
Learning from Demonstration for Shaping
through Inverse Reinforcement Learning

Halit Bener Suay
Worcester Polytechnic Institute

benersuay@wpi.edu

Tim Brys
Vrije Universiteit Brussel
timbrys@vub.ac.be

Matthew E. Taylor
Washington State University
taylorm@eecs.wsu.edu

Sonia Chernova
Georgia Institute of

Technology
chernova@cc.gatech.edu

ABSTRACT
Model-free episodic reinforcement learning problems define
the environment reward with functions that often provide
only sparse information throughout the task. Consequently,
agents are not given enough feedback about the fitness of
their actions until the task ends with success or failure. Pre-
vious work addresses this problem with reward shaping. In
this paper we introduce a novel approach to improve model-
free reinforcement learning agents’ performance with a three
step approach. Specifically, we collect demonstration data,
use the data to recover a linear function using inverse re-
inforcement learning and we use the recovered function for
potential-based reward shaping. Our approach is model-free
and scalable to high dimensional domains. To show the scal-
ability of our approach we present two sets of experiments
in a two dimensional Maze domain, and the 27 dimensional
Mario AI domain. We compare the performance of our algo-
rithm to previously introduced reinforcement learning from
demonstration algorithms. Our experiments show that our
approach outperforms the state-of-the-art in cumulative re-
ward, learning rate and asymptotic performance.

Keywords
Learning and Adaptation; Reward structures for learning;
Learning agent capabilities (agent models, communication,
observation)

1. INTRODUCTION
Model-free episodic Reinforcement Learning (RL) problems

require agents to explore the state space and iteratively find a
solution, which can be costly in terms of learning time. These
problems are typically defined by an environment reward
that rarely changes throughout the state-space. For example,
in the Cart-Pole domain [2, 21], the environment provides a
reward of renv = +1 after each step of the task until the ter-
minal state, where the reward is renv = 0 to emphasize that

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the cart has failed at balancing the pole. The information
provided by the environment is sparse as the change in the
reward signal is infrequent. The environment lets the agent
know about an obstacle or the terminal state without pro-
viding much information right until then. On the one hand,
it is easy to define a sparse reward function manually and
the interpretation of rewards becomes very intuitive for hu-
mans. On the other hand, with this type of environment re-
ward agents are not given enough information about how
appropriate the chosen actions are throughout the task. A
model-free RL agent can benefit immensely from having a
dense reward function that provides more information about
the task.

An extensively explored way to provide denser informa-
tion is through shaping the existing reward function by add-
ing an extra signal, thus providing the agent with a compos-
ite reward [14, 6, 4, 8, 25]. Research in reward shaping shows
that potential based shaping functions provide a theoreti-
cally sound way of incorporating additional, informative re-
ward functions in existing reinforcement learning problems
without altering the problem definition [14]. Potential based
shaping rewards can improve an agent’s learning efficiency
by reducing the number of episodes before convergence [14].
To give an example for the Cart-Pole problem, a potential
based shaping reward could be the negative of the angular
distance of the pole from the center at each step. There are
multiple ways to define a shaping reward function. One way
is to use a priori knowledge of the domain characteristics,
however, doing so requires extensive knowledge of the state
space and becomes infeasible as the number of state vari-
ables increases. Recent work has shown that shaping reward
can also be effectively extracted from an expert’s demons-
tration by computing the similarity between demonstrated
states and observed states throughout learning [4].

Expert demonstrations have also been applied in the con-
text of Markov decision processes for inverse reinforcement
learning (IRL), that is, for extracting a reward function given
observed optimal behavior [15]. In domains where the re-
ward function is unknown, IRL algorithms are used with the
purpose of obtaining a reward function for optimal control.

In this work we introduce Static IRL Shaping (SIS), and
Dynamic IRL Shaping (DIS), two variations of a novel ap-
proach in which we combine reward shaping and inverse
reinforcement learning. SIS and DIS improve upon previ-

429

ous work’s use of an expert’s demonstrations by capturing
the demonstrator’s general policy over the state-space for
shaping, as opposed to using the observed demonstration
samples directly. By using model-free IRL, we encode a de-
monstrator’s task description as a heuristic which comple-
ments the environment reward function. Our approach con-
sists of three main steps: i) collecting demonstrations, ii) re-
covering a potential function from demonstrations, and iii)
using the recovered potential function for computing shap-
ing rewards in reinforcement learning. Reward functions we
recover let us compute a linear potential based shaping re-
ward. It is important to note that, even though we use expert
demonstrations in this paper, there is no strict requirement
for the demonstrations to be optimal. We use reward shaping
as a heuristic, while the agent still receives the information
provided by the environment reward. This means that even
if demonstrations are suboptimal, the agent will ultimately
be able to learn the task. This is due to the guarantees of pol-
icy invariance provided by potential-based reward shaping
approaches, and that reward shaping that is not potential-
based may alter the optimal policy of the problem. Our goal
is to show that using a model-free IRL technique, we can ex-
tract additional information for summarizing the task for a
standard RL agent and the agent can use this information to
learn the task faster. To the best of our knowledge, the use
of IRL for potential-based shaping reward functions has not
been investigated in the literature.

