where the modification should
be as small as possible. Therefore, the problem is cast to
a combinatorial-optimization problem in a graph. Recently,
the stabilization by edge removal was shown to be NP-hard.
On the contrary, in this paper, we show that other possible
ways of stabilization, namely, edge addition, vertex removal
and vertex addition, are all polynomial-time solvable. Thus,
we obtain a complete complexity-theoretic classification of
the natural four variants of the network stabilization prob-
lem. We further study weighted variants and prove that the
variants for edge addition and vertex removal are NP-hard.

1. INTRODUCTION
Matching markets play a central role in economics and

game theory, and much work has been done. Among them,
we concentrate on cooperative games with transferable util-
ity derived from matchings in a network, called matching
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games, which are also known as stable roommate problems
with side payments (when it is modeled as a cooperative
game). The following example was given by Eriksson and
Karlander [12] to motivate such games.

In the professional tennis circuit, there are
parallel singles and doubles tournaments. Al-
though the prize money in the doubles is not as
generous as in the singles, the sums are still im-
pressive. The players are free to form pairs for
the doubles as they choose. It is not necessarily
so that the two best single players make the best
team; the strength of a pair is a more complex
function of the players abilities.

The players know each others’ strengths and
weaknesses, and can make good estimates of the
expected prize money for each possible constella-
tion. In the process of forming pairs, the players
negotiate how to distribute the expected income
within the pair. (At least, this is what rational
tennis players should do.) The objective of each
player in this process is to maximize his own ex-
pected prize money.

As a cooperative game with transferable utility, in a
matching game, we are given a network (or an undirected
graph), and each vertex of the graph corresponds to a player
of the game. A matching is a set of pairs of players such that
every player is involved in at most one pair, and a pair can
be formed only if there is an edge between two players. The
graph is often associated with edge weights so that the util-
ity of forming a pair can be incorporated. The characteristic
function value of a coalition is defined as the maximum pos-
sible total utility of a matching over the coalition.

Matching games have attracted researchers, and solution
concepts for matching games have been studied through the
algorithmic lens [13, 7, 6, 18, 17, 9, 2]. In particular, there is
a polynomial-time algorithm to test whether a given match-
ing game has a non-empty core [10], where the core is de-
fined as the set of payoff vectors such that no coalition has
a characteristic function value larger than the total payoff
allocated to the players of the coalition. Thus, a “stable”
payoff exists in a game with a non-empty core. We here note
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Table 1: The summary of our results. The mark ∗ depicts the results in this paper.
Unweighted Edge Vertex

Removal NP-hard [8] Poly-time [∗]
Addition Poly-time [∗] Poly-time [∗]

Weighted Edge Vertex
Removal NP-hard [6] NP-hard [∗]
Addition NP-hard [∗] —

that if the underlying network is bipartite, then the game is
called an assignment game, which is also well studied in the
literature [26].

On the other hand, if the core of a game is empty, then
no payoff is stable. Therefore, we often modify the game it-
self to achieve the core non-emptiness. The literature offers
options of taxation [22, 28], cost of stability [3], and least
cores [18]. In this paper, we consider a structural modifi-
cation of the underlying network, which better fits another
motivation from network bargaining as explained later. The
modification should be as small as possible so that the games
themselves do not differ much.

There are several possible ways of modification. We con-
sider the following four processes.

Edge removal: We remove a set of edges from the network.
In this case, we want to remove as few edges as possible.

Edge addition: We add a set of edges to the network. In
this case, we want to add as few edges as possible.

Vertex removal: We remove a set of vertices from the net-
work. When we remove a vertex, all the edges incident to
the vertex are removed too. In this case, we want to re-
move as few vertices as possible.

Vertex addition: We add a set of vertices to the network.
When we add a vertex, we may also add edges from the
new vertex to any of the existing vertices. In this case, we
want to add as few vertices as possible.

The literature only studied edge removal. Namely, the
problem was to find a smallest subset of edges whose re-
moval resulted in a network with non-empty core. Biró et
al. [6] proved that the problem is NP-hard for the weighted
case. Later, Bock et al. [8] proved that the problem is still
NP-hard for the unweighted case (as introduced above), and
hard to approximate within factor less than two assuming
the unique games conjecture [19]. Some approximation al-
gorithms have been proposed [8, 21], but the existence of a
constant-factor approximation algorithm is left open.

Our Results.
We study the remaining three options, namely, edge ad-

dition, vertex removal, and vertex addition. For all of them,
we prove that the problems can be solved in polynomial time
(Sections 3, 4, and 5, respectively). In this way, we obtain
the complete complexity classification of the problem vari-
ants, and reveal that edge removal studied in the literature
is the only hard case.

Those polynomial-time algorithms are obtained by a thor-
ough treatment of the so-called Gallai–Edmonds decompo-
sitions that possess useful information on the structure of
maximum matchings in a graph. We also utilize the theory
of linear programming, as explained later, to connect our
problems with fractional matchings of a graph.

One may think that in vertex addition, we may add a lot
of edges at the same time even though we add only one ver-
tex. However, as it turns out, our algorithm finds a solution

which adds as few edges as possible among all the possible
solutions for the vertex addition variant.

We also consider a weighted variant. In the edge addition
variant, each possible edge is associated with a non-negative
real number. In the vertex removal variant, each vertex is
associated with a non-negative real number. Those num-
bers represent costs of addition or removal. That models
a more realistic situation where each possible modification
operation is not equivalently manageable. With this setup,
we prove that for the edge addition and the vertex removal,
the problem is NP-hard (Section 6).

