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ABSTRACT

Socio-technical MAS are an intrinsic part of our daily lives.
Domains like energy, transport, etc. are increasingly using
technology to allow individual users to adapt to, and even
influence the aggregate performance of the system. This
raises expectations of fairness and equitability, while being
engaged in such MAS. Given the autonomous and decen-
tralized nature of socio-technical MAS, it can be difficult
to ensure that each agent gets a fair reward for participat-
ing in the system. We introduce the notion of algorithmic
diversity as a mechanism for nudging the system, in a de-
centralized manner, to a more equitable state. We use the
minority game as an exemplar of a transportation network
in a city, and show how diversity of algorithms results in
a fairer reward distribution than any individual algorithm
alone.

General Terms

Algorithms; Design

Keywords
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1. INTRODUCTION
The modern world is filled with self-adaptive socio-technical

multi-agent systems (socio-technical MAS). From homes in
a Smart Grid environment to commuters using the latest
traffic and route updates on their smartphones, the num-
ber of multi-agent systems where human beings explicitly
utilize device/machine intelligence to make decisions or par-
ticipate in an aggregate common-pooling of resources, is in-
creasing. In this context, there is a legitimate expectation
that such socio-technical MAS ensure an equitable alloca-
tion of resources, or reward the participating agents using
a fair mechanism. However, by design, socio-technical MAS
are decentralized and autonomous in nature. That is, there
is no centralized authority that can control the actions of the
individual agents, except through indirect mechanisms such
as incentives and penalties. This implies that any aggregate
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property that the MAS exhibits, such as efficiency / fairness
(or the lack of it) must result from the actions of the indi-
vidual agents themselves. The field of computational social
choice is particularly interested in the design and analysis
of methods that result in choices being made through col-
lective action [9]. Computational social choice is concerned
with multiple types of social choices, such as preference ag-
gregation, voting, fair division of resources, coalition for-
mation, judgement aggregation, ranking systems, etc. In
this paper, we are concerned with only one aspect of social
choice, viz, fairness in resource allocation. Typical multi-
agent resource allocation strategies concern themselves with
Pareto Efficiency, which refers to an allocation such that no
other allocation would increase the utility of some agents
without being worse for the others. Fairness conditions are
typically codified as Envy-Freeness, where no agent would
rather obtain the resource bundle held by another. Human
beings, even though aiding or aided by computational de-
vices/agents, perceive equity to be more than simple utility
of a resource bundle [37]. Hence, envy-freeness does not
suffice for a socio-technical MAS. A more nuanced notion
of fairness is introduced by the idea of distributive justice,
based on the principles of legitimate claims, as elucidated
by Rescher [35]. As an example, a route-choice problem
through a city (i.e., pick road A or road B to reach a desti-
nation) must yield a satisfactory outcome for the agent mak-
ing a particular choice, at least some of the time. This is in
contrast to problem formulations, where the only concern is
to optimize the traffic flow through that route. This is a fa-
miliar situation in many cities, where multiple humans, uti-
lizing commonly known (albeit coarse-grained) information
about traffic flows, along with their own private heuristics
(e.g., road A is generally clogged from 7:30 - 8:30 am), make
route choices to reach their destination. These agents may
use additional device/machine intelligence in the form of
real-time traffic updates through GPS devices/smartphones,
while making their choices. The reward for this choice is de-
termined dynamically, based on the aggregate number of
agents that make a particular choice without prior coordi-
nation, i.e., the driver that chooses the ‘road less travelled’
would experience lower congestion. Distributive justice, in
this case, would be the evenness of the rewards that accu-
mulate to agents, over multiple days. We hypothesize that
introducing algorithm diversity can lead to distributive jus-
tice, without centralized oversight of the game or the agents.
That is, the presence of algorithm diversity will contribute
to a higher degree of evenness of accumulated reward.
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Through the rest of this paper, we first describe what we
mean by algorithm diversity (section 2), explain the MAS
that we use for experimentation (section 3) and the exper-
imental setup (section 4). Finally, we look at the efficacy
of algorithm diversity in ensuring evenness (section 5) and
offer some concluding thoughts.