In order to show that our approach is scalable over differ-
ent number of state variables, we evaluate our approach in
two domains: a Maze domain and the Mario AI domain. We
compare SIS and DIS with the standard SARSA(λ) and Q(λ)-
learning agents, as well as with two previously introduced
RL algorithms that leverage demonstration data. Our exper-
iment results show that a) both of our approaches result in
significantly (p-values < 0.0001) more cumulative reward in
both domains compared to other techniques, b) DIS results in
faster learning in both domains and c) both approaches have
better asymptotic performance than the human demonstra-
tor.

2. BACKGROUND
Our approach builds on several research areas; we provide

a high-level overview of each below.

2.1 Reinforcement Learning
RL is the problem of choosing which actions to take in ob-

served states. We define reinforcement learning using the
standard notation of Markov Decision Processes (MDPs) [16,
22]. At every time step the agent observes its state s ∈ S as
a vector of k state variables such that s = 〈x1, . . . , xk〉. The
agent selects an action from the set of available actions A at
every time step. An MDP’s reward function R : S × A 7→ R
and (stochastic) transition function T : S × A 7→ S fully
describe the system’s dynamics. The agent attempts to max-
imize the long-term reward determined by the reward and
transition functions that are initially unknown to the agent.

A learner chooses which action to take in a state via a pol-
icy, π : S 7→ A. Policy π is modified by the learner over time
to improve performance, which is defined as the expected
total reward. Instead of learning π directly, model-free RL al-
gorithms instead approximate the action-value function, Q :
S × A 7→ R, which maps state-action pairs to the expected
real-valued return.

2.2 Reward Shaping
Reward shaping, derived from behavioral psychology [20],

is a way of incorporating prior knowledge in the learning
process. A shaping reward F provides an agent with addi-
tional information after each state transition. With shaping
rewards, an agent is rewarded for taking appropriate steps
toward the goal. This extra reward supplements the environ-
ment reward which is typically defined as a sparse function
for practical reasons.

The extra reward signal F , defined by agent designers, is
added to the environment rewardR, defined by problem de-
signers. The agent learns a task using the shaped reward R′:

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) (1)

F function usually encodes heuristic knowledge, and is in-
tended to complement the typically less informative signal
R. As we mentioned earlier, the agent’s goal is defined by
the reward function, and by manipulating the reward signal
we may risk changing the task. Ng et al. [14] proved that
potential-based shaping is a sound way to provide a shaping
reward without changing the reinforcement learning prob-
lem.

2.3 Inverse Reinforcement Learning
IRL is the problem of learning a reward function using a set

of observations from expert demonstrations [15, 1]. Two pos-
sible general representations of a task for MDPs are through
defining a policy or a reward function. IRL algorithms aim
to find a good representation of the demonstrated task by
finding the most fitting reward function based on a set of de-
monstrations. Although there are different solutions for the
IRL problem, many of them require the environment model
(i.e. the transition function) to be known [17, 26, 11]. Re-
cently Boularias et al. [3] and Klein et al. [10] introduced two
different algorithms for model-free IRL. Boularias et al. in-
troduced a sampling based algorithm Relative Entropy In-
verse Reinforcement Learning (RE-IRL) that leverages sta-
tistical properties of human demonstrations [3]. Klein et al.
introduced Cascaded Supervised IRL (CSI) which combines
classification with regression in order to generate a reward
signal based on human demonstrations [10]. In this work we
use RE-IRL due to its simplicity and availability however a
comparison of different IRL algorithms for our particular use
can be a future investigation topic.

2.4 RL from Demonstration
RL from Demonstration (RLfD) is a learning setting for RL

agents where both demonstrations and an environment re-
ward signal are available. Algorithms use different meth-
ods to convert demonstrations into a representation that the
agent will be able to use as heuristic information and the en-
vironment reward is treated as the ground truth for learning.
Early work on Reinforcement Learning from Demonstration
(RLfD) was presented by Schaal [19], in which the term de-
scribed a set of approaches that leveraged initial training for
learning a policy and a value function from demonstrations,
followed by a “trial by trial learning” with RL.

Later, Taylor et al. introduced Human - Agent Transfer
(HAT), a transfer learning algorithm that employs rule trans-
fer [23] in order to summarize a set of human demonstra-
tions for bootstrapping a reinforcement learning agent’s per-
formance. HAT follows a three step approach: i) A human
demonstrator controls the agent and performs the task; ii)

430

Saved demonstrations are used as the input data for a rule
learning algorithm; iii) A RL agent uses the summarized pol-
icy to initialize the state-action value function.

Most recently, Brys et al. introduced a new algorithm we
refer to as Similarity Based Shaping (SBS) [4]. With the SBS
algorithm Brys et al. took a different approach to investi-
gate the use of prior knowledge as a potential-based shap-
ing reward. The SBS algorithm uses human demonstrations
as a potential function ΦD(s, a) for potential-based shaping.
With this approach each demonstrated state-action pair is
assumed to be desirable for the agent, and using a simila-
rity metric, the SBS algorithm computes a shaping reward F .
During learning, the agent receives a shaped reward signal
R′ = R + F which is the combination of the environment
reward (i.e. ground truth) and the shaping reward. The SBS
algorithm uses non-normalized multi-variate Gaussian dis-
tributions to compute the similarity between demonstrated
states and observed states throughout learning.

HAT and SBS algorithms allow the use of multiple de-
monstrations, combining observations obtained from these
demonstrations in different ways. In practice, the use of mul-
tiple demonstrations increases the possibility of recording no-
isy or sometimes conflicting state-action pairs. If that is the
case, using demonstrations directly similar to the SBS algo-
rithm may result in conflicting rewards for the agent. We
use IRL because as a method it generalizes over multiple de-
monstrations. Our novel algorithms improve on the above
techniques by leveraging IRL in combination with reward
shaping. We compare our results to HAT and SBS.