The results are summarized in Table 1.
Simultaneously with us, Ahmadian, Sanita, and Hossein-

zadeh [1] consider the vertex removal variant, and prove
its polynomial-time solvability and the NP-hardness of the
weighted variant. Furthermore, they propose approximation
algorithms for the weighted variant.

Relation to Network Bargaining.
Bateni et al. [4] related the core non-emptiness of match-

ing games with a desirable property in network bargaining
by Kleinberg and Tardos [20]. We briefly look at the rela-
tionship here.

In their seminal paper, Kleinberg and Tardos [20] gave a
theoretical and mathematical foundation for network bar-
gaining. Their model assumes that each vertex of a network
corresponds to a player, each edge corresponds to a possible
unit-value deal between two players, and each player can be
engaged in at most one deal with one of its neighbors in
the network. Then, outcome consists of a matching of the
network and a value obtained by each player. If a player
is matched with another player, then a unit payoff is split
to those two players as their values, and if a player is not
matched to any other player, then the value of the player
is zero. The classical two-player situation studied by Nash
[24] corresponds to the two-vertex network with one edge.

Given an outcome, we may consider a deviation of a player
from the current matching. Namely, a player A has an incen-
tive to be matched with another player B if B is a neighbor
of A in the network and the value of A is smaller than the
value that can be obtained by a deal with B while the value
of B stays the same. If no player has such an incentive, then
the outcome is called stable. On the other hand, the out-
come is called balanced if two players joined by an edge of
the matching receive the values as Nash’s bargaining solu-
tion. A main result of Kleinberg and Tardos [20] stated that
a stable outcome exists if and only if a balanced outcome
exists. Bateni et al. [4] proved that this is also equivalent to
the property that the matching game on the same network
has a non-empty core.

With this equivalence, following Bock et al. [8], we call the
modification process to turn a given network into one with
non-empty core stabilization, and if a graph yields a match-
ing game with non-empty core, we call the graph stable.

We here emphasize that our structural modification is
better suited than modification processes when we consider
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least cores or cost of stability. The modification for the
latter two does not maintain the structure of characteristic
functions as they arise from matching games, and thus does
not give any implication to network bargaining.

Relation to Linear Programming.
It is known that theory of linear programming is a key to

study the core non-emptiness of cooperative games arising
from graphs and combinatorics. For a matching game, this
translates to the relation of the matching number and the
fractional matching number of a graph.

A matching of a graph can be seen as an assignment of
zero or one to each edge of the graph so that for every vertex
of the graph, the sum of the assigned values to the edges in-
cident to that vertex is at most one. A fractional matching
of a graph is defined as an assignment of non-negative real
number to each edge of the graph so that for every vertex
of the graph, the sum of the assigned values to the edges
incident to that vertex is at most one. The matching num-
ber is defined as the maximum size of a matching in the
graph, which can be seen as the maximum sum of the val-
ues assigned to the edges of the graph when the assignment
corresponds to a matching. Similarly, the fractional match-
ing number is defined as the maximum sum of the values
assigned to the edges of the graph in a fractional matching.

The computation of the matching number can naturally
be formulated as a 0/1 integer linear program, while the
computation of the fractional matching number can be for-
mulated as a linear program without integrality constraint.

By definition, the fractional matching number is always
at least as large as the matching number. A result by Deng
et al. [10] stated that those two are equal if and only if the
matching game has a non-empty core. Moreover, if the core
is non-empty, then it is exactly the set of optimal solutions
to the dual of the linear program formulating the computa-
tion of the fractional matching number. The special case of
bipartite graphs (i.e., assignment game) was already proved
by Shapley and Shubik [26].

In the terminology of optimization, the difference of the
fractional matching number and the matching number is
called integrality gap, which is relevant in developing op-
timization algorithms, both exact and approximate. Our
results are concerned with smallest modifications to input
graphs such that the integrality gaps will be zero, and we
use this view in designing our algorithms.

2. PRELIMINARIES

Matching Number and Stable Graphs.
In this paper, we are given a simple undirected graph G

with a vertex set V and an edge set E, i.e., G = (V, E).
We denote by {u, v} the edge between a pair of vertices
u, v in V . For each subset X of V , we define E(X) :=
{{u, v} ∈ E | u, v ∈ X}. For each subset X of V , the
subgraph of G induced by X is denoted by G[X], i.e.,
G[X] = (X, E(X)). For each vertex v in V , we denote by
δ(v) the set of edges incident to v. For each subset X of V ,
we define δ(X) :=

∪
v∈X

δ(v) \ E(X), i.e., δ(X) represents
the set of edges leaving from X. For each subset X of V ,
we define the neighborhood N(X) as the set of vertices v in
V \ X such that there is a vertex u in X with {u, v} ∈ E.
We denote by

(
V
2

)
the family of subsets X of V such that

|X| = 2. For each subset F of
(

V
2

)
\ E, we denote by G + F

the graph obtained from G by adding edges in F to G, i.e.,
G + F = (V, E ∪ F ). For each subset X of V , we denote
by G − X the graph obtained from G by removing vertices
in X from G, i.e., G − X = (V \ X, E \

∪
v∈X

δ(v)). For
each edge e in

(
V
2

)
\ E (resp., each vertex v in V ), we define

G + e := G + {e} (resp., G − v := G − {v}). A subset M of
E is called a matching in G, if no two edges in M share a
common vertex incident to them. The matching number of
G, denoted by ν(G), is the maximum size of a matching in
G. A matching in G is perfect if |M | = |V |/2.

