
PAC Continuous State Online Multitask Reinforcement
Learning with Identification

Yao Liu
Peking University
Beijing, PR China

liuyao@pku.edu.cn

Zhanhan Guo
Carnegie Mellon University

Pittsburgh, PA, United States
zguo@cs.cmu.edu

Emma Brunskill
Carnegie Mellon University

Pittsburgh, PA, United States
ebrun@cs.cmu.edu

ABSTRACT
One key feature of a general intelligent autonomous agent
is to be able to learn from past experience to improve fu-
ture performance. In this paper we consider how an agent
can leverage prior experience from performing reinforcement
learning in order to learn faster in future tasks. We intro-
duce the first, to our knowledge, probably approximately
correct (PAC) RL algorithm COMRLI for sequential multi-
task learning across a series of continuous-state, discrete-
action RL tasks. We assume tasks are sampled from a finite
number of clusters of Markov decision processes, and pro-
vide a bound on the number of steps on which the algorithm
makes a suboptimal decision that is substantially smaller on
later tasks. We also provide preliminary evidence to suggest
our approach may be useful in practice, by showing encour-
aging simulation performance in a standard domain where
it compares favorably to a state-of-the-art algorithm.

General Terms
Algorithms

1. INTRODUCTION
A key feature of an intelligent, autonomous agent is to be

able to learn from past experience to improve future perfor-
mance. In many applications, including robotics, consumer
marketing, and healthcare, such an agent will be perform-
ing a series of reinforcement learning (RL) tasks modeled as
Markov Decision Processes (MDPs) with a continuous state
space and a discrete action space. In this paper we are in-
terested in formally quantifying the amount of experience
needed for the agent to learn to make good decisions while
learning from past experience in a series of such tasks.

Our work falls into the broader class of transfer, lifelong
and multi-task sequential decision making. There has been
significant interest in this area for the past two decades,
and novel algorithms have been introduced with promising
empirical performance. Transfer learning has typically fo-
cused on leveraging experience from a single source task to
improve performance on a single target task. Lifelong learn-
ing typically refers to doing a series of tasks and improving
performance on later tasks. Multi-task learning often refers

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to having experience from a set of distinct tasks, and us-
ing that experience to improve performance on a new target
task. This can be done in either a batch setting, or an on-
line setting where the new target task is added to the set of
source tasks to accelerate performance on later tasks. This
final setting is the one we consider in this paper. Note that
the topic of curriculum learning, where an agent may choose
the order in which to complete tasks, is a very interesting
question that is outside the scope of our current work: here
we assume that the stochastic environment selects the next
task to provide to an agent.

Encouraging recent work has shown substantially improved
empirical performance on online multi-task continuous state
RL [1, 4]. However, there has been very little theoretical
analysis of this setup. Exceptions include work by Lazaric
et al. [12] that shows a bound on the estimated value func-
tion used by transferring samples from prior tasks, but they
consider the batch setting (where one has a set of sam-
ples from a target task) and do not handle online explo-
ration/exploitation. Very recent work by Eaton et al. [2]
uses a policy search method and provides regret bounds, but
the regret bounds are with respect to the best policy in their
policy class with additional structural assumptions, rather
than the true optimal policy. To our knowledge there has
been no work on bounding the amount of experience needed
to make good decisions in later continuous-state RL tasks by
leveraging prior experience in tasks with the same state and
action space, but different dynamics and/or reward models.

In this paper we help to fill this gap by introducing a PAC
RL algorithm (Continuous-State Online Multitask RL with
Identification a.k.a COMRLI) for online multi-task learning
across a series of continuous-state, discrete-action RL tasks
with the same state and action spaces. We assume that
each task is drawn from a stationary distribution over C
MDP clusters: though for simplicity most of our analysis will
assume that there is a single MDP within each cluster, our
results also extend to when each cluster consists of MDPs
with very similar transition and reward models. We prove
that the number of steps on which the agent may take a non
ε-optimal action, known as the sample complexity, will be
substantially smaller in later tasks, scaling as a function of
C rather than the size (covering number) of the state-action
space. Our work builds on recent advances in PAC discrete-
state online multi-task RL algorithms [5] and single task
PAC continuous-state reinforcement learning [16]. We also
provide encouraging, preliminary empirical performance on
a standard domain where our algorithm exceeds a state-of-
the-art continuous-state multitask RL algorithm.

438



Our algorithm proceeds in two stages. In the first stage,
our approach learns a good estimate of the optimal Q-function
of every given task (in our setting, after a bounded number of
tasks, all C tasks will have been encountered with high prob-
ability). In the second stage, we leverage this prior informa-
tion to speed learning in new tasks by using a novel method
to quickly identify the new task. Intuitively we leverage a
mixing assumption on the underlying MDPs to enable us to
eliminate possible MDPs by checking that we can reach dif-
ferent states in a bounded number of steps with high prob-
ability. This identification process, paired with assuming
that tasks are sampled from a stationary (not adversarial)
distribution, enables our overall sample complexity to scale
as a function of the number of tasks rather than the size of
the state-action space.

2. RELATED WORK
There has been much research on methods for leveraging

past experience. One of the simple batch settings focuses on
transferring experience from a single source task to a single
target task. In many cases only the reward of the task is as-
sumed to differ; this reflected domains where the transition
dynamics were the same but the goals were different. Later
work relaxed the assumption to also allow the transition dy-
namics to differ, and even allowed partial sharing of the state
space. The multi-task setting has also been explored under
similar structural assumptions. These approaches all have
been shown to improve performance empirically [17].

However there has been far less work that have theoret-
ical guarantees on performance; without theory there is no
guarantee that leveraging past experience would not end up
harming future performance (negative transfer). The lack of
theory is not surprising considering formal bounds for sin-
gle task RL performance have only been recently developed
[11, 10]. These bounds are called Probability Approximately
Correct (PAC), since they bound the number of steps in
which an algorithm performs less than near-optimal (sample
complexity) with high probability. The early work studied
discrete state spaces, but more recent work has also devel-
oped PAC bounds for continuous state spaces [16, 6], which
we build upon.