3. METHODOLOGY
In this section, we present our approach for using a model-

free IRL algorithm to obtain a shaping reward and speed up
reinforcement learning. Our goal is to incorporate human
task demonstration in an intuitive way and incorporate this
knowledge in reinforcement learning without changing the
task (i.e. the main goal). We aim to reinforce appropriate ac-
tion selection as soon as an episode starts, much before the
agent reaches the terminal state. Each shaping reward signal
can be thought of as a hint for the agent to make better deci-
sions. To the best of our knowledge, using a potential-based
shaping reward function recovered with IRL has not been in-
vestigated in the literature. Our method has three main steps:

Collecting Expert Demonstrations: First, we collect observa-
tion data from a demonstrator. Each demonstration is a set of
sequential observations in time. In this paper our focus is on
episodic, simulated environments and we collect the agent’s
state vector as demonstrations. The demonstrator was an ex-
pert teacher, however this is not a requirement for our setup.
We assume that the demonstrations are not malicious, that is,
the intent of each demonstrated state transition is to perform
well on the task. RE-IRL requires trajectories to have equal
lengths. To equalize the length of demonstrations we process
the demonstration data by repeating the last observation (in
our first test domain) or pruning longer demonstrations (in
the second test domain). Depending on the task, if demon-
strating the goal state carries importance one could prefer to
append a repetition of the goal state in the set of demonstra-
ted observations, or otherwise prune the observations. In the
end we obtain a set of demonstrations T . The input for the
next step (i.e. RE-IRL) is T , where each trajectory τ ∈ T is a
set of observations of equal length, τ = {s1, . . . , sl}.

Recovering a Linear Function: Once we obtain T , we use
RE-IRL and compute the vector of reward feature weights
w to use in RIRL(s). RE-IRL recovers a reward function
RIRL(s, a) for the set of demonstrations T as a linear combi-
nation of observed reward features f = 〈f1, . . . , fn〉, weigh-
ted with w. The output is the vector of feature weights w =
〈w1, . . . , wn〉:

RIRL(s) =

n∑
i=1

ωifi(s) (2)

where, fi is ith reward feature, ωi is ith feature weight, s is
the state vector for the current state of the agent. Each reward
feature is computed from the state vector s and the mapping
from state variables to reward features is typically domain
dependent, defined by agent designers.

In our representation, we only use the state variables to
represent the path of the agent and the policy of the demons-
trator, hence the potential function is independent of the ac-
tions. RE-IRL obtains the weight vector w by finding a dis-
tribution P that minimizes the KL-Information loss I(P,Q)
over trajectories. KL-Information loss I(P,Q) is the infor-
mation lost when the distribution Q is used to approximate
the distribution P [5]. For this work we are interested in
transferring the expert demonstration policy from humans
to agents, hence we use the distributionQ as the distribution
of observed expert trajectories in state space. RE-IRL tries to
find a vector w that minimizes the KL-Information loss. With
w, during learning, when fobserved ≈ fdemonstration feature
weights return a higher reward to reinforce the agent’s state-
action values. For the full derivation of the solution we refer
readers to [3]. An explanation of RE-IRL with a pseudo-code
for the algorithm is also presented by Muelling et al. [13].

Using The Recovered Function: Last, we compute potential-
based shaping rewards that the agent receives during lear-
ning. For this step we tested the use of the recovered linear
function as a traditional, static potential function and also as
a dynamic potential function. To implement potential-based
shaping we define the above potential function Φ : S 7→ R
over the state space, and define the shaping reward F as the
difference between the potential of the new state s′ and the
old state s:

F (s, a, s′) = γΦ(s′)− Φ(s) (3)

where 0 ≤ γ ≤ 1 is the discount factor which describes the
present value of future rewards and potentials [22]. The ef-
fect of shaping is that the agent’s exploration is less random
and the agent is biased towards states with high potential. In
this work we use inverse reinforcement learning to obtain a
linear function Φ(s) = RIRL(s) from expert teacher demons-
trations. We call this approach Static IRL Shaping (SIS). We
name the approach static since the potential function does not
change over time.

The formulation given in Eq.(3) is limited in that the shap-
ing reward is dependent only upon the states encountered
by the agent and not its actions. Wiewiora et al. [25] extend
the definition of F and Φ to state-action pairs (s, a) as:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (4)

This formulation allows more information to be incorporated,
as it is not limited to states but uses action choices for com-
puting the shaping reward.

