
Measuring the Distance Between Finite Markov Decision
Processes

Jinhua Song, Yang Gao
∗

, Hao Wang
State Key Laboratory for Novel Software

Technology, Collaborative Innovation Center of
Novel Software Technology and Industrialization

Nanjing University, Nanjing, China
songjinhua2008@gmail.com

gaoy@nju.edu.cn
wanghao@nju.edu.cn

Bo An
School of Computer Engineering
Nanyang Technological University

Singapore
boan@ntu.edu.sg

ABSTRACT
Markov decision processes (MDPs) have been studied for
many decades. Recent research in using transfer learning
methods to solve MDPs has shown that knowledge learned
from one MDP may be used to solve a similar MDP better.
In this paper, we propose two metrics for measuring the dis-
tance between finite MDPs. Our metrics are based on the
Hausdorff metric which measures the distance between two
subsets of a metric space and the Kantorovich metric for
measuring the distance between probabilistic distributions.
Our metrics can be used to compute the distance between re-
inforcement learning tasks that are modeled as MDPs. The
second contribution of this paper is that we apply the met-
rics to direct transfer learning by finding the similar source
tasks. Our third contribution is that we propose two knowl-
edge transfer methods which transfer value functions of the
selected source tasks to the target task. Extensive experi-
mental results show that our metrics are effective in finding
similar tasks and significantly improve the performance of
transfer learning with the transfer methods.

Keywords
Markov decision process; Kantorovich metric; Hausdorff met-
ric; reinforcement learning; transfer learning

1. INTRODUCTION
Markov decision processes (MDPs) are effective models for

solving sequential decision-making problems [4] in uncertain
environments. By making sequential decisions, the decision
maker (called agent) can collect numerical feedbacks (called
rewards) from the environment. The goal of the agent is to
maximize the cumulative reward. Planning (e.g. Dynamic
programming [3,23]) and learning (e.g. reinforcement learn-
ing [15,25]), which aim at finding an optimal mapping from
states to actions (called policy), can be used to achieve the
goal. When there are some MDPs that have been solved, the

∗Corresponding Author

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c⃝ 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

new MDPs can be solved better by reusing the knowledge of
the solved MDPs. This idea has been used in reinforcement
learning (RL) domain for many years, which is known as
transfer learning in RL. Lots of transfer learning methods
have been studied [18, 27], which focus on accelerating the
learning process and improving the average approximation
of the optimal value functions.

Although there has been lots of work on transfer learn-
ing, most approaches rely on the implicit assumption that
source tasks and target tasks are very similar. However,
the assumption is not necessarily true in practice. If the
source task is irrelevant to the target task, transfer may
cause slower learning speed or even worse performance in
the target task; this phenomenon has been recognized as
negative transfer [18, 24, 27, 28]. Therefore, it is necessary
and essential to define the similarity relationship between
the source tasks and the target task so as to select the best
source task(s), which is the focus of this paper.

Unfortunately, there are few existing distance measures
that can be used to estimate the similarity between two
MDPs. Some work uses transfer advantage [6] to define
the similarity between two MDPs [6, 9]. However, the sim-
ilarity is usually difficult to be computed before the target
task has been learned, thus it cannot be applied to trans-
fer learning. Some work just measures the distance between
dynamics of two MDPs, such as reward functions or tran-
sition models, and requires that the state-action spaces are
the same [2, 6, 19]. Konidaris et al. [17] define agent-space
to describe the features of an agent, and judge whether two
MDPs are related by comparing the agent-spaces. How-
ever, it is difficult to automatically identify agent-space in
advance.

Our contributions in this paper can be claimed as follows.
First, we propose two metrics for measuring the distance be-
tween two MDPs based on the whole models of MDPs from
a quantitative point of view for the first time. The metrics
are based on the distance between states which consider ac-
tions, probability transition functions and reward functions
of the states. We define the notion of homogeneous MDPs
and extend Ferns’ metric [10], which measures the distance
between two states in one MDP, to compute the distances
between states in different MDPs. After computing all the
distances between states, we apply the Kantorovich met-
ric [7] and the Hausdorff metric [5] to composite them to
compute the distance between two MDPs. Kantorovich met-