Some recent work do have theoretical bounds on trans-
fer, but only focus on the simple batch setting of transfer-
ring experience from a single source task to a single target
task. They also include other assumptions such as access to
a generative model of the source task, a linear approxima-
tion of the value function in [12], or a discrete state space
in [14]. These approaches do not consider the exploration-
exploitation trade-off in the online RL setting.

We focus on the continuous state space, multi-task, life-
long learning setting, in which an infinite sequence of tasks
are presented sequentially to the algorithm. There has been
recent work in this setting using policy gradient [1, 4], and
even theoretical bounds [2]; however they require all tasks to
share an underlying structure in their policies. Using policy
gradient also restricts the scope of their policy class, which
the optimal policy may not be a part of.

Our approach builds on related work for the discrete state,
multi-task setting [5]: identifying whether a task is the same
as a previous task is much faster than learning from scratch.
However we use our novel method to quickly identify the
current task in a continuous state space.

3. PROBLEM SETTING
In our continuous multi-task RL setting, we assume tasks

are drawn sequentially and iid over a finite set C of C tasks
(we will mention in section 4 how this can be relaxed to C
clusters of tasks). Each task is a Markov Decision Process
(MDP) that can be described by a tuple (S,A, T,R, γ,H, b0):
S is a continuous set of states; A is a discrete set of actions;
T (s′|s, a) is the probability of transitioning to state s′ from
s after executing action a; R(s, a) ∈ [0, 1] is the expected
reward from executing action a in state s. The initial state
is drawn from b0. An RL algorithm then executes an ac-
tion a at every time-step t, after which the MDP returns
some reward rt according to R(s, a), and transitions to a
new state according to T (s′|s, a). At every step, the data
sample (st, at, rt, st+1) is collected. A task is finished after
H steps have passed. The objective of the RL algorithm
is to maximize the accumulated discounted rewards i.e. to
maximize the value function V (s) = E[

∑H
t=1 γ

t−1rt|s0 = s];
γ ∈ [0, 1] is the discounted factor, which determines the sig-
nificance of future rewards. The optimal value function is
denoted as V ∗(s), and Q(s, a) is the optimal state-action
value of starting with action a in state s and then follow-
ing the optimal policy. Qmax is the maximium Q-value in a
domain and Qmax ≤ 1

1−γ .
We assume all tasks have the same state-action space S×

A, discount factor γ, and task length H; but, the parameters
(T,R, b0) can differ. The overall objective of the algorithm
is to maximize the value function V (s) for all tasks.

While we acknowledge that our assumptions are not suit-
able for all situations, we believe our setting captures a gen-
eral set of important domains such as user modeling where
different groups of users may have similar behavior (see ex-
amples from [13] or [15]).

We prove a high probability, polynomial bound on the
sample complexity of our algorithm (PAC bound). The sam-
ple complexity is the total number of steps on which the ex-
pected value of algorithm is less than ε-optimal i.e. formally,
the number of steps t where V (st) ≤ V ∗(st)− ε for all tasks.

4. ALGORITHM
Intuitively, identifying which of C possible tasks a new

task is should require much less experience than learning
the parameters of a new task from scratch. Once a task’s
identity is known, we can leverage all prior knowledge about
this task, and immediately start using a good policy.

We use the optimal Q-function instead of the model pa-
rameters as the evidence to distinguish different tasks; how-
ever we still assume that different tasks have different mod-
els, so we only cluster tasks that have the same model. As we
will discuss later on, the main reason for using Q-functions
rather than model parameters like in prior work is due to
the continuous state space.

We divide the sequence of tasks into two phases. In phase
1, in each task, we try to explore the whole state space effi-
ciently to learn a good estimate of the optimal Q-function of
every task over the entire state space. At the end of phase 1,
we cluster the tasks according to the estimated Q-functions.
Since tasks are sampled iid from C possible tasks, we can
set the length of phase 1 (see Lemma 2) so that, with high
probability, all C types are encountered. In phase 2, at the
beginning of each task we try to identify which of the C task
clusters it belongs to. After identifying it, we run the single

439



Algorithm 1 Continuous State Online Multitask RL with
Identification (COMRLI)

Require: T1, C̄, LQ, ε,Γ, H
for t = 1, 2, . . . T1 do

Receive an unknown MDP Mt ∈M
Run algorithm 2 on Mt with (Γ, D)-known.
For all remaining steps until H steps, execute C-PACE

algorithm on Mt

Store all samples as a set SampleMt
Cluster all tasks into Ĉ ≤ C̄ groups and combine their
sample sets.
for t = T1 + 1, . . . T do

Receive unknown MDP Mt ∈M
Run algorithm 3 on Mt

if Mt is identified then
Combine samples from Mt to the group

task C-PACE algorithm using the all the previous samples
collected from all the tasks within that cluster. Phase 2 is
used for all subsequent tasks. We will shortly prove that this
approach allows us to improve the sample complexity with-
out incurring negative transfer in terms of our theoretical
bounds.

4.1 Assumptions and definitions
Before we illustrate details of our algorithm, we need to

introduce some assumptions:

1. There exists a distance metric d[·, ·] (e.g. Euclidean
in our experiments) in which the optimal Q-function
QMi (s, a) is Lipschitz continuous over (s, a), for any
Mi in C.

2. Tasks are sampled from a finite set of C distinct MDPs,
and C̄ is a known upper bound on C.

3. The optimal Q function for each of the C MDPs must
differ in at least one state-action pair, e.g. for any two
MDPs Mi and Mj , there must exist at least one (s, a)
pair such that ||Qi(s, a)−Qj(s, a)||2 ≥ Γ > 0.

4. There is a finite diameter D(ε): any (s, a) pair’s neigh-
borhood (radius at most ε) is reachable from any other
(s, a) pair in at most an expected D(ε) steps.