2. ALGORITHM DIVERSITY
By algorithm diversity, we refer to the simultaneous use

of multiple algorithms (having the same functional goal),
or in the same running instance of the system. Algorithm
diversity exploits the natural diversity of algorithms that
are present in the same domain. For instance, there are a
multiplicity of sorting algorithms, compression algorithms,
load-balancing algorithms and typically, the informed pro-
grammer makes an intelligent choice amongst the various
available algorithms based on the particular characteristics
of the operating domain. However, in situations where there
is a high degree of uncertainty, it has been shown that di-
versity can lead to a better performance on many param-
eters [16, 22, 30, 34, 40]. In Ecology, this is referred to as
the Insurance Hypothesis [42], where a species copes with a
changing environment, by exhibiting a diversity of features
that may / may not be useful all the time.

However, in all these works of diversification of software
systems, there has been no work that actively measures the
amount of diversity present in a system, and relates this
to the performance of the system. This paper introduces a
quantification of diversity present in the system, and relates
it to system performance, specifically evenness of rewards.

From our definition of algorithmic diversity, it is easy to
envisage a system that diversifies its output, based on envi-
ronmental cues, by switching between multiple algorithms.
However, a more interesting case is when for the same in-
put environment, different parts of the system use different
algorithms. A MAS is an example of such a system, where
multiple agents can potentially use different algorithms to
achieve the same goals, for exactly the same input environ-
ment. This allows us to clearly identify the gains made due
to diversification, as opposed to some other modification or
environmental change. In this paper, we use the Minority
Game as an exemplar MAS for algorithm diversification. In
doing so, we deviate from the traditional research on the
Minority Game, which is focussed on analysis of system dy-
namics due to a newly introduced strategy.

Measuring Algorithm Diversity.
A diversity index is a quantitative measure of the num-

ber of different types and the abundance of those types,
in a given dataset. Intuitively, the higher the diversity in-
dex, the higher the diversity of the dataset. There are no
mechanisms for differentiating amongst algorithms, that can
be commonly applied across multiple domains, apart from
the Big-O complexity calculation. The Big-O notation does
not, however, yield useful information about the different-
ness of algorithms. There may be two algorithms that have
the same Big-O class, but are completely different in terms
of data-structures. For instance, Quicksort and Heapsort
are very different algorithms, but their average case time
complexity is the same, O(nlog(n))! It also does not help
us differentiate between two algorithms that use the same
data-structures but return different outputs. Our interest
in algorithm diversity is due to the potential differences in

the functional pathways, and consequently the outputs, for
the same given input-sequence. This is so because it is this
diversity of outputs that we wish to exploit, as a strategy
to deal with dynamic environments. In such cases, the Big-
O calculation does not yield any useful insights. Hence, we
look to Ecology for inspiration, where the notion of diver-
sity has been discussed extensively [41]. There are many
measures of species diversity that are used in ecological lit-
erature. One of the most famous ones is the Shannon Index
(eq. 1). The Shannon Index measures the entropy (or un-
certainty) in picking an individual of a particular type, from
a dataset. Thus, for instance, if all the agents in a MAS
implement exactly the same algorithm, the entropy (or un-
certainty) will be zero. The higher the diversity in the pop-
ulation, the higher is the Shannon Index. In eq. 1, R is the
number of types in the population, and p is the proportion
of individuals in the population with type i.

H
′ = −

R
∑

i=1

pi ln pi (1)

The Shannon Index is a measure of both, the richness
of species (number of different algorithms) and evenness of
species (abundance of agents implementing an algorithm).
We use the Shannon Index1 to measure how much algo-
rithms differ, in their key parameters. Thus, if a particular
initialization parameter (that has an effect on the functional
pathway) can take multiple values, the Shannon Index will
measure how many such differentiated types exist and how
many individuals implement that type, as a proportion of
the total population.