Finding a maximum-size matching in G can be formulated
by the following integer programming problem IP(G):

ν(G) = max

∑
e∈E

x(e)

∣∣∣∣∣∣
∑

e∈δ(v)

x(e) ≤ 1 (v ∈ V ),

x ∈ {0, 1}E

 .

Consider the linear programming relaxation of IP(G), de-
noted by LP(G):

νf (G) := max

∑
e∈E

x(e)

∣∣∣∣∣∣
∑

e∈δ(v)

x(e) ≤ 1 (v ∈ V ),

x ∈ RE
+

 ,

where R+ is the set of non-negative real numbers. The opti-
mal value νf (G) of LP(G) is called the fractional matching
number of G. Then νf (G) ≥ ν(G) holds. The dual problem
DP(G) of LP(G) is

τf (G) := min

{∑
v∈V

y(v)

∣∣∣∣∣ y(u) + y(v) ≥ 1 ({u, v} ∈ E),
y ∈ RV

+

}
.

By the strong duality theorem in linear programming,
νf (G) = τf (G). Remark that the problem DP(G) is the
linear programming relaxation of the problem of finding a
minimum-size vertex cover in G, where a vertex cover is a
subset X of V such that every edge of G has an incident
vertex in X. The minimum size of a vertex cover is denoted
by τ(G).

Recall that a graph G is called stable if the network bar-
gaining on G has a stable outcome, equivalently, the match-
ing game on G has a non-empty core. As mentioned before,
the stability of a graph G can be characterized as follows.

Proposition 1 ([10]). A graph G is stable if and only
if νf (G) = ν(G).

Therefore, stabilization of a graph G can be seen as the
problem of modifying G so that the resulting graph G′ sat-
isfies νf (G′) = ν(G′). For example, in the edge addition
variant, we aim to find a minimum-size subset F of

(
V
2

)
\ E

such that νf (G + F ) = ν(G + F ).

Gallai–Edmonds Decomposition.
For each subset M of E, we denote by ∂M the set of end

vertices of M , i.e., ∂M =
∪

e∈M
e. We say that a vertex v

is covered by M if v ∈ ∂M , and exposed by M if v ̸∈ ∂M . A
vertex v in V is said to be essential if v is covered by every
maximum-size matching in G, and inessential otherwise, i.e.,
if some maximum-size matching in G does not cover v.

Definition 1. (Gallai–Edmonds Decomposition [11, 14,
15]) Define a partition (B, A, D) of V as follows:
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• B is the set of the inessential vertices;

• A = N(B), i.e., A is the neighborhood of B;

• D = V \ (B ∪ A).

The partition (B, A, D) is called the Gallai–Edmonds de-
composition of G.

It is known that the Gallai–Edmonds decomposition
(B, A, D) of G uniquely exists and can be found in poly-
nomial time (see e.g., [23]). By definition, every vertex in
A ∪ D is covered by a maximum-size matching M in G, and
vertices exposed by M are contained only in B.

Furthermore, the well-known Tutte–Berge formula can be
written in terms of the Gallai–Edmonds decomposition.

Proposition 2. (Tutte–Berge Formula [5, 27]) We have

ν(G) = 1
2 (|V | − comp(G[B]) + |A|) ,

where comp(G[B]) is the number of connected components
in G[B].

Bock et al. [8] characterize the difference νf (G) − ν(G)
using the Gallai–Edmonds decomposition to bound the size
of an edge-removal stabilizer from below. In the rest of this
section, we provide explicit optimal solutions for LP(G) and
DP(G) using the Gallai–Edmonds decomposition (Proposi-
tion 4). This will be used to obtain a minimum-size stabilizer
for the other variants. Note that the case of LP(G) was given
in [25]. For the purpose, we first summarize fundamental
properties of the Gallai–Edmonds decomposition (see e.g.,
[23]):

(a) Each connected component H in G[B] is factor-critical,
where a graph G′ is factor-critical if there is a perfect
matching in G′ − v for every vertex v of G′. Thus H
has odd number of vertices.

(b) For a maximum-size matching M , each connected com-
ponent H in G[B] satisfies either (i) H has one vertex
exposed by M and no edge in M leaving from H, or
(ii) H has no vertex exposed by M and one edge in M
leaving from H.

Let B1 be the vertex set of singleton components in G[B].
Let B3 = B \ B1 be the vertex set of the other non-trivial
connected components (i.e., connected components with size
at least three) in G[B]. In this paper, we sometimes call
the partition (B1, B3, A, D) the Gallai–Edmonds decompo-
sition.

For each maximum-size matching M in G, an M-
alternating cycle C is a cycle such that edges of M appear
alternately in C (except for one vertex if the length is odd).
An M-alternating path is defined similarly. From the struc-
ture of the Gallai–Edmonds decomposition, we have the fol-
lowing lemma.

Lemma 1. If a connected component H in G[B3] has a
vertex v exposed by M , then H contains an M-alternating
cycle of odd length through v.

Let G[B1, A] be the bipartite graph induced by edges be-
tween B1 and A. A maximum-size matching in G is said
to be B1-optimal, if |∂M ∩ B1| = ν(G[B1, A]), i.e., the
number of edges of M connected to B1 is maximized. By

an augmenting-type algorithm for finding a maximum-size
matching, we can find a B1-optimal matching in polynomial
time.