The first assumption is a smoothness property over the Q-
functions for any MDP. Intuitively, this ensures that close-by
state-action pairs can only differ by a bounded amount in
their Q-values. This is essential for near optimal learning to
be efficient: if any two arbitrarily close state-action pairs can
differ an arbitrary amount in their value, then it is necessary
to visit all state–action pairs in the space to learn a near-
optimal policy; this is an impossible task to do in finite time
because the state space is infinite and continuous. Note that
the Q-funtion is also Lipschitz continuous over the action
space if we use proper a metric (e.g. our experiments). This
assumption also implies that one could approximate such an
MDP using a finite set of states and actions, because near-
by states can only differ a finite amount in their resulting
state–action values. This assumption was used and resulted
in the tabular representation of the Q-function by a prior
paper that introduced a PAC RL algorithm for single task
continuous-state MDPs[16].

The second assumption describes our multi-task setting.
For simplicity, we assume that there are C distinct MDP
clusters with only one MDP in each cluster i.e. only C dis-
tinct MDPs, and that each task is one of the MDPs. It is
straightforward to relax the assumption to the case where
each cluster is made up of MDPs with similar dynamics. 1

The third assumption says that we require tasks that are
from distinct MDPs to differ in their optimal Q-values in at
least one state–action pair. This is quite mild: if two tasks
do not differ in their optimal Q-values in any state–action
pair, then they have identical Q-values and optimal policies,
and are likely to have the same model parameters.

The fourth assumption is perhaps the strongest, and rep-
resents a restriction on the mixing property of the MDPs
considered. A similar assumption has been employed in dis-
crete state–action spaces[3, 5, 8]. Intuitively, it ensures that
it is possible to go between two regions of state–action space
under some policy in a bounded number of steps. This as-
sumption is needed for our algorithm to perform identifica-
tion of the current task during phase 2. Fortunately there
do exist a number of domains which have bounded diameter.
For example, many interesting RL domains are episodic. In
episodic settings, the diameter can be no more than twice the
episode length for any two states that are reachable within
one episode from the starting distribution. Also note that
in an episodic domain, only the states that are reachable
within one episode from the starting state are relevant to
the optimal policy and value function.

Our algorithm also depends on the Q-gap between distinct
optimal Q-functions.

Definition 1. The Q-gap, Γ, is a positive constant that
satisfies that for any two MDP clusters2 Mi, Mj ∈M, there
exist some state–action pair (s, a) such that |Q∗Mi (s, a) −
Q∗Mj (s, a) | ≥ Γ.

Note that according to the third assumption, the Q-gap
must always be greater than 0. We do assume our algorithm
has an estimate of a lower bound on Γ. In many real world
domains, we don’t know Γ in advance; in this case the lower
bound can be set to ε/2, since if the Q-functions between
two tasks are closer than ε/2, the ε-optimal policy for one
is still an ε-optimal policy for the other and the two tasks
would be most likely almost identical anyway. However in
most cases, Γ would be much larger than ε.

Some more definitions used in algorithm are clarified here:

Definition 2. A state-action is known if it has k visited

neighbors, which means LQd[(s, a) , (si, ai)] ≤ ε(1−γ)
8

, where

k = O( 1
ε2(1−γ)2

) according to theorem 3.16 in [16]. This kind

of knownness is called as ε-known. The knownness in phase
1, (Γ, D)-known, is different and will be discussed later.

1If we have C clusters of MDPs, where all MDPs in the same
cluster have highly similar transition and reward models,
then, our results can be extended; our results immediately
apply following 3 if MDPs in the i-th cluster (of C clusters),
satisfy the following property: for any two MDP M1, M2 in
cluster i, for any (s, a) pair,

|rM1 (s, a)− rM2 (s, a)| <
ε(1−γ)

16∫
S |TM1

(s′|s, a)− TM2
(s′|s, a)|ds′ < ε(1−γ)2

16

2Note that different MDP clusters have distinct Q-functions,
given our assumption 3 and lemma 3.

440



Definition 3. For an MDP M = < S,A, T,R, γ,H, b0 >,
let K be the set of known state-action pairs. The known
MDP MK = < K ∪ sauk, T,R, γ,H, b0 > is defined as fol-
lows. sauk is an additional s-a pair to denote all the un-
known s-a pairs. For state-action pairs in K, r (s, a) = 0,
and for the sauk state-action, r(s, a) = 1. All the unknown
state-action pairs are merged into sauk and it is an absorb-
ing state-action pair. Transitions to unknown pairs in M are
redirected to sauk, and transitions within K are identical to
those defined in the original MDP M .

Definition 4. For a Q-function QMi , we use πMi to denote
the greedy policy introduced by QMi .

Algorithm 2 Phase 1: Continuous PAC Explore

Require: Te, LQ,Γ

Set the neighborhood radius to min{Γ/4,1/24}
LQ

while some (s, a) is unknown (see Def.7) do
This is a start of new Te-step episode.
Find a Te-step undiscounted optimistic Q-function

Q0,Te by:
Initialize: QTe,Te (s, a) = 0
for t = Te − 1, . . . , 0 do

if (s, a) is known then

Find k-NN of (s, a): (sj , aj , rj , s
′
j)
k
j=1

Qt,Te = 1
k

k∑
j=1

(
rj + max

a
Qt+1,Te

(
s
′
j , a
)

+ LQdij
)

else
Qt,Te = (Te − t)

Take greedy policy of Q0,Te (s, a) for next Te steps.
if (s, a) is unknown then

Add (s, a, r, s′) to the sample set

4.2 Phase 1
In the first phase, we efficiently explore each task to get

a good estimate of their optimal Q-functions. We only need
the estimated Q-functions to be (Γ, D) known, which means
O(Γ) (the precise value is set later in the theory section)
within the true Q-function, in order to correctly cluster the
tasks. Note that Γ may be much bigger than ε so phase
1 may not yet give us an ε-optimal policy for the tasks.
We extend the PAC-EXPLORE algorithm [8] to continuous
spaces while maintaining the same guarantees, and use it to
explore (see Algorithm 2). To achieve efficient exploration,
we construct a new MDP called known MDP (see defini-
tion 3). Then we find a Te-step undiscounted optimistic
Q-function on this MDP through value iteration, where the
notation Qt,Te means the Te-step optimistic function in the
tth step. The policy introduced by this Q-function will di-
rect exploration towards the less explored (unknown) state-
action pairs. After the Q-function is (Γ, D) known, we then
execute C-PACE for remaining steps of the task. The k
nearest neighbors are defined by the distance used in the
Lipschitz property. Note that the number of tasks in Phase
1 is defined in advance, in order to ensure all underlying C
tasks are experienced with high probability.