3. MINORITY GAME
We use the Minority Game [8] as our exemplar MAS, pri-

marily because it has been well-studied and well-understood.
The Minority Game (MG), introduced by Challet and Zhang,
consists of an odd number (N) of agents, playing a game in
an iterated fashion. At each timestep, each agent chooses
from one of two actions (+1 or -1), and the group that is in
the minority, wins. Since N is an odd integer, there is guar-
anteed to be a minority. Winners receive a reward, while
losers receive nothing. After each round, all agents are told
which action was in the minority. This feedback loop induces
the agents to re-evaluate their action for the next iteration.
While simple in its conception, this game has been used in
many fields like econophysics [5, 7, 43], multi-agent resource
allocation [25, 27], emergence of cooperation [13], and het-
erogeneity [21, 26]. The Minority Game (MG) is intuitively
applicable to many domains, such as traffic (the driver that
chooses the ‘less-travelled’ road experiences less congestion),
packet traffic in networks, ecologies of foraging animals, etc.
The Minority Game has been used, primarily, to investigate
the efficiency of strategies in the system when individuals
have bounded rationality (for an extensive review, see [29]).

3.1 Best Play Strategy
Challet and Zhang also introduced a very simple strategy,

called Best Play strategy [8], which in spite of being simple,
exhibited interesting dynamics at the aggregate level. In
this strategy, all players had access to a bounded collective

1We also have measurements using the Gini-Simpson Index,
but we omit them here due to lack of space
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memory (m) of the game, along with a pool of strategies(s).
Collective memory is implemented in the form of a history
of which action (+1 or -1) was in the minority, at each
timestep. Each player drew s strategies randomly from a
strategy space, that indicated which action to play next,
based on the history of the game. Each player allocated
virtual points amongst all its strategies, based on the con-
tinually changing history of the game. Strategies that cor-
rectly predicted the correct output, regardless of whether
they were used or not, received virtual points. Each player,
for the next round, used the top-ranking strategy amongst
his pool of strategies. Table 1 shows a sample strategy pool
used by a player. The size of each strategy depends on m,
the memory of the game, while the total number of strategies
in the pool depends on the computational power the agent
possesses. Table 1 is therefore taken from a game with a
memory of size 3, while the agent has a pool size (k) of 4.
Typically, each agent in the entire game has the same pool
size (k). While it is intuitively obvious, that the greater the
pool size, the greater the probability of an agent drawing
good strategies, it is impossible for an agent to have a pool
size that exhaustively covers every possible strategy, since
the strategy space grows hyper-exponentially(22

m

) with in-
crease in m.

Strategy Output
[+1 -1 +1] -1
[-1 -1 -1] -1
[-1 -1 +1] +1
[+1 +1 +1] -1

Table 1: Sample Strategy Pool for a Player

3.2 Reinforcement Learning Strategy
We implement a Reinforcement-Learning algorithm, called

Roth-Erev [36]. Reinforcement-Learning(RL) is a class of
machine-learning algorithms where an agent tries to learn
the optimal action to take, in a certain environment, based
on a succession of action-reward pairs. Given a set of ac-
tions (a) that an agent can take, the Roth-Erev learning
algorithm performs the following steps:

1. Initialize initial propensities (q) amongst all actions (N)

2. Initialize strength (s) of initial propensities

3. Initialize recency (ϕ) as the ‘forgetting’ parameter

4. Initialize epsilon (ε) as the exploration parameter

5. Choose action (ak) at time (t), based on q

6. Based on reward(rk) for ak, update q using the follow-
ing formula:

qj(t+ 1) = [1− ϕ]qj(t) + Ej(ε,N, k, t)

Ej(ε,N, k, t) =

{

rk(t)[1− ε] if j = k

rk(t)
ε

N−1
otherwise

7. Probability of choosing action j at time (t) is given by:

Pj(t) =
qj(t)

∑N

n=1
[qn(t)]

8. Repeat from step 5

3.3 Evolutionary Strategy
Evolutionary algorithms have been used quite successfully

in multiple domains [1,11]. As pointed out in [14], evolution-
ary algorithms are now being compared to human beings, in
their ability to solve hard problems. We have implemented
an evolutionary algorithm that uses BestPlay ’s strategy rep-
resentation as a genome and performs crossover and muta-
tion on it. The strategy is as follows: At every reproduc-
tion cycle, the ten most poorly performing agents get rid of
their strategies and adopt a combination of strategies from
two parents randomly selected from the ten best performing
agents. Effectively, two of the ten best performing agents
have reproduced to create an offspring that replaces one of
the ten worst agents. The offspring mutates the strategies
obtained from its parents, by some small mutation proba-
bility. This allows the offspring to get better, as well as
explore more of the strategy space. The reproduction cycle
refers to the rounds after which evolution occurs. A fre-
quency of 20 cycles means that after every 20 rounds of the
game, the worst 10 agents discard their strategies and inherit
good strategies from 2 of the top 10 agents. These are then
mutated according to the agents’ own mutation probability.