431

Devlin et al. [6] extended Ng’s potential-based reward shap-
ing to dynamic potential-based shaping, allowing the shap-
ing function to change over time:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (5)

By changing the shaping function over time, this formulation
allows incorporating learning in the shaping function based
on agent’s experience in order to improve the shaping func-
tion. Harutyunyan et al. [8] combine these two extensions
into dynamic shaping over state-action pairs:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′)− Φ(s, a, t) (6)

Importantly, the above variants of shaping all preserve the
guarantees such as policy invariance and consistent Nash
Equilibria proven by Ng et al [14], and Devlin and Kudenko [6].
Using dynamic shaping, any expert provided reward func-
tion R† can be transformed into a potential-based shaping
function by learning a secondary Q-function Φ†, which serves
as the potential function for shaping. The formulation below
defines the dynamic potential-based shaping reward. The
secondary value function must be learned on-policy, with a
technique such as SARSA [18]:

Φ†(s, a)← Φ†(s, a) + βδΦ†
(7)

Where β is the learning rate, and δΦ†
is defined as the tem-

poral difference (TD) error of the state transition:

δΦ†
= rφ

†
+ γΦ†(s′, a′)− Φ†(s, a) (8)

As the secondary Q-function Φ† gets updated after each step
the shaping function becomes:

F = γΦ†(s′, a′)− Φ†(s, a) (9)

By substitution we obtain:

δΦ†
t = rφ

†
+ F (10)

By definition, the temporal difference error (i.e. the error be-
tween the estimated Q-value and the actual return) goes to 0

at the time of convergence. Thus for δΦ†
= 0:

rφ
†

+ F = 0 (11)

And finally at the time of convergence the potential-based
shaping function becomes:

F (s, a) = R†(s, a) = −rφ
†

(12)

When the secondary value function has converged (i.e. when
δΦ†

= 0), the main value function Q(s, a) will be supplied
with a potential-based reward shaping that is equivalent to
the reward function R†. Even before convergence, Φ† pro-
vides useful information aboutR†, just like the main Q- func-
tion provides information about good policies before con-
verging to an optimal policy. As implied by the last equa-
tion above, we learn the secondary Q-function Φ† using the
negative of the expert defined reward rφ

†
= −R†. In our

work, R†(s, a, s′) = RIRL(s) is the reward function we re-
cover using inverse reinforcement learning. We call this ap-
proach Dynamic IRL Shaping (DIS), as the potential func-
tion changes over time based on the learned, secondary Q-
function which uses Equation 2 as its reward input.

x

y
S

Figure 1: Maze domain. The state-space consists of two
continuous variables x, y that define the horizontal and ver-
tical location of the agent in the maze with reference to the
lower-left corner. The agent starts from S and its goal is to
navigate around the gray walls and reach the goal destina-
tion G.

x

y

Figure 2: Suboptimal demonstrations in the Maze domain.

4. EXPERIMENTAL VALIDATION
In order to validate our approach we compare the perform-

ance of our algorithms against HAT with value-bonus [24]
and SBS in two domains: a relatively simple Maze domain,
and the Mario AI [9] domain. For both domains, we inves-
tigate the initial performance, the asymptotic performance,
and the total cumulative reward for evaluation.

In both domains we have 5 agents: a standard RL agent, a
SIS agent, a DIS agent, a HAT agent and a SBS agent. For the
Maze domain we use SARSA(λ) as the standard learner and
the underlying learning algorithm for all other agents. For
the Mario AI domain we use Q(λ)-learning as the standard
learner and the underlying learning algorithm for all other
agents (with the exception of the secondary learner in DIS,
which has to be a SARSA learner).

4.1 Maze
The Maze domain shown in Fig.1 is a modified version of

the Dyna Maze domain introduced by Sutton and Barto [22].
In this domain the goal of the agent is to start from the po-
sition marked with S, navigate around the walls shown as

432

0 50 100 150
−6000

−5000

−4000

−3000

−2000

−1000

0

Episode

A
v
e
ra

g
e
 R

e
w

a
rd

SARSA

SIS

DIS
HAT

SBS

Human

Figure 3: Maze domain experiment results.

Table 1: Average initial (first episode) performance, asymp-
totic performance, and cumulative reward with standard
deviations for all agents in the Maze domain. Maximum
values are shown in bold. Higher values are better. SAR:
SARSA, HMN: average of the reward human demonstrator
received in 10 demonstrations.

Agents µinit µasymp µcumul
SAR -3,730.36 -222.52 -151,525.96
SIS -7,973.16 -165.88 -93,591.96
DIS -3,494.08 -267.88 -113,689.12
HAT -164.68 -222.36 -150,141.28
SBS -324.04 -185.84 -159,634.52
HMN -327.5 -327.5

dark gray cells and reach the goal state marked with G. In
our version the state-space consists of two continuous vari-
ables 0 ≤ x, y < 1.0. The agent starts at s = (x : 0.08, y : 0.6),
and chooses one of four available actions: left, right, up, and
down. Step size for each action is 0.02. After each step the
agent receives an environment reward of −1. If the agent
tries to get outside the domain boundaries in any direction,
or hits a wall, it receives an environment reward of −10. The
terminal condition is (x ≥ 0.9) && (y ≥ 0.9) with an envi-
ronment reward of +10. This is an episodic task and each
episode starts form the initial state and ends at the goal state
(or terminates with failure after 6000 steps).

In order to evaluate our approach we collected 10 subop-
timal demonstrations in the Maze domain. The demonstra-
tor was the first author who also designed and implemented
the modifications to the original Dyna Maze domain. Fig. 2
shows the suboptimal demonstrations. Features we recorded
during demonstrations were the horizontal and vertical lo-
cation of the agent at each time-step, that is, st(xt, yt) for
each observation st. The shortest demonstration took 328
steps to reach the goal and the longest demonstration was
353 steps long (µ = 337.5 and σ = 10.71 steps). None of the
demonstrations had the agent collide with the walls or the
borders of the maze. For RE-IRL, we appended the last ob-
servation of the shorter demonstrations repeatedly in order
to equalize the lengths of the demonstrations. We used the
following parameters for our agents: number of tiles = 32,

Table 2: Statistical analysis for the Maze domain results
show p-values for two-sample t-tests. SAR stands for
SARSA. Columns show the statistical significance of the
difference between the initial (first episode) performance,
asymptotic (last episode) performance, and cumulative re-
ward (i.e. total reward throughout the trial).* p ≤ 0.05,** p
≤ 0.01,*** p ≤ 0.001,**** p ≤ 0.0001.