4.2.1 Clustering and Informative State–action Pairs
At the end of each task in phase 1, we solve the fixed-point

equations (equation (1) in [16]) in C-PACE to estimate the

Algorithm 3 Phase 2: Continuous Identify

Require: Γ, ε, C̄,H, Ti, n
Initialize version space: C ← {1, . . . , C̄}
while h < H do

for c ∈ C do
Use algorithm 2 with samples from Mc to find a

informative pair (s, a), s.t.
∣∣∣QπiMi(s, a)−QπjMj (s, a)

∣∣∣ ≥ 7Γ
8

if informative pair (s, a) is reached then
Break the loop.

for g = {i, j} do
for t = 1 . . . Ti do (Monte Carlo estimate)

Run the greedy policy of QMg , πg, for n steps

Rgt ← r(s, a) +
∑n
l=1 γ

lrl, h← h+ n

D̃ ← 1
while Haven’t returned to (s, a) do

for c ∈ C do
Use Mc to create an informative MDP,

and try to go back to (s, a) within 12D̃ ln C̄
δ

steps.
if get back to (s, a) then

Break the loop.

D̃ ← 2D̃
Rg ← 1

Ti

∑Ti
t=1 Rgt

if
∣∣Rg −QMg (s, a)

∣∣ ≥ Γ
8
then

C ← C\{g}
if Both i,j haven’t been eliminated then

Eliminate the model k with a smaller Rg.

if Only one group left then
Combine the sample sets and run C-PACE

optimal Q-function of that task given the data gathered.
Our analysis in the next section shows that the distance
between the estimated Q-functions and the true optimal Q-
functions for each task is no more than Γ

4
. This allows our

algorithm to cluster together all tasks whose true optimal
Q-function differ by no more than a fixed threshold (de-
fined below). After the clustering completes, all the samples
within a cluster are merged to form a single sample set. The
algorithm then runs the fixed-point method from C-PACE
to estimate the optimal Q-function for each cluster. Note
that depending on the amount of experience in the cluster,
this estimated function may or may not be ε-optimal yet.

Once the algorithm computes an estimated optimal Q-
function for each cluster, these functions are used to com-
pute a set of informative state–action pairs.

Definition 5. Given a set of Q-functions, a state-action
(s, a) is informative if there exist at least two distinct Q-
functions, Qi and Qj , such that |Qi(s, a)−Qj(s, a)| ≥ 7Γ

8
.

These informative pairs are the state–action pairs where Q-
functions significantly differ, and so distinguish between dis-
tinct Q-functions. We will make heavy use of these pairs to
identify which cluster new tasks will belong to in phase 2.

4.3 Phase 2
After clustering all the tasks from phase 1, we end up

with Ĉ clusters, each of which consist of a (merged) sample
set and an estimated optimal Q-function. In this phase, we
try to identify which cluster each new task belongs to, and
once we do we can use that cluster’s sample set to jumpstart

441



learning – we may even immediately get a near-optimal pol-
icy if we have enough data in the cluster’s sample set.

Identifying the current task requires some care since we
only know that the current task has an optimal Q-function

that matches one of the Ĉ clusters. Of course, if we compute
an approximate Q-function in the current task of sufficient
accuracy, that is enough to identify which cluster it belongs
to; however by the time we have enough data to achieve
that accuracy in computing the Q-function, we will only
get a little benefit to leveraging prior samples. This will
only reduce the exploration needed to being a function of Γ
instead of ε, but it will not impact the dependence on the
size of the state–action space covering number.

Instead, we will rely on informative pairs for identification.

For each task in phase 2, we start with a set of Ĉ candidate
clusters that the new task potentially belongs to. Then we
can use their associatedQ-functions to compute the set of in-
formative pairs I; we will need at most one informative pair
for every pair of distinct clusters. We then repeatedly visit
an informative pair and compute an estimate of its Q-value
for the current task. Each informative pair distinguishes
between two clusters’ Q-functions. Then we will compare
the estimate to the two optimal Q-functions to determine
which cluster should be eliminated as a candidate. Then we
move onto another informative pair to eventually eliminate
another candidate. This process is repeated until there is
only one candidate left. More details follow.

Given an informative set of pairs, we define an informative
MDP for the current task:

Definition 6. For an MDP M = < S × A, T,R, γ >, let
I be the set of informative state-action pairs. The MDP
Minform = < S × A \ I ∪ sainform, T,R, γ > is defined in
a similar way as known MDP in definition 3, replacing the
unknown state-action pairs with informative pairs.

To start, we need to quickly reach an informative pair.
The main issue with trying to visit informative pairs quickly
is that the identity of the new task is unknown. If we knew
the identity, then we could create an Minform based on the
associated cluster, and execute the resulting policy. Because
of our diameter assumption, this policy will quickly reach the
target informative pair. But since we actually don’t know
the identity of the new task, we need to do something else.
What we do is try to use the Minform of every candidate
cluster. If we fail to reach the target informative pairs, we
just move on and try to use Minform of the next candidate
cluster. Since we know that one of candidate cluster is the
true cluster, we will eventually use its Minform, and success-
fully reach the target pair. This will require trying to use the
Minform of each candidate cluster at most once. With this
process, first we can create Minform for each candidate with
all the informative pairs I to try to reach any informative
pair. After that, we can create Minform for each candidate
with a single target informative pair to try to return to that
particular informative pair.