4. EXPERIMENTAL SETUP
Table 2 shows the constant factors in each experiment.

Each minority game was played with a population size of
501 agents, through a simulation time period of 2000 steps.
For each variation in the experimental setup, the data is
reported as an average of 100 simulations.

Variable Value
Population Size 501
Simulation Period (rounds) 2000
Repetition of Variation 100

Table 2: Experimental constants

The parameters that were varied were as follows:

1. Number of Algorithms: This reflects the effective
number of families (or genera) of species that are present
in the population.

2. Proportion of population implementing an al-
gorithm: Depending on the relative number of each
specie, the aggregate payoff in the game changes.

3. Parameters within algorithms that were diver-
sified: Variation in critical parameters for an algo-
rithm results in effectively creating a new specie, since
the functional pathway (and resultant output) begins
to change depending on the environment. For each of
the three families, the following parameters were di-
versified within the algorithm:

(a) Best Play Strategy: k – which is the pool of
strategies, a player has(strategies-per-agent).

(b) Evolutionary Strategy: The mutation probability
that allows an agent to explore the strategy space,
by mutating known good strategies.

(c) Reinforcement Learning Strategy: The parame-
ters of recency (ϕ), and exploration (ε)
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Figure 1: Best-Play strategy with different values of
memory

5. RESULTS
We now show the results of diversification of algorithms,

on two levels: (a) Parameter Diversification, and (b) Strat-
egy Diversification2. Parameter Diversification refers to each
agent in the population implementing the same algorithm,
however they change their initialization parameters. For
instance, agents playing the Evolutionary strategy would
draw their mutation probabilites from a gaussian distribu-
tion, drawn from the best mean of Normal Play. Normal
Play refers to a situation, where each agent in the game
plays with exactly the same algorithm and initialization pa-
rameters. Strategy Diversification refers to creating a pop-
ulation that has a mix of strategies. The diversity level of
the population would differ according to the proportion of
agents implementing a particular strategy. First, we show
results of all three strategies with Normal Play, since they
form the baseline with which the results of diversification
are compared. In all cases, the graphs show the distribu-
tion of the population achieving a particular level of average
payoff. The ‘fatter’ the graph, the more evenly rewards are
distributed, and vice-versa.

5.1 Normal Play — Baseline
In Figure 1, we see the average payoff (y-axis) from the

Best-Play strategy, with different levels of memory(x-axis).
The average payoff is the average number of times, an agent
is able to make the correct choice and be in the minority.
The graph shows the distribution of population that was
able to secure rewards, during the entire game. The fatter
the distribution, the fairer the result, since it implies that,
on average, most players secured the same amount of payoff.
In Figure 1, we see that with a memory of 8, the distribution
of payoff is more equitable, since most of the population is
concentrated in one area.

2All code and results are available at:
https://www.bitbucket.org/viveknallur/aamas2016.git
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Figure 4: Parameter Diversification of Best Play

In Figure 2, we see the average payoff from the Evolution-
ary strategy. The x-axis shows the frequency of the repro-
duction cycle, i.e., reproduction and mutation takes place
every 20, 40, 60, 80 and 100 rounds. Figure 2 clearly shows
that when reproduction and mutation is frequent (every 20
rounds), more of the population earns a higher payoff. That
is, most of the population earns a payoff between 700 and
1000, whereas with reproduction cycles of 60 and greater,
most of the population earns a lower reward, with a few
individuals earning higher payoff.

Figure 3 shows the average payoff when the Roth-Erev
strategy is used. Again, the fatter the distribution, the
fairer the outcome. Hence, we see that low values of Re-
cency (0.1, 0.2) contribute to a fairer distribution of payoff.

In all of these, the diversity of the population is zero (0),
since there is only one algorithm, and all agents implement
exactly the same code.