Agents Initial Asymp. Cumulative
SAR vs SIS 3.8929e-16**** 0.051603 1.4592e-44****
SAR vs DIS 0.62928 0.56365 8.3354e-33****
SAR vs HAT 1.5995e-13**** 0.99673 0.51621
SAR vs SBS 1.6913e-12**** 0.26082 0.022387*
DIS vs HAT 3.4262e-13**** 0.56402 1.0199e-22****
DIS vs SIS 9.6501e-18**** 0.17313 5.2131e-26****
DIS vs SBS 4.1881e-12**** 0.28159 5.4586e-18****
SIS vs HAT 3.0772e-94**** 0.060007 4.3662e-32****
SIS vs SBS 2.597e-55**** 0.32015 9.6945e-25****

SBS vs HAT 0.062916 0.27499 0.015977*

α = 0.25/#tiles, β = 0.05/#tiles, γ = 1.0, λ = 0.25, with
ε−greedy action selection where ε = 0.02. Finally, we used
a scaling of 100 for all shaping reward signals, except for the
HAT agent where the scaling was 10.

Fig. 3 shows the agents’ performance in 150 episodes, av-
eraged over 25 trials. The vertical axis shows the agents’ per-
formance in terms of total reward received per episode and
the horizontal axis shows the number of episodes. Each line
shows the performance of a different agent. For compari-
son we also show human demonstrator’s performance aver-
aged over 10 demonstrations. Average initial (first episode),
asymptotic (last episode), and cumulative reward are detailed
in Table 1.

First, we note that all five algorithms are able to achieve
a similar asymptotic performance in this domain, although
they reach it at different rates. For example, if we consider
the number of episodes each algorithm takes to surpass the
performance of the demonstrator, then we see that SARSA(λ),
SIS, DIS, HAT and SBS require 110, 90, 115, 135, and 136 epi-
sodes, respectively. In summary, SIS learns the task remark-
ably faster than all other methods.

The performance of the different techniques also varies lar-
gely during the learning process. The standard SARSA(λ)
agent starts from−3, 730 and reaches its asymptotic perform-
ance after 130 episodes. The SIS approach starts with the
worst performance,−7, 973, however is the fastest to surpass
the demonstrator’s performance only after 90 episodes. In
comparison the DIS approach starts with an initial perform-
ance of −3, 494 and learns the task comparably fast.

The HAT algorithm, initializes the Q-function with the po-
tential function at the very beginning. The first column of Ta-
ble 1 shows that the initialization results in high performance
during first episodes.However later on, as the agent proba-
bilistically explores the state-space its performance degrades
over time. It is important to point out that the performance
boost gained by amount of initial jump-start is dependent of
the demonstration quality and demonstrator’s ability. Tay-
lor et al. [24] have investigated the impact of demonstration
quality and demonstrator expertise. HAT suffers from a per-
formance loss after about 10 episodes due to the negative
step reward. The agent starts with the “good” policy, how-
ever receives negative reward at every step and thus starts

433

0 0.5 1 1.5 2

x 10
4

−500

0

500

1000

1500

Episode

A
v
e

ra
g

e
 R

e
w

a
rd

Q−Learning

SIS

DIS
HAT

SBS

Human

Figure 4: Mario domain experiment results.

to explore beyond the good policy. After exploring differ-
ent states only to learn that they were “bad” states, the agent
recovers and improves its performance to catch-up with the
learning speed of the standard SARSA(λ) agent. This find-
ing is in parallel with Taylor et al.’s [24] observations, in the
sense that human demonstrations do not hurt the agent’s fi-
nal performance.

Similarly, the SBS approach implements Q-function initial-
ization and starts with a high performance which degrades
over time with exploration. After about 136 episodes the SBS
agent reaches the demonstrator’s performance and soon af-
ter converges to its asymptotic performance of −186.

Using the rewards agents collected per trial, we performed
two-sample t-tests to evaluate whether the agents’ initial per-
formance, asymptotic performance and cumulative reward
were significantly different from each other (Table 2, sample
size: 25 trials).

The difference in asymptotic performance is not significant
as can be obvious from Fig. 3. That being said, we would
like to underline that all methods have surpassed human de-
monstrator’s average performance. Especially SIS results in
about a 50% increase in asymptotic performance after 150
episodes w.r.t the demonstrator’s performance (second col-
umn of Table 1).

As for the initial performance data, there wasn’t a signifi-
cant difference between the DIS and the SARSA agents. How-
ever, the HAT and the SBS agents performed significantly
better than the SARSA agent.

Finally, both the SIS and the DIS agents collected signifi-
cantly more reward throughout 150 episodes (i.e. cumulative
reward) than the SARSA, the HAT and the SBS agents.

In summary, the SIS agent shows the steepest learning curve
by converging to a stable policy fastest and collects the high-
est cumulative reward of approximately -93,000 after 150 epi-
sodes. The DIS agent performs comparably good with a bet-
ter initial performance than SIS, however collects less cumu-
lative reward, approximately -113,000.