Proposition 3. A B1-optimal matching in G always ex-
ists, and can be found in polynomial time.

With help of a B1-optimal matching, we can give optimal
solutions of LP(G) and DP(G).

Proposition 4. Assume that M is a B1-optimal match-
ing in G, and v1, v2, . . . , vp are the vertices exposed by M in
G[B3].

1. Let C1, C2, . . . , Cp be pairwise vertex-disjoint odd M-
alternating cycles such that Ci has vi for every i =
1, 2, . . . , p. Then, the vector x in RE

+ defined by

x(e) =


1 if e ∈ M \

∪p

i=1 ECi,

1/2 if e ∈
∪p

i=1 ECi,

0 otherwise

is an optimal solution for LP(G), where ECi is the edge
set of Ci for each i = 1, 2, . . . , p.

2. Let Y be a minimum vertex cover in G[B1, A]. Then,
the vector y in RV

+ defined by

y(v) =


1 if v ∈ A ∩ Y ,

0 if v ∈ B1 \ Y ,

1/2 otherwise

is an optimal solution for DP(G).
3. The optimal values of LP(G) and DP(G) are equal to

1
2

(
|V \ B1| + ν(G[B1, A])

)
. (1)

Proof. We will show that x and y defined in the state-
ments are feasible solutions for LP(G) and DP(G), respec-
tively, with the same objective value (1).

It is clear that x is feasible for LP(G) since
∑

e∈δ(v) x(e) ∈
{0, 1} for every vertex v in V . Since

∑
e∈δ(v) x(e) = 0 if and

only if v ∈ B1 \ ∂M , the objective value of x is∑
e∈E

x(e) = 1
2

∑
v∈V

∑
e∈δ(v)

x(e)

= 1
2

(
|D| + |A| + |B3| + |B1 ∩ ∂M |

)
.

Thus, since |V | = |D| + |A| + |B3| + |B1| and |B1 ∩ ∂M | =
ν(G[B1, A]), it is equal to (1).

On the other hand, the vector y is feasible for DP(G).
Indeed, if an edge has an end vertex v ∈ B1\Y with y(v) = 0,
the other end vertex u is in A ∩ Y , since Y is a vertex cover
in G[B1, A], and hence y(u) = 1. Thus, every edge {u, v}
satisfies y(u) + y(v) ≥ 1. The objective value of y is∑

v∈V

y(v) = |D|
2 + |A \ Y |

2 + |A ∩ Y | + |B1 ∩ Y |
2 + |B3|

2

= 1
2

(
|D| + |A| + ν(G[B1, A]) + |B3|

)
,

where the last equality holds by |A ∩ Y | + |B1 ∩ Y | = |Y | =
ν(G[B1, A]). Hence the objective value is equal to (1).

Thus they are equal to (1), which means that they are
optimal by the duality theorem of linear programming.
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Denote the difference between νf (G) and ν(G) by

d(G) := νf (G) − ν(G).

Combining Propositions 2 and 4, we can express d(G) by
the Gallai–Edmonds decomposition.

Proposition 5. It holds that

d(G) = 1
2

(
comp(G[B3]) − |A| + ν(G[B1, A])

)
. (2)

Bock et al. [8] showed that 2d(G) is equal to the num-
ber of components having exposed vertices in G[B3] for
a B1-optimal matching. By Proposition 5, it is equal to
comp(G[B3]) − |A| + ν(G[B1, A]).

3. EDGE ADDITION
A subset F of

(
V
2

)
\E is called an edge-addition stabilizer,

if ν(G + F ) = νf (G + F ). In this section, we discuss the
problem of deciding whether there exists an edge-addition
stabilizer, and find a minimum-size edge-addition stabilizer
if one exists.

We first describe a necessary condition that G has an edge-
addition stabilizer.

Theorem 1. If |V | is odd and ν(G[B1, A]) = |B1|, then
G has no edge-addition stabilizer.

Proof. Since ν(G[B1, A]) = |B1|, the optimal value (1)
in Proposition 4 is equal to n/2, where n = |V |. Hence, for
every subset F of

(
V
2

)
\ E,

νf (G + F ) ≥ νf (G) = n

2 .

On the other hand, since n is odd,

ν(G + F ) ≤
⌊

n

2

⌋
= n − 1

2

for every subset F of
(

V
2

)
\ E. Thus, G does not have an

edge-addition stabilizer.

We next show that, if G does not satisfy the conditions
in Theorem 1, then the minimum size of an edge-addition
stabilizer is determined by d(G).

Theorem 2. If |V | is even or ν(G[B1, A]) < |B1|, then
G has an edge-addition stabilizer, and the minimum size of
an edge-addition stabilizer is equal to ⌈d(G)⌉.

For the proof, we first consider adding one edge to a given
graph in the following lemma, and the proof of Theorem 2
follows.

Lemma 2. For every edge e in
(

V
2

)
\ E,

d(G) − d(G + e) ≤ 1.

Proof. It holds that

ν(G + e) ≤ ν(G) + 1, (3)

since otherwise a maximum-size matching in G + e would
yield a matching of size at least ν(G + e) − 1 > ν(G) in G.
On the other hand, since a feasible solution x of LP(G) is
feasible for LP(G + e) by setting x(e) = 0,

νf (G + e) ≥ νf (G). (4)

Therefore, it follows from (3) and (4) that

d(G) − d(G + e)
= (νf (G) − νf (G + e)) − (ν(G) − ν(G + e)) ≤ 1.

This completes the proof.