Next, we need to use the informative pair to try to elimi-
nate candidates. Note that an informative (s,a) pair is only
guaranteed to be informative for a particular pair of candi-
dates (the pair may actually be informative for more than
two candidates, but for simplicity we only consider two).
After we reach an informative state-action pair, for exam-
ple where QMi and QMj is sufficiently different, we run Ti
trajectories of πMi and πMj from here (using the previous

process to return to the informative pair after each trajec-
tory) for an estimate of this task’s Q-value at this pair. This
is to test which one of these two Q-functions is different with
the current new task’s Q-function. Since QMi and QMj are
sufficiently different, we know at least one of them will differ
with the current new task’s Q-value. If the estimate of the
Q-value of the current task is not close to the Q-value com-
puted from its candidate, this candidate will be eliminated.
If both policies being tested have estimates that are close
enough to what they are supposed to be, we will eliminate
the candidate with the smaller computed Q-value. Once we
eliminate one or both of these candidates, we pick another
informative pair belonging to two other candidates to test.
Every informative pair leads to eliminating at least one can-
didate, so we will eventually result in only one candidate left
i.e. a successful identification.

After a successful identification it may immediately re-
sult in an ε-optimal policy if there are enough samples from
the cluster; otherwise the data of the current task is col-
lected and merged with the cluster’s data. Later on, after
encountering tasks from the same cluster over and over again
there will eventually be enough data for an ε-optimal policy.
Thereafter, every new task will get an ε-optimal policy im-
mediately after identification. Since identification does not
depend on the covering number of the state-action space,
the sample complexity of new tasks will then also no longer
depend on the size (covering number) of the state-action
space. This is the source of the sample efficiency.

4.4 Motivation for Using Q-functions
In prior work [5], the difference between model parameters

(the transition and reward dynamics) is used to distinguish
between different tasks and to identify a new task. However
complications arise if we try the same approach here due to
a continuous state space. The transition function becomes a
probability density and is hard to represent. We can param-
eterize it, but that restricts the structure of the transition
function. Alternatively, we can use a nonparametric method
such as Gaussian Processes (GPs) like in [7], however that
introduces extra computational complexities, as opposed to
using a simple table to maintain a Q-function. Also, using
a GP results in slower learning for single tasks than using
the Q-function based method C-PACE [7]. Our approach of
using Q-functions is simpler since the representation is just
a table, and this same representation is also used for the pol-
icy. The only smoothness assumption is on the Q-function,
and not on the model parameters.

Using Q-functions rather than model parameters to clus-
ter also opens a new opportunity. Without assuming that
different MDPs have different Q-functions, it may be possi-
ble that different MDPs end up having the same Q-function
and can be clustered together. However we would no longer
be able to identify new tasks quickly. Our identification re-
lies on quickly reaching informative states. Computing these
policies to reach informative states requires that the dynam-
ics of the new task resemble the dynamics of the cluster it
belongs to. If we allowed different MDPs with the same Q-
function to be clustered together, we would no longer be able
to guarantee that we can reach an informative state quickly.

5. THEORETICAL GUARANTEES
To start the analysis of the sample complexity, we need

some additional assumptions and definitions.

442



1. Each task has at least pmin > 0 probability to be
drawn in phase 1, and phase 1 has at least ln C̄

pminδ
tasks.

2. The covering number NSA(LQ, ε) is the size of the
largest minimal covering set Sc of the state-action space,
which means that for any (s, a) there exist k points
in Sc, such that for any one of the k points (si, ai):
LQd [(s, a) , (si, ai)] ≤ ε(1− γ)

3. Given an input δ, all tasks in phase 1 and 2 should be
executed for more than Hmin steps, where:

Hmin = O

(
max

{
D2 ln

(
NSA(LQ,Γ)

δ

)
,

Q2
max

Γ2(1− γ)2
ln

(
T1NSA(LQ,Γ)

δ

)}
NSA(LQ,Γ)D

)
The first assumption makes sure we will encounter all dis-

tinct tasks in phase 1, and is a common assumption in pre-
vious work [5]. The second assumption is to ensure we can
sufficiently explore to create good enough estimates of the
Q-functions in phase 1. The main PAC bound for our algo-
rithm is described in the theorem below.

Theorem 1. For any ε and δ, if we run Algorithm 1 for
T sequential tasks, each for H ≥ Hmin steps, where Hmin
meets the requirement in the third assumption above. Then
the algorithm will select an ε-optimal policy on all but at
most

O
(
T1 max {Hmin,min {ζs, H}}+ C̄ζs

+ (T − T1)
Q2
maxC̄

Γ2 ln C̄
δ

(
C̄D ln C̄

δ
+ logγ Γ

))
steps, with probability 1 − δ. ζs is the sample complex-
ity of a single task C-PACE algorithm, which is at most

O
(

Q2
max

ε2(1−γ)2
ln
(

1
ε(1−γ)

)
ln
(
NSA(LQ,ε)

δ

)
NSA(LQ, ε)

)
.

T1 is the number of tasks in phase 1. Before going into the
proofs, we are going to examine the improvement in sample
complexity of our algorithm over a single-task algorithm.

First, consider the sample complexity of phase 1, which is
the first term of the bound. We want to compare Hmin and
ζs. If Hmin is less than or equal to ζs, then the single-task
complexity ζs dominates and we do no worse than the single
task case. In most cases, T1 < NSA(LQ,Γ), so Hmin can be
simplified to

O

(
max

{
D2,

Q2
max

Γ2(1− γ)2

}
ln

(
NSA(LQ,Γ)

δ

)
DNSA(LQ,Γ)

)
Note that the NSA(LQ, ε) term for C-PACE can be much
larger than the NSA(LQ,Γ) term for Hmin due to Γ being

larger than ε. If D is at most O

(
1

ε
2
3

)
and D

Γ2 is at most

O
(

1
ε2

)
, then the sample complexity of phase 1 is no more

than C-PACE.
Now we compare the total sample complexity of our algo-

rithm with a single-task algorithm. Even in the worst case,
the total sample complexity of our algorithm is about

Õ

((
C̄ + T1D

)
ζs + (T − T1)

C̄2DQ2
max

Γ2

)
Since in most cases C̄ << NSA and C̄ + T1D is constant as
T increases, assuming again that D

Γ2 is at most O
(

1
ε2

)
we

can get a notable improvement over single task algorithms
whose sample complexity is linear with respect to NSA.