4.2 Mario AI
Super Mario Bros is a popular 2-D side-scrolling video game

developed by the Nintendo Corporation. In this work we
use the publicly available Mario AI version released by Kara-

Table 3: Performance metrics for the agents in Mario AI:
initial performance, asymptotic performance, cumulative
reward (average of 10 trials). Maximum values are shown
in bold. Higher values are better.

Agents µinit µasymp µcumul
QLR -424.6 1,410.4155 20,101,973.6
SIS -43.6 1,431.5328 22,341,947.6
DIS -391.2 1,398.7714 25,725,731.6
HAT -457 867.2241 13,250,664.4
SBS 129.8 1,267.8642 22,332,848.2
HMN 1,224 1,224

Table 4: Statistical analysis for the Mario AI domain results
show p-values for two-sample t-tests. QLR stands for Q-
Learning. Columns show the statistical significance of the
difference between the initial performance, asymptotic (fi-
nal) performance, and cumulative reward (i.e. total reward
throughout the trial).

Agents Initial Asymp. Cumulative
QLR vs SIS 0.018698* 0.99448 0.0010416**
QLR vs DIS 0.65987 0.11448 5.5167e-09****
QLR vs HAT 0.60982 0.71677 9.0692e-12****
QLR vs SBS 0.050229 0.059223 0.00014223***
DIS vs HAT 0.40846 0.23382 1.6551e-18****
DIS vs SIS 0.037257* 0.094503 1.9024e-06****
DIS vs SBS 0.067898 9.1049e-05**** 1.9184e-08****
SIS vs HAT 0.012506* 0.70797 4.121e-15****
SIS vs SBS 0.56634 0.040042* 0.98207
SBS vs HAT 0.039996* 0.023199* 4.0285e-21****

kovskiy and Togelius [9]. There are many possible represen-
tations of the state-space in this domain and here in order
to test our approach in a large state-space, we use 27 dis-
crete state-variables. Boolean state variables jump, ground,
and shoot define whether Mario is able to jump, is standing
on a tile, or is able to shoot fireballs. We use x-dir and y-dir
variables that can take on either one of {−1, 0, 1} values to
define the direction of the agent’s movements. The imme-
diate surrounding of the agent is discretized in 8 grid cells.
For each grid cell we have a state variable close-enemies defin-
ing whether there is a enemy in the matching cell. We also
keep track of the grid cells that are one step farther than the
immediate cells, and we have 8 boolean variables called mid-
enemies. We keep four boolean state variables obstacle to iden-
tify whether the four vertical cells to the immediate right of
Mario are occupied by obstacles such as pipes. Finally we
have two variables closest-enemy-x and closest-enemy-y that
define the Euclidean distance between the agent and the clos-
est enemy within a 22x22 grid. This state space is inspired by
Liao’s work [12]. We note that this domain is a relatively high
dimensional domain compared to most standard RL bench-
marking domains. The main reason of our evaluation in the
Mario AI domain is to show that our model-free approach is
scalable. The agent can choose one of 12 actions combining
one of each options of the following three sets: {left, right, no-
action}, {jump, do not jump}, {run, do not run}. The goal of
the agent is to maximize the total reward it receives through-
out the level. The agent receives a reward of +10 for step-
ping on an enemy, +58 for eating a mushroom, +64 for eat-

434

ing a fire-flower, +16 for collecting a coin, +24 for finding a
hidden block, +1024 for successfully finishing the level, −42
for getting hurt by an enemy (e.g. losing fire-flower), and
−512 for dying. The maximum number of steps per episode
is limited by the game’s timer and the default timeout is 200
seconds. In the context of potential-based reward shaping,
recent work by Harutyunyan et al. [7] implements and evalu-
ates their reward shaping framework [8] in Mario AI domain
as well.

We used the 10 demonstrations’ first 953 observations for
RE-IRL, and used the same demonstrations in full length for
all other methods. For RE-IRL, the 10th longest demons-
tration was 953 observations long and we pruned the first
nine demonstrations at this length to keep the demonstration
length consistent. We used the following parameters for our
agents: number of tiles = 32, α = 0.01/#tiles, beta = 0.05,
γ = 0.9, λ = 0.5, with ε−greedy action selection where
ε = 0.05, and scaling = 1 for the shaping reward.

We ran 10 trials for all five agents’ performance evalua-
tion. The level our agent played in Mario was designed as
an episodic task where the agent finishes a level either with
success or the level ends with failure with the agent’s death,
or a timeout of 200 seconds. Every episode, the agent plays a
randomly generated level, starting from a randomly selected
mode (small, large, fire-mario).

Fig. 4 shows the agents’ performance in 20,000 episodes,
averaged over 10 trials. The vertical axis shows the aver-
age total reward (i.e. points) agents collected during each
episode. The horizontal axis shows the number of episodes.
Each line shows the performance of an agent. Again, for
comparison, we also show the human demonstrator’s per-
formance. Table 3 shows the average initial performance, a-
symptotic performance, and cumulative reward for each agent.
On average the demonstrator scored 1224 points in this do-
main.

Unlike the previous domain not every agent was able to
achieve the same asymptotic performance after 20,000. Three
agents’ asymptotic performance (SIS, DIS, and Q(λ)) is signif-
icantly better than the remaining two (HAT and SBS). Again,
if we consider the number of episodes each agent takes to
surpass the performance of the user, then we see that Q(λ),
SIS, DIS, and SBS require 11, 000, 10, 000, 4, 000 and 12, 000
episodes respectively. The HAT agent was unable to reach or
surpass the demonstrator’s performance.