Proof of Theorem 2. We first prove that it is neces-
sary to add at least ⌈d(G)⌉ edges. Let F = {e1, e2, . . . , ep}
be an edge-addition stabilizer of size p. Furthermore, define
Fi := {e1, e2, . . . , ei} for each i = 1, 2, . . . , p, and F0 := ∅.
Then, by applying Lemma 2 repeatedly,

d(G) − d(G + F ) =
p∑

i=1

(d(G + Fi−1) − d(G + Fi)) ≤ p.

Since d(G + F ) = 0 and p is an integer, we see ⌈d(G)⌉ ≤ p.
Thus, the minimum size of an edge-addition stabilizer is at
least ⌈d(G)⌉.

Let M be a B1-optimal matching in G. Then, G[B3] has
2d(G) vertices exposed by M (see the end of Section 2).
We will find an edge-addition stabilizer of size ⌈d(G)⌉ by
considering the following two cases.

First suppose that 2d(G) is even. We make d(G) disjoint
pairs of exposed vertices in G[B3] arbitrarily, and denote the
set of the pairs by F ∗. The size of F ∗ is d(G). Since M ∪F ∗

is a matching of size ν(G) + |F ∗| in G + F ∗, we observe that

ν(G + F ∗) ≥ ν(G) + |F ∗|. (5)

Define a half-integral optimal dual solution y of DP(G) as
in Proposition 4. Since the end vertices of each pair in F ∗

have value 1/2, the vector y is feasible also for DP(G + F ∗).
Thus, τf (G + F ∗) ≤ τf (G), and by the duality theorem in
linear programming, we have

νf (G + F ∗) ≤ νf (G). (6)

Therefore, it follows from (5), (6), and |F ∗| = d(G) that

d(G + F ∗) = νf (G + F ∗) − ν(G + F ∗)
≤ νf (G) − (ν(G) + |F ∗|) = 0.

Thus, F ∗ is an edge-addition stabilizer.
Next suppose that 2d(G) is odd. In this case,

ν(G[B1, A]) < |B1|,

since otherwise |V | has to be even by the assumption but
|V | = 2|M |+2d(G), which is a contradiction. We make d(G)
arbitrary pairs using the exposed vertices in G[B3] and one
exposed vertex s in B1, and the set of the pairs is denoted
by F ∗. The size of F ∗ is equal to (2d(G) + 1)/2 = ⌈d(G)⌉.
Similarly to the first case, since M ∪ F ∗ is a matching in
G + F ∗, we observe that

ν(G + F ∗) ≥ ν(G) + |F ∗|. (7)

Moreover, define a half-integral optimal dual solution y of
DP(G) as in Proposition 4. By increasing the value y(s) by
1/2, the vector becomes feasible for DP(G + F ∗). Hence

νf (G + F ∗) = τf (G + F ∗)
≤ τf (G) + 1/2 = νf (G) + 1/2.

(8)

Therefore, (7) and (8) imply that

d(G + F ∗) = νf (G + F ∗) − ν(G + F ∗)
≤ (νf (G) + 1/2) − (ν(G) + |F ∗|) = 0,
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since |F ∗| = d(G) + 1/2. Thus, F ∗ is an edge-addition sta-
bilizer.

Therefore, F ∗ is an edge-addition stabilizer of size ⌈d(G)⌉
in either case, which is minimum.

Theorems 1 and 2 lead to a polynomial-time algorithm for
finding a minimum-size edge-addition stabilizer.

Algorithm for finding an edge-addition stabilizer
Step 0. Find the Gallai–Edmonds decomposition

(B1, B3, A, D) of G.
Step 1. Find a maximum-size matching M∗ in G[B1, A]. If

|V | is odd and ν(G[B1, A]) = |B1|, then return that “G
has no edge-addition stabilizer.” Otherwise, go to Step 2.

Step 2. Find a B1-optimal matching M .
Step 3. Return ⌈d(G)⌉ pairs of vertices from the exposed

vertices in B3 and one exposed vertex in B1 (if 2d(G) is
odd).

The Gallai–Edmonds decomposition and a maximum-size
matching M∗ in G[B1, A] can be found in polynomial time.
Moreover, by Proposition 3, a B1-optimal matching M in
Step 2 can be obtained in polynomial time. Since Step 3 is
easy, we obtain the following theorem.

Theorem 3. We can decide whether an edge-addition
stabilizer exists, and find a minimum-size edge-addition sta-
bilizer if one exists, in polynomial time.

4. VERTEX REMOVAL
A subset X of V is called a vertex-removal stabilizer, if

ν(G − X) = νf (G − X). Note that since ν(G − V ) = 0 =
νf (G − V ), a vertex-removal stabilizer always exists. In this
section, we discuss the problem of finding a minimum-size
vertex-removal stabilizer.

The main theorem in this section is the following.

Theorem 4. The minimum size of a vertex-removal sta-
bilizer is equal to 2d(G).

To prove Theorem 4, we first consider removing one vertex
from a graph. Let (B1, B3, A, D) be the Gallai–Edmonds
decomposition of G, and B = B1 ∪ B3.

Lemma 3. For every vertex v in V ,

d(G) − d(G − v) ≤
{

0 if v ∈ V \ B,

1/2 if v ∈ B,

Proof. The case when v ∈ V \ B is not difficult to see
by the definition of the Gallai–Edmonds decomposition. We
here prove only when v ∈ B.