Now we start to prove the theorem. We firstly divide the
suboptimal steps of our algorithm into 3 parts, and bound
each part. The first part consists of steps in phase 1; the
second part consists of steps in phase 2 before identification
succeeds; and the third part consists of suboptimal steps
after identification succeeds. Besides analyzing the sample
complexity, we also need to prove the accuracy of clustering
and the correctness of identification. Before that, we intro-
duce some supporting lemmas. Proofs, when omitted, are
provided in the supplement.3

5.1 Lemmas

Proposition 1. (lemma 4.5 in [9]) There are at most
kNSA(LQ,Γ) number of visits to unknown state-action pairs
in Algorithm 2, where a known state-action pair means it has

k visited neighbors within a distance of Γ(1−γ)
8LQ

.

Proposition 2. In algorithm 2, denoting exact Bellman
operator by B and the upper bound of Q-value by Qmax, if

4Q2
max

ε2
ln

(
4NSA(LQ,Γ)

δ

)
≤ k ≤ 4NSA(LQ,Γ)

δ

and the radius of the neighborhood is no more than Γ
2LQ

,

then w.p. 1− δ/2, for all known (s, a) (Known is defined in
proposition 1), we have for any t < Te:

|Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ

where Te is the finite horizon length in algorithm 2.

Proposition 3. Assume R ∈ [0, 1]. Suppose in Algo-
rithm 2, |Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ, π is a Te-step
greedy policy introduced by Qt,Te , and Qπt,Te is the Q value of
this policy. Then ∀ known (s, a) (Known is defined in propo-
sition 1), t<T,

∣∣Q∗t,Te (s, a)−Qπt,Te (s, a)
∣∣ ≤ 2 (Te − t) Γ, and∣∣V ∗t,Te (s) ≤ V πt,Te (s)

∣∣ ≤ 2 (Te − t) Γ

Before we introduce the following lemmas, we need to in-
troduce a new concept of knownness, (Γ, D)-known.

Definition 7. A state-action pair is (Γ, D)-known when it
has at least

max

{
D2 ln

(
NSA(LQ,Γ)

δ

)
,

Q2
max

Γ2(1− γ)2
ln

(
T1NSA(LQ,Γ)

δ

)}
visited neighbors within a distance of Γ(1−γ)

8LQ
.

Lemma 1. After no more than O
((
kNSA(LQ,Γ) + ln 1

δ

)
D
)

steps of Algorithm 2, every state-action pair will have at
least k visited neighbors, with probability of 1− δ, where k ≥
kmin = O

(
D2 ln

(
NSA(LQ,Γ)

δ

))
, k ≤ kmax = O

(
NSA(LQ,Γ)

δ

)
.

Proof. (Sketch) Following the three proposition above,
this proof is similar to the proof of Theorem 2 in [8]. The
key intuition here is to construct a known MDP and try to
achieve an ε-optimal policy in this MDP, directing explo-
ration to unknown state-action pairs quickly.

3http://cs.cmu.edu/ ebrun/pac continuous multitask aamas2016.pdf

443



Lemma 2. (lemma 1 in [5]) If T1 ≥
ln C̄

δ
pmin

then w.p. 1−δ,
all distinct MDPs will be encountered in phase 1.

Lemma 3. If M1 and M2 are 2 MDPs s.t. for any (s,a),

|rM1(s, a)− rM2(s, a)| < ε(1−γ)
2∫

S |TM1(s′|s, a)− TM2(s′|s, a)|ds′ < ε(1−γ)2

2

then the optimal Q-functions for M1 and M2, QM1 and
QM2 , satisfy that for any (s,a) pair

|QM1(s, a)−QM2(s, a)| < ε

This lemma allows us to relax the assumption of C distinct
tasks to C fuzzy clusters. It shows if the tasks within a
cluster are similar enough, the Q functions would be viewed
as the same, in the sense of ε-accuracy.

Lemma 4. If all tasks in phase 1 are run for at least Hmin
steps, with probability 1− δ, the following holds:

1. For all tasks, any state-action pair is (Γ, D)-known.

2. Tasks in phase 1 will be clustered correctly w.h.p..

3. For any cluster, the max-norm distance between the
approximate Q-function and the true optimal Q-function
for any task in this cluster is at most 5Γ

16
.

Lemma 5. Assume every state-action pair is (Γ, D)-known.
Then given any start state and desired state-action pair, it is
possible to visit the desired state-action pair’s neighborhood

in no more than Õ(D) steps with high probability.

Proof. Firstly, we construct an MDP Minform such that
the desired state-action pairs have unit reward and all oth-
ers have 0 reward. The desired pair is a self-loop and other
transition probabilities are inherited from the true MDP dy-
namics. We know which point is desired, so we can modify
the original samples to become samples in the new MDP
Minform. Because now every pair is (Γ, D)-known, so we
have O(D2) samples in every state-action’s neighborhood in
this Minform. Following a similar analysis of lemma 1, we
could find a policy who will reach the desired region within
3D steps w.p. 1

4
. Then after 3D log 3

4
δ steps the policy

could reach the desired region with probability of 1− δ.

Lemma 6. When we face an unknown task in phase 2, we
could reach any desired state-action pair within O(C̄D ln C̄

δ
)

steps with probability 1− δ
C̄

.