468

ric was first proposed in the field of transportation theory
and is used to measure the distance between two distribu-
tions. We use Kantorovich metric with the assumption that
a certain amount of “resources” from one MDP’s states are
allocated to the other MDP’s states. However, when the
state spaces of the MDPs are very large, computing Kan-
torovich metric may be computationally expensive. Thus,
we apply another easy-to-compute metric, Hausdorff met-
ric. Hausdorff metric is a mathematical tool for measuring
the distance between two sets of points that are subsets of a
metric space. The distance between two sets of states is used
to represent the distance of two MDPs. Although Hausdorff
metric can be computed more efficiently, it may miss some
similar MDPs due to “outliers” (states which are very differ-
ent from others). Therefore, the distance can be computed
by Hausdorff metric if the state space is too large and by
Kantorovich metric otherwise.
Our second contribution is that we use our metrics to

measure the distance between RL tasks which are mod-
eled as MDPs, and apply them in transfer learning for R-
L. In this paper we focus on transfer learning in one do-
main and consider homogeneous MDPs which widely ex-
ist in one domain as most related works in transfer learn-
ing (e.g., [14, 21, 27, 30]). We apply the metrics for source
tasks selection in transfer learning. Our third contribution
is proposing two transfer methods which transfer value func-
tions of selected source tasks to the target task. After se-
lecting the proper source tasks, transfer methods are used
to transfer knowledge to the target task. Since the metrics
are based on the distances between states, value functions
are used as the transfer knowledge.
Experimental results show that our metrics are effective

in finding similar tasks to avoid negative transfer in transfer
learning, and significantly improve the performance (i.e. re-
ducing episodes to converge to the optimal policy by more
than a third and achieving better asymptotic performance)
of the baseline algorithms with our transfer methods.

2. BACKGROUND

2.1 Markov Decision Process
In this paper, we focus on finite Markov decision processes.

Definition 2.1. A finite Markov decision process can be
represented as a 4-tuple M = {S,A, P,R}, where S is a
finite set of states; A is a finite set of actions; P : S ×
A× S → [0, 1] is the probability transition function; and R :
S ×A → ℜ is the reward function. In this paper, we denote
the probability of the transition from state s to another state
s′ when taking action a by P a

ss′ and the immediate reward
received after the transition by ras .

1

A policy is defined as a mapping, π : S × A → [0, 1]. To
measure the quality of a policy, a value function, V π(s), is
used to estimate the expected long-term cumulative reward
from state s under a policy π. It is formally defined as:

V π(s) = Eπ

[
∞∑
t=0

γtrt
∣∣s0 = s

]
,

1In fact, the reward could also be related to s′. However
in many practical applications, it is usual the case that the
reward is determined by the state s and the action a [10].
We follow this convention in this paper.

where γ is a discount factor, rt is the reward at time-step t,
and Eπ is the expectation with respect to the policy π. It
can be expressed as the Bellman equation:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P a
ss′

[
ras + γV π(s′)

]
.

Similarly, action value function (called Q-value), the ex-
pected long-term cumulative reward of taking action a in
state s under a policy π, is defined as:

Qπ(s, a) =
∑
s′∈S

P a
ss′

[
ras + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
.

The goal is to find an optimal policy π∗ which maximizes
the expectation of the long-time discounted cumulative re-
ward from any starting state s ∈ S:

π∗ = argmax
π

Eπ

[
∞∑
t=0

γtrt|s0 = s

]
.

2.2 Transfer Learning
The idea of transfer learning comes from psychology and

cognitive science research. It is motivated by the finding [22]
that humans can solve a problem faster by reusing knowledge
learned from solving related problems. In the MDP domain,
agents are expected to improve their performance through
transferring the knowledge retained from similar MDPs.

Consider the situation that an agent is solving a sequence
of MDPs. If these MDPs are related and the agent has
solved n MDPs, the agent may use the knowledge learned
from the prior MDPs when solving the (n + 1)-th MDP.
Transfer learning aims to select the learned MDP(s), choose
the transfer knowledge (e.g. instances [19], Q-values [29] and
policies [16]), and use the knowledge to improve the perfor-
mance of solving the new MDP. Related MDPs may have
some common knowledge which can help the new MDP to
be solved better, and transferring from MDPs which differ
too much from the new MDP may cause negative transfer.
Thus, the notion of MDP similarity (or distance) is essential
to transfer learning. However, many transfer approaches ig-
nore this problem. Few work define the similarity, but their
definitions can only be used under strict conditions or can-
not be applied to transfer learning. In the next section, we
define measures that can be used to estimate the similarity
between two MDPs.

3. METRICS FOR MEASURING THE DIS-
TANCE BETWEEN MDPS

Our goal is to define metrics to measure the distance be-
tween two MDPs based on the whole models of MDPs in-
cluding state transitions and reward structures. Note that
an MDP contains a set of states, and each state s has its own
action set As, probability transition function Ps and reward
function Rs. Therefore, the distance between two MDPs is
based on the distance between their states, and the distance
between two states depends on their action sets, probability
transition functions and reward functions. To measure the
distance between two states in different MDPs, we extend
Fern’s metric of states [10], which considers actions, prob-
ability transition functions and reward functions of those
states. Then we apply Kantorovich metric and Hausdorff
metric to measure the distance between the two state sets
of two MDPs.