Since v is inessential, it follows that

ν(G − v) = ν(G). (9)

We will show that

νf (G − v) ≥ νf (G) − 1
2 . (10)

If (10) is true, together with (9), we have d(G) − d(G −
v) = (νf (G) − νf (G − v)) − (ν(G) − ν(G − v)) ≤ 1/2, which
completes the proof.

It remains to show (10). Let M be a B1-optimal matching
in G. Define a half-integral optimal solution x of LP(G) as

in Proposition 4. Note that
∑

e∈δ(u) x(e) ∈ {0, 1} for every
u ∈ V . If

∑
e∈δ(v) x(e) = 0, then restricting x to E \ δ(v)

implies a feasible solution of LP(G − v), whose objective
value is equal to νf (G). Hence νf (G − v) ≥ νf (G), and thus
we can assume that

∑
e∈δ(v) x(e) = 1. Then v has either

two incident edges e, f with x(e) = x(f) = 1/2 or exactly
one edge e in M such that x(e) = 1. We shall consider both
cases separately.

First assume that v has two incident edges e, f with x(e) =
x(f) = 1/2. By the structure of x, the vertex v is contained
in some odd M -alternating cycle C such that x(e) = 1/2 for
every edge e in EC, where EC is the edge set of C. The
cycle C has a matching MC of size (|EC|−1)/2 that exposes
v. Define a vector x′ in RE

+ by

x′(e) =


1 if e ∈ EC ∩ MC ,

0 if e ∈ EC \ MC ,

x(e) otherwise.

Then, x′ is feasible for LP(G), and
∑

e∈E
x′(e) = νf (G) −

1/2. Since restricting x′ to E\δ(v) implies a feasible solution
of LP(G − v) and

∑
e∈δ(v) x′(e) = 0, the objective value

with respect to LP(G − v) is νf (G) − 1/2. Thus, we have
νf (G − v) ≥ νf (G) − 1/2.

The remaining case is when v has exactly one edge e in M
such that x(e) = 1. Since v ∈ B, there is a maximum-size
matching Mv that exposes v in G. The symmetric difference
M∆Mv has an M -alternating path P of even length from v
to a vertex w ̸∈ ∂M . Let C1, . . . , Cp be the M -alternating
cycles as defined in Proposition 4. Recall that x(e) = 1/2 if
and only if e is contained in some Ci.

First suppose that P intersects with no Ci’s. Then x(e) ∈
{0, 1} for each e ∈ EP , where EP is the edge set of P .
Define a vector x′ in RE

+ by

x′(e) =


0 if e ∈ EP ∩ M,

1 if e ∈ EP \ M,

x(e) otherwise.

(11)

Then, x′ is a feasible solution for LP(G). Moreover, since
P is of even length,

∑
e∈E

x′(e) =
∑

e∈E
x(e) = νf (G).

Since restricting x′ to E \ δ(v) implies a feasible solution of
LP(G − v) and

∑
e∈δ(v) x′(e) = 0, the objective value with

respect to LP(G − v) is νf (G). Thus, we have νf (G − v) ≥
νf (G).

Next suppose that P intersects with some of Ci’s. We
may assume that P intersects with exactly one of Ci’s, say
C. Indeed, suppose that we traverse P from v and consider
when P intersects with some Ci for the first time. Then
the union of Ci and the subpath P from v to Ci contains
an M -alternating path of even length from v to the exposed
vertex in Ci, and we may replace P with the path. Define
a vector x′ in RE

+ by

x′(e) =


0 if e ∈ (EP ∩ M) ∪ (EC′ \ M),
1 if e ∈ (EP \ M) ∪ (EC′ ∩ M),
x(e) otherwise,

(12)

where EC is the edge set in C and EC′ = EC \ EP .
Then, x′ is a feasible solution for LP(G). Moreover, since∑

e∈EP ∪EC
x′(e) =

∑
e∈EP ∪EC

x(e) − 1/2, it holds that∑
e∈E

x′(e) = νf (G) − 1/2. Since restricting x′ to E \ δ(v)
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implies a feasible solution of LP(G−v) and
∑

e∈δ(v) x′(e) =
0, the objective value with respect to LP(G − v) is νf (G) −
1/2. Thus, we have νf (G − v) ≥ νf (G) − 1/2. Therefore, in
either case, it holds that νf (G − v) ≥ νf (G) − 1/2.

Proof of Theorem 4. We first claim that it is neces-
sary to remove at least d(G) vertices. Assume that we are
given a vertex-removal stabilizer X = {x1, x2, . . . , xp} of
size p. Define Xi := {x1, x2, . . . , xi} for each i = 1, 2, . . . , p
and X0 := ∅. Then, by Lemma 3, d(G) − d(G − X) =∑p

i=1 (d(G − Xi−1) − d(G − Xi)) ≤ p/2. Since d(G − X) =
0, we have p ≥ 2d(G).

Let M be a B1-optimal matching in G. Then G[B3] has
2d(G) vertices exposed by M , the set of which is denoted by
X∗. The size of X∗ is 2d(G), and ν(G − X∗) = ν(G). We
will claim that X∗ is a vertex-removal stabilizer.

By Proposition 4, DP(G) has a half-integral dual optimal
solution y satisfying that y(v) = 1/2 for every vertex v in
B3. The vector obtained by restricting y to V \ X∗ is a
feasible solution for DP(G − X∗), whose objective value is

τf (G) − 1
2 |X∗| = νf (G) − 1

2 |X∗| = νf (G) − d(G).