Proof. First, consider the case where we know the diam-
eter D. The unknown task must be one of the C̄ tasks from
phase 1. Our algorithm tries to run each policy in 3D ln C̄

δ
steps to the desired state-action pair using the samples from
one of the C̄ tasks, thus lemma 6 holds with probability
1 − C̄

δ
. By trying all policies from the C̄ tasks, we will en-

counter the one policy that corresponds to the same task
and reach the desired region with high probability.

If we don’t know the diameter, we could use the doubling
trick to find an upper bound on D without an increase in
the sample complexity. First we try the whole process with

D̃ = 1. If we fail, we double the D̃ and begin a new trial.

When D̃ is bigger than the true value of D, the rest of the
analysis is the same as when we know the true diameter.

Lemma 7. If Ti in algorithm 3 is at least O
(
Q2
max
Γ2 ln C̄

δ

)
and n is at least O(logγ Γ), we could compute an approxi-

mate Q value of policy π over current task M ′: Q̂πiM′(s, a) =

Ri such that for any (s, a),
∣∣∣Q̂πiM′(s, a)−QπiM′(s, a)

∣∣∣ ≤ Γ
16

with probability 1− δ
C̄

.

Proof. (Sketch) The key insight to prove this lemma is
that Ri is the empirical mean of discounted rewards ignoring
the tail rewards, so we could use concentration measures to
bound the difference of Ri with QπiM′(s, a), which implies Ti

should be at least O
(
Q2
max
Γ2 ln C̄

δ

)
.

Lemma 8. If both model Mi and Mj haven’t been elimi-
nated by

∣∣Rg −QMg (s, a)
∣∣ ≥ Γ

8
in algorithm 3, then the true

model would have a greater Rg with high probability.

Proof. (Sketch) Without loss of generality, we assume
Mi is the true model M ′. The condition in the lemma im-
plies Q̂πiMi(s, a) is very close to QπiMi(s, a) and Q̂

πj
Mi

(s, a) is

very close to Q
πj
Mj

(s, a). Note that πi is a nearly optimal

policy and the difference of QπiMi(s, a) with Q
πj
Mj

(s, a) is O(Γ)

according to the Q-gap assumption. So the Q̂
πj
Mi

(s, a) would

be no more than Q̂πiMi(s, a), otherwise it would exceed the
optimal Q value.

Lemma 9. After O
(
Q2
max
Γ2 C̄ ln C̄

δ

(
C̄D ln C̄

δ
+ logγ Γ

))
steps

in phase 2, we could correctly identify the new task w.p. 1−δ.

Proof. (Sketch) This lemma straightforward follows from
lemma 6 and 8.

5.2 Proof of Main Theorem

Proof. Recall that we divide the sample complexity into
3 parts. We will show the bound of each part to prove the
whole sample complexity.

The first part consists of the steps in phase 1. Hmin is the
lower bound of steps we need to run algorithm 2 in phase
1. After we finish the exploration, we can run C-PACE for
remaining steps of the episode (H−Hmin). Note that the un-
known state-action pairs of algorithm 2 is actually a subset
of the unknown state-action pairs in ε-known C-PACE (since
Γ ≥ ε so more states are unknown under the threshold of
ε-known). So we could view algorithm 2 as part of the initial
exploration done in C-PACE. The total sample complexity
in phase 1 would be no more than max {Hmin,min(ζs, H)}.

The second part consists of the identification during phase
2. Following from lemma 9 we need

O

(
(T − T1)

Q2
maxC̄

Γ2
ln
C̄

δ

(
C̄D ln

C̄

δ
+ logγ Γ

))
samples in T − T1 tasks in phase 2.

The third part is after the identification in phase 2. If the
cluster has gathered enough samples we will get an ε-optimal
policy immediately. If not, we still need to gather more. But
since the samples are gathered across all the tasks in one
cluster and the number of clusters is at most C̄, this only
yields an additional sample complexity of C̄ζs. Note that
to run the C-PACE algorithm, we set all εs, εT , εd, εK in C-

PACE to ε(1−γ)
8

so that we could get an ε-optimal policy.

444



6. EXPERIMENTS
Though our primary contribution is to prove online multi-

task RL enables a lower sample complexity in later continuous-
state tasks, we also tested its empirical performance on a
popular simulated domain, the spring mass damper system.

This domain is characterized by 3 parameters: the spring
constant k, the damping constant d and the mass m. The
ranges are: k ∈ [1, 10] d ∈ [0.01, 0.2] m ∈ [0.5, 5], which are
mirrored from [1]. The state is parameterized by the posi-
tion and velocity of the mass, and the action is a horizontal
force on the mass. Due to the complexity of performing a
maximization over a continuous set of actions, we considered
a discrete action set of {−10,−1,−0.1, 0, 0.1, 1, 10}. 4 The
transition dynamics are characterized by an ODE system
and simulated by the Euler method in our experiment.

The goal is to control the mass starting at (1, 0) to stay in
state (0, 0), and the reward is the negative l2-norm distance
between current state and the goal.

We performed simulation rounds, where each round con-
sists of 50 tasks. Tasks are generated by randomly sam-
pling from three distinct spring-mass MDPs (k,d,m). Each
task consists of 100 episodes with each episode having 150
steps: these settings were informed by recent work[1]. We
repeat this process for 40 rounds to assess average perfor-
mance across a series of tasks.

We compare against 3 other baselines. The first is single-
task C-PACE: the PAC RL algorithm C-PACE is run for
each task independently, yielding no information sharing
across tasks. In the second baseline, C-PACE (mixture of
all MDPs), is executed across all tasks without distinguish-
ing them. This is a naive form of transfer that treats all
tasks as identical. Finally, our third baseline is the state-
of-the-art online policy gradient method for multi-task RL,
PG-ELLA[1]. PG-ELLA learns a shared basis set across dif-
ferent tasks. Unlike our work, PG-ELLA assumes as input
the true identification of each task. PG-ELLA runs 5000
episodes rather than 100 for each task. That’s because they
need more samples to update policy parameters.