5.2 Parameter Diversity
Parameter diversity refers to diversity in the initializa-

tion parameters of the algorithm being implemented by the
agents. That is, for any game, all agents still implement the
same code, but some parameter in the algorithm is diversi-
fied. The specific parameters being diversified are given in
section 4. For the Evolutionary and Roth-Erev strategies,
even minute differences within the initialization parameters
can cause aggregate average payoff to vary.

Parameter Diversity with Best Play.
In general, there is less parameter diversity with the Best

Play strategy, since the parameter being diversified is the
number of strategies that player holds. These are drawn
from a gaussian distribution with the mean being the size
of the history available to agents, and a standard deviation
of 1. This leads to there being a low diversity, since many
agents end up with the same amount of strategies-per-agent.
Figure 4 therefore shows very little difference in distribution
of payoffs obtained, as compared to Figure 1.

Parameter Diversity with Evolutionary Strategy.
The evolutionary strategy changes the performance of the

agents, depending on the strategies that the ‘evolved’ child
agents get. The evolutionary process allows poorly perform-
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Figure 5: Parameter Diversification of Evolutionary
strategy
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Figure 6: Parameter Diversification of Roth-Erev
strategy

ing agents to quickly change their strategies to match the
best agents. However, this also leads to a homogeneity in
the strategies being used by the agents. The parameter that
diversifies each agent is the mutation probability that it pos-
sesses. This causes agents to mutate their inherited strate-
gies. Figure 5 shows the difference in average payoff, when
the reproduction cycle is varied.

Parameter Diversity with Roth-Erev.
Roth-Erev allows for the highest amount of diversifica-

tion, since there are two parameters (recency and epsilon)
that can be changed for each agent. Also, the algorithm is
extremely sensitive to the values of these parameters, and
each agent’s decision-making is affected significantly. Hence,
the population as a whole becomes extremely diverse. Fig-
ure 6 shows the effect of diversification for mean values of
recency and epsilon.
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Both Roth-Erev and the Evolutionary strategy exhibit
higher levels of diversity, due to the probabilistic nature of
the variable being diversified. In the Evolutionary strategy,
the mutation-probability is different for every agent, thereby
making each agent into its own separate type. In Roth-Erev,
both recency and epsilon are diversified, which results in a
higher level of diversity. This increase in diversity is reflected
in both, the fairness of the average payoff, and the levels of
average payoff. That is, for Roth-Erev populations, most
of the payoff is at the 800 level, while for the Evolutionary
strategy, most of the payoff is around 500.

5.3 Strategy Diversity
We go further and mix agents implementing different strate-

gies into one population. The diversification here takes place
on two levels, parameter-diversification (as before), as well
as proportion of population implementing a particular strat-
egy. The total population of agents in all scenarios is kept
constant, but the proportion of agents playing a particular
strategy is varied. This leads to different levels of diver-
sification, for each combination of strategies. Due to lack
of space, we show only the population mixes with the low-
est and highest amount of diversity, for each combination
of strategies. The x-axis shows the diversity levels (as mea-
sured by the Shannon Index) and the y-axis, the distribution
of average payoff.

Figure 7 shows the distribution of payoffs when a set of
agents playing Best Play, is mixed with a set of agents play-
ing the Evolutionary strategy. Figure 8 shows the distri-
bution of payoffs when a set of agents playing Best Play,
is mixed with a set of agents playing the Roth-Erev strat-
egy. Figure 9 shows the distribution of payoffs when a set of
agents playing Evolutionary strategy, is mixed with a set of
agents playing the Roth-Erev strategy. Figure 10 shows the
distribution of payoffs, when all three strategies are com-
bined into one population.