Hence, we have τf (G − X∗) ≤ νf (G) − d(G). Since νf (G −
X∗) = τf (G−X∗), it holds that d(G−X∗) = νf (G−X∗)−
ν(G − X∗) ≤ (νf (G) − d(G)) − ν(G) = 0. This means that
X∗ is a vertex-removal stabilizer of size d(G), and thus it is
minimum.

Theorem 4 naturally leads to a polynomial-time algorithm
for finding a minimum-size vertex-removal stabilizer. The
algorithm finds a B1-optimal matching M in G, and return
the set of vertices in G[B3] exposed by M . By Proposition
3, a B1-optimal matching in G can be found in polynomial
time. Therefore, we have the following theorem.

Theorem 5. We can find a minimum-size vertex-
removal stabilizer in polynomial time.

5. VERTEX ADDITION
For each set X of vertices, we denote by G + X the graph

obtained from G by adding X with some edges from X. Note
that G + X is not uniquely determined, but the arguments
below hold for any graph obtained by the vertex addition.
When X = {v} we denote G + v for simplicity. A vertex-
addition stabilizer is a set X of vertices such that the graph
obtained by adding X with some edges from X is stable.

Similarly to Sections 3 and 4, we have the following lemma
for adding one vertex. We omit the proof due to space lim-
itation.

Lemma 4. For every vertex v, d(G) − d(G + v) ≤ 1/2.

With Lemma 4, we obtain a proposition similar to The-
orem 4, which shows that the size of a vertex-addition sta-
bilizer is at least 2d(G). Furthermore, a vertex-addition
stabilizer of size 2d(G) can be found as follows: Look at the
set X of 2d(G) vertices in G[B3] exposed by a B1-optimal
matching in G as in Theorem 4, and we add 2d(G) new
vertices and connect each to a different vertex of X with a
single edge. Then the resulting graph turns out to be stable.

Theorem 6. The minimum size of a vertex-addition sta-
bilizer is equal to 2d(G). Moreover, we can find a minimum-
size vertex-addition stabilizer in polynomial time.

It should be noted that our algorithm adds 2d(G) edges,
which is optimal even when we aim to minimize the total
number of appended vertices and edges.

6. HARDNESS FOR WEIGHTED CASES

6.1 Edge addition
In this section we consider the weighted variant of finding

an edge-addition stabilizer. Precisely speaking, in this prob-
lem, we are given a weight function w :

(
V
2

)
\E → R+, and we

aim to find a minimum-weight edge-addition stabilizer, i.e.,
an edge-addition stabilizer F minimizing

∑
e∈F

w(e) among
all edge-addition stabilizers.

Theorem 7. The problem of finding a minimum-weight
edge-addition stabilizer is NP-hard.

Proof. We reduce an NP-hard problem called EXACT
COVER BY 3-SETS (X3C for short) to the problem of find-
ing a minimum-weight edge-addition stabilizer. The prob-
lem X3C is defined as follows (see [16]).

Input. A set X with |X| = 3n and a collection C of 3-
element subsets of X.

Goal. Determine whether there is a subcollection C′ ⊆ C of
size n such that every element of X occurs in exactly one
member of C′

Suppose we are given an instance of the X3C, i.e., we are
given a set X and a collection C of 3-element subsets of X.
In what follows, we construct an instance of the problem
of finding a minimum-weight edge-addition stabilizer that is
equivalent to the original instance of the X3C. For each ele-
ment x in X, we introduce three vertices v(x, 0), v(x, 1), and
v(x, 2) and three edges between each pair of them. For each
member C = {x1, x2, x3} in C, we introduce nine vertices
v(C, xi) for each i = 1, 2, 3 and v(C, xi, xj) for each pair of
i, j = 1, 2, 3 with i ̸= j and six edges between v(C, xi) and
v(C, xi, xj) for each i, j = 1, 2, 3 with i ̸= j. The obtained
graph is denoted by G = (V, E). We define a weight function
w :

(
V
2

)
\ E → R+ as follows. For each member C in C and

each element x in C, set w(v(x, 0), v(C, x)) = 3n + 1(=: L).
For each member C in C and each pair of elements x, y in C,
set w(v(C, x, y), v(C, y, x)) = 1. We define the weight of the
other pairs as a sufficiently large number (e.g., nL+3n+1).

We now show that there is an edge-addition stabilizer F
such that

∑
e∈F

w(e) ≤ nL + 3n if and only if the original
instance of the X3C has a solution.

First, assume that the original instance of the X3C has a
solution C′ ⊆ C. Then,

F := {{v(x, 0), v(C, x)} | x ∈ C ∈ C′}
∪ {{v(C, x, y), v(C, y, x)} | x, y ∈ C ∈ C′}

satisfies that ν(G + F ) = νf (G + F ) and
∑

e∈F
w(e) =

nL + 3n, which shows the sufficiency of the claim.
Next, to show the necessity, assume that there is an edge-

addition stabilizer F such that
∑

e∈F
w(e) ≤ nL + 3n. For

every element x in X, since v(x, 0), v(x, 1), and v(x, 2) form
a triangle in G, which is not stable, at least one edge in
F is incident to v(x, 0). Furthermore, since

∑
e∈F

w(e) ≤
nL + 3n, for every element x in X, there is a unique mem-
ber C = {x, y, z} in C such that {v(x, 0), v(C, x)} ∈ F .
Consider the connected component of G + F that con-
tains v(x, 0), v(x, 1), v(x, 2), v(C, x), v(C, x, y) and v(C, x, z),
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where C = {x, y, z} ∈ C and {v(x, 0), v(C, x)} ∈ F . Since
this component has to be stable, we can easily check that F
contains all of the edges in

EC := {{v(C, x, y), v(C, y, x)},

{v(C, x, z), v(C, z, x)}, {v(C, y, z), v(C, z, y)}}.