Similar to our previous experiment we observe a great dif-
ference in the learning process. With the exception of the SBS
agent, most agents start with similar initial performance and
negative total reward for their first several hundred episodes.
The SBS agent leverages Q-function initialization and starts
with a positive initial performance. The initial performance
of the SIS agent was significantly better than the standard
Q(λ)-learning agent, the DIS agent and the HAT agent. That
said, the SIS agent’s asymptotic performance was only better
compared to the SBS and the HAT agents.

In terms of cumulative reward, the SIS agent performed
significantly better than all other agents but the DIS agent.
Table 3 shows that the DIS agent has the best overall cumu-
lative reward performance, exceeding a cumulative reward
of 25M in 20,000 episodes. The DIS agent also is the fastest
to reach to the demonstrator’s performance after about 4, 000
episodes, reaching the best asymptotic performance after about
8, 000 episodes before any of the other methods even reach
the level of the demonstrator.

100 500 953
0

500

1000

1500

2000

A
s
y
m

p
to

ti
c
 P

e
rf

o
rm

a
n
c
e

Length of Demonstrations

p=0.25386

p=0.54204

p=0.5249

Figure 5: Asymptotic performance of the DIS agent after
20,000 episodes in Mario AI. Here the performance is a
function of the length of demonstrations (the number of
state-action pairs recorded per demonstration). Each con-
dition has 10 demonstrations. P-values obtained with two-
sample t-tests between marked conditions for 10 trials. Val-
ues for the bar plot are the average of 10 trials.

100 500 953
0

0.5

1

1.5

2

2.5

3

x 10
7

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Length of Demonstrations

p=0.00085592***

p=5.9428e−09****

p=5.3818e−09****

Figure 6: Cumulative reward the DIS agent received during
20,000 episodes in Mario AI. Here the cumulative reward is
a function of the length of demonstrations (the number of
state-action pairs recorded per demonstration). Each con-
dition has 10 demonstrations. P-values obtained with two-
sample t-tests between marked conditions for 10 trials.

The SBS algorithm shows quick convergence however its
final performance remains limited at about 1,267 points, very
close to demonstrator’s performance, after 20,000 episodes.
This is because SBS takes observed state’s similarity with de-
monstrations and rewards the agent if the agent acts similar
to demonstrations. As pointed out by Brys et al. [4] SBS per-
forms better with minimum amount of consistent demons-
trations (even with a single demonstration in the case of Cart-
Pole domain). Although given enough number of episodes
the algorithm is guaranteed to reach the underlying Q(λ)-
learning’s performance, suboptimal demonstrations affect the

435

speed of learning. Finally, the HAT agent performs slightly
better than standard Q(λ)-learning only for the first 250 epi-
sodes. This is because it is difficult to summarize the de-
monstrator’s policy based on a limited number of observa-
tions. This shows the slight performance boost that policy
transfer brings, however for the rest of the trials, HAT agent
shows slow improvement resulting in the significantly worst
performance after 20,000 episodes.

After an analysis of learning curves and the agents’ per-
formance, we also briefly investigated the effect of the length
of demonstrations on the asymptotic performance and the
cumulative reward. For this set of experiments, we chose the
Mario AI domain as it is a harder task and we used the DIS
agent as it was the fastest learner with the highest cumulative
reward in our previous experiment.

Fig. 5 shows the average asymptotic performance results
for 10 trials using 100, 500 and 953 observations for 10 de-
monstrations. We did not find a significant difference be-
tween the asymptotic performance data for varying length
of demonstrations. We conclude that this is because the DIS
agent learns using a secondary Q-function, and even if the
demonstrations do not contain enough information, in this
case 20, 000 episodes were enough for using the environment
reward to eventually achieve the same asymptotic perform-
ance. However, we did find a significant difference in the
cumulative reward of the agents. Fig. 6 shows that as the
number of observations per demonstration increase, the cu-
mulative reward significantly increases. The results in Fig. 5
and Fig. 6 imply that the length of demonstrations do affect
the learning speed without affecting the asymptotic perform-
ance of the DIS agent.

5. CONCLUSION
In this paper we introduced a novel, three step approach to

use human demonstrations for potential-based reward shap-
ing in reinforcement learning. Specifically, with our method,
we collect demonstrations in a domain, we then use the de-
monstrations to recover a linear function using inverse rein-
forcement learning, finally we use this recovered function to
compute a shaping reward for potential-based shaping in re-
inforcement learning. Our approach is model-free and scal-
able. To show the scalability of our approach we ran two
sets of experiments in a simple two dimensional continuous
Maze domain, and a complex, 27 dimensional Mario domain
with discrete state-variables. We compared our algorithm to
standard RL and two previously introduced reinforcement
learning from demonstration algorithms. Our experiments
show that our approach results in a significant increase in cu-
mulative reward collected by the agents. Our agents’ asymp-
totic performance surpasses the human demonstrator’s av-
erage performance. One of our approaches, Static IRL Shap-
ing results in faster learning with higher cumulative reward
in the simpler Maze domain, whereas our second approach,
Dynamic IRL Shaping results in faster learning with higher
cumulative reward in the more complicated Mario AI do-
mains. One possible explanation for this behavior is that the
Maze task was not complex enough to observe the benefits
of the secondary policy the DIS algorithm learns. This indi-
cates that in simple domains, learning a reward function by
demonstrations can be enough to improve a learner’s per-
formance compared to previously introduced transfer lear-
ning techniques. It is also likely that the high dimensionality
and the state representation of the Mario AI domain makes

it difficult for the IRL algorithm to recover a suitable reward
function for all sections of the state space. The intuition be-
hind the DIS algorithm is that the secondary policy can gen-
eralize over the state space and provide a more informative,
adaptive shaping reward signal for the agent. Which may ex-
plain why the DIS agent performs better in this domain. Fi-
nally we also briefly investigated the effect of the number of
observations on learning. We found that our approach learns
faster as the demonstrations contain more observations as
this results in a more complete representation of the task.