469

3.1 Measuring States’ Distance in Different
MDPs

In this section, we introduce a metric to measure the dis-
tance between two states of two MDPs by extending an ex-
isting metric for measuring the distance of two states of one
MDP [11–13].

Definition 3.1. For any s, s′ ∈ S, their distance d(s, s′)
is defined as

d(s, s′) = max
a∈A

{|ras − ras′ |+ cTK(d)(P a
s , P

a
s′)}, (1)

where c ∈ (0, 1), P a
s (resp. P a

s′) is the probabilistic tran-
sition when action a is taken at state s (resp. s′), and
TK(d)(P a

s , P
a
s′) is the Kantorovich distance between the two

probabilistic transitions.

Notice that the above metric is only defined on states in
the same MDP and it may not be directly applied to com-
pute the distance between two states in different MDPs. It
is known that a specific task can be modeled as different
MDPs with different state representations and action repre-
sentations [25, 26], and it is difficult for the agent to recog-
nize whether the MDPs have the same state-action spaces.
Therefore, the above metric is not applicable when the state
and action representations are different. Thus, we extend it
to measure the distance between states in different MDPs.
Our key idea is that if two MDPs can be merged into one,
then we directly use this metric to measure the distance be-
tween states in the “new MDP”. To decide whether MDPs
can be merged, we first give the definition of homogeneous
MDPs.

Definition 3.2. MDPs are homogeneous if they satisfy
the following conditions:
(1) their state representations are equivalent (the state-

spaces can be different);
(2) there is a one-to-one correspondence between their ac-

tion spaces;
(3) they are reward-linked.

Equivalent state representations mean that the states in
different MDPs have the same kind of representations (i.e.
same state variables [27]). For example, states in differ-
ent Gridworlds can be represented by the agents’ positions.
Thus these Gridworlds meet the first condition. If the action
spaces are actually the same but they are named differently
in different MDPs, it is possible to find a correspondence of
actions. Actions up, down, left, right in one Gridworld can
be mapped to north, nouth, west, east in another Grid-
world. Reward-linked [17] indicates that the rewards are
equal when reaching the same subgoals (or goals) in two
MDPs, such as arriving at the exports in different mazes
and eating pac-dots in different Pac-man Games [1].
If MDPs are homogeneous, they can be merged into one

“new MDP”, and metric d (Definition 3.1) can be used to
measure the distance between their states. Consider the ex-
ample that an indoor mobile robot is required to perform
a task in different rooms, which are considered as differen-
t tasks and can also be modeled as different homogeneous
MDPs. At the same time, the different tasks can be also
treated as subtasks of one task and modeled in one MD-
P. Homogeneous MDPs are common in the MDP domain
and we extend the metric in Definition 3.1 to compute the
distance between states in different MDPs.

Definition 3.3. Given two homogeneous MDPs M1 =
{S1, A, P1, R1} and M2 = {S2, A, P2, R2}, the distance d′(s, s′)
between any state s ∈ S1 and any state s′ ∈ S2 is defined as:

d′(s, s′) = max
a∈A

{|(r1)as − (r2)
a
s′ |+ cTK(d′)((P1)

a
s , (P2)

a
s′)},

(2)
where (r1)

a
s (resp. (r2)

a
s′) and (P1)

a
s (resp. (P2)

a
s′) are the

immediate reward and the probabilistic transition function
in M1 (M2), and TK(d′)((P1)

a
s , (P2)

a
s′) is the Kantorovich

distance between the two probabilistic transitions.

Definition 3.4. For two state probability transition func-
tions (P1)

a
s and (P2)

a
s′ in different MDPs, their Kantorovich

distance is

TK(d′) = min
λkt,k=1...|S1|,t=1...|S2|

|S1|∑
k=1

|S2|∑
t=1

λktd
′(sk, s

′
t)

s.t.
∑
t

λkt = (P1)
a
ssk ,∀k,∑

k

λkt = (P2)
a
s′s′t

, ∀t,

λkt ≥ 0, ∀k, t,

(3)

where sk ∈ S1, s
′
t ∈ S2, |S1| represents the number of states

in S1, and |S2| denotes the number of states in S2.