This shows that C′ := {C ∈ C | EC ⊆ F } covers X in
the original instance of the X3C. On the other hand, since∑

e∈F
w(e) ≤ nL + 3n and F contains n edges of weight L,

we have |C′| = |{C ∈ C | EC ⊆ F }| ≤ 3n/3 = n. Thus, each
element of X occurs in exactly one member of C′, which
means that C′ is a solution of the the original instance of
the X3C.

Therefore, we can reduce the X3C to the problem of find-
ing a minimum-weight edge-addition stabilizer, which com-
pletes the proof.

6.2 Vertex removal
In this section we consider the weighted variant of finding

a vertex-removal stabilizer. Precisely speaking, in this prob-
lem, we are given a weight function w : V → R+, and we aim
to find a minimum-weight vertex-removal stabilizer, i.e., a
vertex-removal stabilizer X minimizing

∑
v∈X

w(v) among
all vertex-removal stabilizers. We show that the problem of
finding a minimum-weight vertex-removal stabilizer is also
NP-hard.

Theorem 8. The problem of finding a minimum-weight
vertex-removal stabilizer is NP-hard.

We reduce the clique problem (CLIQUE), which is defined
as follows.

Input. A graph G′ and a positive integer p.
Goal. Determine whether there exists a set F of p(p − 1)/2

edges of G′ such that |∂F | is at most p.

CLIQUE is known to be NP-hard [16]. A set of p vertices
covered by p(p − 1)/2 edges is called a clique of size p.

For a bipartite graph H = (U1, U2; F ) with |U1| ≥ |U2|, a
U2-perfect matching is a matching of size |U2|. That is, it is
a matching covering all the vertices of U2.

Lemma 5. The following problem is NP-complete.

Input. A bipartite graph H = (U1, U2; F ) that has a U2-
perfect matching, and two positive integers p, q.

Goal. Determine whether there exists a set X ⊆ U1 of size
at most p such that ν(G − X) ≤ |U2| − q.

Proof. Suppose that we are given an instance of
CLIQUE, a graph G′ = (V ′, E′) and a positive integer p. We
construct a bipartite graph H as follows. Define U ′

1 := V ′

and U2 := E′, and there is an edge between a vertex v in
U ′

1 and a vertex e in U2 if and only if v is an end vertex of e
in G′ (i.e., v ∈ e). Furthermore, defining Se := {s1

e, . . . , sL
e }

for each edge e in E′, where L > |V ′|, we connect a vertex e
of U2 to each of Se with L edges. In summary, the resulting
graph H = (U1, U2; F ) is defined by

U1 := U ′
1 ∪

∪
e∈E

Se, U2 := E′,

F := {{v, e} | v ∈ e} ∪ {{sj
e, e} | j = 1, . . . , L, e ∈ E′}.

Set q := p(p − 1)/2. We will show that H has a desired
vertex set of size at most Lp(p − 1)/2 + p if and only if G′

has a clique of size p.
Suppose that G′ has a clique K of size p. Then we delete

X = V K ∪
∪

e∈EK
Se from U1, where V K (resp., EK) is

the vertex set (resp., the edge set) of K. The number of
the deleted vertices is Lp(p − 1)/2 + p. Since each vertex in
U2 corresponding to one in EK has no neighbor in G′ − X,
G′ − X has no matching of size greater than |U2| − |EK| =
|U2| − q. Thus X is a solution of the problem.

Conversely, suppose that H has a solution set X of size at
most Lp(p − 1)/2 + p. We may assume that X is minimal.
Then we see by the minimality that, in H −X, each vertex e
in U2 has either no single edges to Se or all the single edges
remaining. Hence exactly p(p−1)/2 vertices of U2’s have no
neighbor to Se’s in H − X. The edge subset corresponding
to these vertices is denoted by J . Since a vertex e in U2 \ J
has an edge to Se, H − X has a matching of size at least
|E′| − p(p − 1)/2. Therefore, a vertex in J has to have no
edge to U ′

1 in H − X. Hence N(J) ∩ U ′
1 ⊆ X holds, which

implies that |N(J) ∩ U ′
1| ≤ p. Since |N(J) ∩ U ′

1| ≥ p as
|J | = p(p − 1)/2, the number is exactly equal to p. This
means that J forms a clique of size p in G′.

Proof of Theorem 8. We reduce the problem in
Lemma 5. Suppose that we are given an instance of the
problem, a bipartite graph H = (U1, U2; F ) and two posi-
tive integers p, q.

We prepare q triangles, T1, T2, . . . , Tq, and append Ti to
all the vertices of U2, that is, N(Ti) = U2. The resulting
graph is denoted by G = (V, E). Note that the Gallai–
Edmonds decomposition of G is represented by B1 = U1,
B3 =

∪q

i=1 V Ti, A = U2, and D = ∅, where V Ti is the
vertex set of Ti. Since H has a U2-perfect matching, G has
a B1-optimal matching that exposes all the triangles.

We define the weight function w : V → R+ by w(v) = 1 if
v ∈ U1, and w(v) = ∞ otherwise (i.e., w(v) ≥ |V |).

It is observed that G has a vertex-removal stabilizer of
finite weight if and only if H has a solution of size p. Thus
the statement holds.
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