The considered algorithms all have input parameters. For
C-PACE (and the parts of our algorithm that use C-PACE),
we let k = 1 since this domain is deterministic. The Lip-
schitz constant is set to 0.1, and Qmax is set to zero. For
our algorithm, we set the number of tasks in phase 1 to
15 according to Lemma 2 with uniform task sampling and
δ = 0.02. The Q-gap Γ is set to 2. The number of trajecto-
ries we run in phase 2 to approximate the Q value, Ti, is set
to 1 because the domain is deterministic. For PG-ELLA,
the learning rate is selected automatically in their code.

Figure 1 shows the average reward for each of the 50 tasks
for the 4 algorithms. As expected, our approach performs
comparably to single task C-PACE in phase 1, with a slight
loss in performance because we try to fully explore the state–
action space. However our algorithm significantly improves
in phase 2, successfully accelerating learning by identifying
tasks quickly. In phase 2, the gap between our method and
single-task C-PACE implies the superiority of transferring
samples from previous tasks, which also confirms the anal-
ysis of sample complexity in an empirical way. For single
task C-PACE could not collect enough samples to converge

4For computational efficiency and to focus on the key impact
of transferring knowledge from multiple tasks, we chose this
discrete action space. Alternatively we could use the Lips-
chitz constant to define a discretization.

Figure 1: Averaged reward per task. The bar is
standard deviation over 40 rounds.

in just one task, its standard deviation is quite big as, as it
was shown in the figure. Our algorithm is also better than
the C-PACE algorithm that treats all tasks the same, which
shows the benefit of learning a separate optimal policy per
distinct task instead of a single policy for all tasks.

During phase 2 our algorithm exceeds the performance of
PG-ELLA. Note that PG-ELLA uses the first several tasks
to learn a shared basis, which we show in the figure, but
is omitted in the graphs of their paper. We consider this
quite encouraging, since PG-ELLA is provided the identity
of each task, compared to our approach which does not have
that information. Of course, our algorithm is operating in a
domain in which tasks have Q functions that are quite well
separated, as the Q-gap assumption.

These preliminary results suggest that our approach can
perform well in standard benchmark simulation, with a sig-
nificant advantage over single task algorithms and naive
transfer, and equivalent or slightly improved performance
over a state-of-the-art method, PG-ELLA. As our approach
has rigorous guarantees on sample complexity, which PG-
ELLA lacks, these empirical results are quite encouraging.

7. CONCLUSION AND FUTURE WORK
We have introduced the COMRLI algorithm, a PAC RL

algorithm for learning across a series of tasks drawn from a
set of continuous-state, discrete action Markov decision pro-
cesses. To our knowledge, COMRLI is the first algorithm for
multi-task learning in continuous state RL problems whose
bound on the sample complexity can be significantly smaller
in later tasks, and is independent of the covering number
for the state–action space. This shows that transferring
knowledge in continuous-state RL can provably reduce the
amount of experience needed to make good decisions. We
also provide preliminary but encouraging evidence that our
approach may be helpful in practice, showing good perfor-
mance in one benchmark domain against a state-of-the-art
policy gradient method for multi-task RL.

8. ACKNOWLEDGEMENTS
This work was supported by NSF CAREER award #1350984.

445



REFERENCES
[1] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor.

Online multi-task learning for policy gradient
methods. In T. Jebara and E. P. Xing, editors,
Proceedings of the 31st International Conference on
Machine Learning (ICML), pages 1206–1214. JMLR
Workshop and Conference Proceedings, 2014.

[2] H. B. Ammar, R. Tutunov, and E. Eaton. Safe policy
search for lifelong reinforcement learning with
sublinear regret. The Journal of Machine Learning
Research (JMLR), 2015.

[3] P. Auer, T. Jaksch, and R. Ortner. Near-optimal
regret bounds for reinforcement learning. In Advances
in Neural Information Processing Systems, pages
89–96, 2009.

[4] H. Bou-Ammar, J. M. Luna, E. Eaton, and P. Ruvolo.
Autonomous cross-domain knowledge transfer in
lifelong policy gradient reinforcement learning. In
International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[5] E. Brunskill and L. Li. Sample complexity of
multi-task reinforcement learning. In Conference on
Uncertainty in Artificial Intelligence, 2013.

[6] R. Grande, T. Walsh, and J. How. Sample efficient
reinforcement learning with gaussian processes. In
Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1332–1340, 2014.

[7] R. Grande, T. Walsh, and J. How. Sample efficient
reinforcement learning with gaussian processes. In
T. Jebara and E. P. Xing, editors, Proceedings of the
31st International Conference on Machine Learning
(ICML-14), pages 1332–1340. JMLR Workshop and
Conference Proceedings, 2014.

[8] Z. Guo and E. Brunskill. Concurrent pac rl. In AAAI
Conference on Artificial Intelligence, 2015.

[9] S. Kakade, M. Kearns, and J. Langford. Exploration
in metric state spaces. In ICML, volume 3, pages
306–312, 2003.

[10] S. M. Kakade et al. On the sample complexity of
reinforcement learning. PhD thesis, University of
London, 2003.

[11] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. Machine Learning,
49(2-3):209–232, 2002.

[12] A. Lazaric and M. Restelli. Transfer from multiple
mdps. In Advances in Neural Information Processing
Systems, pages 1746–1754, 2011.

[13] R. Liu and K. R. Koedinger. Variations in learning
rate: Student classification based on systematic
residual error patterns across practice opportunities.

[14] T. A. Mann and Y. Choe. Directed exploration in
reinforcement learning with transferred knowledge. In
EWRL, pages 59–76, 2012.

[15] S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah.
Efficient model learning from joint-action
demonstrations for human-robot collaborative tasks.
In Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot
Interaction, pages 189–196. ACM, 2015.

[16] J. Pazis and R. Parr. Pac optimal exploration in
continuous space markov decision processes. In AAAI
Conference on Artificial Intelligence. Citeseer, 2013.

[17] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685,
2009.

446