All compared together.
Finally, we overlay the results from Figures 7–10 to illus-

trate the comparative payoffs at different levels of diversity.
Figure 11 clearly shows that higher the diversity level, the
fairer the average payoff. Note that the highest level (5.13)
was not a consequence of mixing all three strategies, but
rather by mixing Evolutionary and Roth-Erev strategies (see

300

500

700

900

1100

1.09 5.03
Diversity (Shannon Index)

A
ve

ra
g
e
 P

a
y
o
ff

Diversity

1.09

5.03

Figure 8: Mix of Best-Play and Roth-Erev Strate-
gies

300

500

700

900

1100

2.97 5.13
Diversity (Shannon Index)

A
ve

ra
g
e
 P

a
y
o
ff

Diversity

2.97

5.13

Figure 9: Mix of Evolutionary and Roth-Erev
Strategies

300

500

700

900

1100

1.36 3.51
Diversity (Shannon Index)

A
ve

ra
g
e
 P

a
y
o
ff

Diversity

1.36

3.51

Figure 10: Mix of three strategies

425



300

500

700

900

1100

0.86 1.09 1.36 2.6 2.97 3.51 5.03 5.13

Diversity

A
ve

ra
g
e
 P

a
y
o
ff

Diversity

0.86

1.09

1.36

2.6

2.97

3.51

5.03

5.13

Figure 11: Payoff across all mixes

Fig 9). This confirms our intuition that merely mixing more
strategies does not lead to greater diversity and measure-
ment using indices is essential.

Table 3 shows the payoff at the lowest, median and high-
est agent reward levels, due to the different algorithms used.
Notice that the median levels of payoff are the greatest when
diversity is greatest (d = 5.13). Recall from our hypothe-
sis, that we seek to check whether algorithm diversity leads
to distributive justice, without centralized oversight. From
Table 3 and the graphs (Figure 11), it is apparent that the
hypothesis is true. The effect of diversity is to push the
population, as a whole, towards a more even distribution of
rewards, without needing a centralized guiding hand.

6. RELATED WORK
There has been much work on distributive justice in a so-

ciological and organizational context [10, 12, 24], but most
work in multi-agent systems is characterized by Envy Free-
ness [18]. Envy-freeness is simply understood to be an al-
location of a resource bundle in such a manner, that for
any agent, the utility of its own allocation is greater than
any other allocation. However, utility-based models fail to
capture the nuances of distributive justice, particularly so
in a socio-technical MAS. There has been some work on
making multi-agent systems adapt in an organized fash-
ion, obeying certain norms [3, 17, 20, 32, 33]. There has also
been a plethora of work on the introduction of diversity in
software engineering. Forrest et al. [19] were among the
first to advocate diversity as a mechanism to prevent at-
tackers from learning internal details of a computer sys-
tem. Memory obfuscation [4] and instruction-set random-
ization [23] have been used as an instantiation of the di-

versification principle, to increase security of computer sys-
tems. Efforts have been made at introducing diversity into
the source code of systems, in order to reduce the chances of
bugs through N-version programming [2], and genetic pro-
gramming [16]. Other work in security such as creation
of moving targets [22], increasing dependability [30] have
all advocated diversification as a fundamental idea. Even
in other domains, such as machine-learning [28], sensor-
networks [34, 38], and fault-tolerant systems [39] diversity
has been identified as an idea that improves the robustness
of systems, in the presence of uncertainty. The domain of
distributed and multi-agent systems [6,15] have also consid-
ered diversity as a critical component in systems with vary-
ing degrees of intelligence. However, this is the first work
that we are aware of, that quantifies the amount of diver-
sity present in a system, and then systematically compares
level of diversity with aggregate performance. A closely re-
lated agent-based domain, electronic trading markets, have
been studied in [31] with an emphasis on auction mechanism
design. The focus of that study, however, has been on eco-
nomic outcomes and game-theoretic methods, without any
investigation into diversity as a distinguishing attribute.

7. CONCLUSION
A caveat about measuring algorithm diversity in this man-

ner, is that it requires knowledge of the algorithms and their
functional pathways. While this is not ideal from a black-
box engineering point of view, nevertheless, we believe that
it holds great potential as a technique for achieving certain
aggregate properties in a socio-technical MAS. Another po-
tential drawback is the requirement for problem decomposi-
tion into individuals and species. This may not be possible
in all domains. Algorithm diversity is not a silver bullet for
ensuring distributive justice of rewards in a socio-technical
MAS. In further work, we would like to work on quantifying
diversity in algorithms, even if the problem is not as easily
decomposed into agents, such as the minority game. We be-
lieve that there are many domains that would benefit from a
rigorous mechanism for quantifying diversity in algorithms,
and this would allow them to make reasoned tradeoff deci-
sions between diversity, and other system metrics such as
performance.
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