We believe that using demonstrations originating either
from a human teacher or another agent, is a promising di-
rection of research for incorporating a priori knowledge in
reinforcement learning. For future work, we are investigat-
ing the impact of demonstration quality on learning and the
use of multiple, locally weighted, learned shaping rewards.

Acknowledgments
Halit Bener Suay’s work is supported by the Office of Naval
Research award N000141410795. Tim Brys is funded by a
PhD scholarship of the Research Foundation Flanders (FWO).
This research has taken place in part at the Intelligent Robot
Learning (IRL) Lab, Washington State University. IRL re-
search is supported in part by grants AFRL FA8750-14-1-0069,
AFRL FA8750-14-1-0070, NSF IIS-1149917, NSF IIS-1319412,
USDA 2014-67021-22174, and a Google Research Award.

REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Twenty-first
international conference on Machine learning - ICML ’04,
New York, New York, USA, 2004.

[2] A. Barto, R. Sutton, and C. Anderson. Neuronlike
adaptive elements that can solve difficult learning
control problems. Systems, Man and Cybernetics, IEEE
Transactions on, SMC-13(5):834–846, 1983.

[3] A. Boularias, J. Kober, and J. Peters. Relative entropy
inverse reinforcement learning. In Proceedings of the
Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, April 11-13, 2011, pages 182–189, 2011.

[4] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E.
Taylor, and A. Nowé. Reinforcement learning from
demonstration through shaping. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), 2015.

[5] K. P. Burnham and D. R. Anderson. Model selection and
multimodel inference: a practical information-theoretic
approach. Springer, 2002.

[6] S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 433–440. International
Foundation for Autonomous Agents and Multiagent
Systems, 2012.

[7] A. Harutyunyan, T. Brys, P. Vrancx, and A. Nowé.
Shaping mario with human advice. In Proceedings of the
2015 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’15, pages 1913–1914,
Richland, SC, 2015.

436

[8] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe.
Expressing arbitrary reward functions as
potential-based advice. In AAAI Conference on Artificial
Intelligence, 2015.

[9] S. Karakovskiy and J. Togelius. The mario ai
benchmark and competitions. Computational Intelligence
and AI in Games, IEEE Transactions on, 4(1):55–67, 2012.

[10] E. Klein, B. Piot, M. Geist, and O. Pietquin. ECML,
Prague, Czech Republic, 2013, A Cascaded Supervised
Learning Approach to Inverse Reinforcement Learning,
pages 1–16. Springer Berlin Heidelberg, 2013.

[11] S. Levine and V. Koltun. Continuous inverse optimal
control with locally optimal examples. In ICML ’12:
Proceedings of the 29th International Conference on
Machine Learning, pages 41–48, 2012.

[12] Y. Liao, K. Yi, and Z. Yang. Cs229 final report
reinforcement learning to play mario. Technical report,
Stanford University, 2012.

[13] K. Muelling, A. Boularias, B. Mohler, B. Schölkopf, and
J. Peters. Learning strategies in table tennis using
inverse reinforcement learning. Biological cybernetics,
108(5):603–19, Oct. 2014.

[14] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In In Proceedings of the Sixteenth
International Conference on Machine Learning, pages
278–287. Morgan Kaufmann, 1999.

[15] A. Y. Ng and S. J. Russell. Algorithms for Inverse
Reinforcement Learning. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages
663–670. Morgan Kaufmann Publishers Inc., 2000.

[16] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., 1994.

[17] N. Ratliff, J. Bagnell, and M. Zinkevich. Maximum
margin planning. Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[18] G. A. Rummery and M. Niranjan. On-line q-learning
using connectionist systems. Technical report,
University of Cambridge, Department of Engineering,
1994.

[19] S. Schaal. Learning from demonstration. In Advances in
Neural Information Processing Systems 9, pages
1040–1046. MIT Press, 1997.

[20] B. F. Skinner. The behavior of organisms: An experimental
analysis. Appleton-Century, 1938.

[21] R. S. Sutton. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, University of Massachusetts -
Amherst, 1984.

[22] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1998.

[23] M. E. Taylor and P. Stone. Cross-domain transfer for
reinforcement learning. In Proceedings of the 24th
international conference on Machine learning, pages
879–886. ACM, 2007.

[24] M. E. Taylor, H. B. Suay, and S. Chernova. Integrating
reinforcement learning with human demonstrations of
varying ability. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2,
pages 617–624. International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

[25] E. Wiewiora, G. W. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents. In
Proceedings of the Twentieth International Conference on
Machine Learning (ICML), pages 792–799, 2003.

[26] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey.
Maximum Entropy Inverse Reinforcement Learning. In
AAAI, pages 1433–1438, 2008.

437