The solution, fixed point d′f (s, s
′), for Equation (2) always

exists and is unique, which can be derived from the proper-
ty of metric d [12]. Similar to metric d, fixed point d′f (s, s

′)
can be computed in an iterative manner. The process of
computing the distances between states in different MDPs
is shown in Algorithm 1. For each state si ∈ S1 and each
state s′j ∈ S2, according to Equation (2), d′(si, s

′
j), the max-

imal sum of the difference between the immediate rewards
and Kantorovich distance between the probability transition
functions, is computed using the distances of the last iter-
ation (Lines 4-6). δ is the mean absolute error (MAE) of
distances in two iterations (Line 7) and is initialized to a
value larger than error threshold ξ (Line 1). d0 stores the
distances of the last iteration (Line 9). This process stops
when the MAE is not larger than the error threshold (Line
10).

The worst case running time of computing the fixed point,
d′f (s, s

′), is O(|A||S1|2|S2|2|S1+S2| log(S1+S2)⌈ ln η
ln c

⌉). How-
ever, when the two MDPs are deterministic ones, TK(d′)
in Equation (2) can be simplified to d′(snext, s

′
next) where

snext(s
′
next) is the next state from s(s′). In this situation,

the computational cost is O(|A||S1||S2|⌈ ln η
ln c

⌉).
After computing all the distances between states in dif-

ferent MDPs, we need to composite them to compute the
distance between the two MDPs. It is not appropriate to
simply accumulate or average the distances between all d-
ifferent states. Consider the situation of two same MDPs,
where the distance between the MDPs must be zero. Howev-
er, the entries of the state distance matrix may not always be
zero when the two states are not similar. Therefore, we focus
on matchings of states and provide two proper metrics, the
Kantorovich metric and the Hausdorff metric, for measur-
ing the distances between MDPs. The Kantorovich metric
essentially tries to find out an optimal state matching be-
tween the two MDPs, and the Hausdorff metric does not rely
on any specific matching but rather bounds all “reasonable”
matchings. We should note that, to our best knowledge,

470

Algorithm 1: Computing the distance between states
of two homogeneous MDPs

Input: two MDPs M1 = {S1, A, P1, R1} and
M2 = {S2, A, P2, R2}, parameter c, error
threshold ξ.

Output: distance matrix d′(si, s
′
j).

1 Initialization. δ > ξ, distance matrixes d0(si, s
′
j) = 0,

d′(si, s
′
j) = 0.

2 repeat
3 foreach (si, s

′
j , ak) ∈ S1 × S2 ×A do

4 compute TK(P ak
si , P ak

s′j
) according to Equation

(3) using distance matrix d0;
5 tempd = |rak

si − rak

s′j
|+ cTK(P ak

si , P ak

s′j
);

6 if
(
tempd > d′(si, s

′
j)
)
d′(si, s

′
j) = tempd.

7 δ =(∑|S1|
i=1

∑|S2|
j=1 |d

′(si, s
′
j)− d0(si, s

′
j)|

)/
(|S1| ∗ |S2|) ;

8 foreach (si, s
′
j) ∈ S1 × S2 do

9 d0(si, s
′
j) = d′(si, s

′
j).

10 until δ ≤ ξ;

other alternatives are hardly applicable. In the remaining of
this section, we give details on the two metrics.

3.2 Hausdorff Metric Based Measure
Hausdorff metric measures the distance between two sub-

sets of a metric space in mathematics. It computes the
largest distance of all the distances from a point in one set
to the nearest point in the other set. When Hausdorff met-
ric is applied to two MDPs, we consider the state sets as
the subsets of the metric space {M,d′}. For each state in
one MDP, finding the most similar state in the other MD-
P is equivalent to mapping the states from one MDP to
the other. After getting the mapped states of both MDPs,
Hausdorff metric is applied to find the largest distance be-
tween the mapped states. We use this distance to represent
the distance between two MDPs. The formal definition of
the distance between two MDPs using Hausdorff metric is
defined as follows.

Definition 3.5. Given two MDPs M1 = {S1, A, P1, R1}
and M2 = {S2, A, P2, R2}, their Hausdorff distance Φ(S1,
S2) can be computed as follows.

Φ(S1, S2) = max

{
max
s∈S1

min
s′∈S2

d′(s, s′), max
s′∈S2

min
s∈S1

d′(s, s′)

}
(4)

where d′ is the metric defined in Definition 3.3.

Hausdorff metric can be efficiently computed and it only
needs to compare (2|S1||S2| − 1) times.

3.3 Kantorovich Metric Based Measure
Using Hausdorff metric to define the distance between

MDPs leads to the possibility that similar MDPs are mis-
takenly treated as dissimilar ones if at least one of the them
has an “outlier”. Here the notion of an “outlier” is a state
which is very different from others. Hausdorff metric com-
putes the largest distance of all the distances from a state in
one MDP to the nearest state in the other MDP. Therefore,
if one MDP has outliers, the MDPs’ distance is the distance
of one of the outliers. In this case, even if other states are
mapped to each other, the two MDPs cannot be considered

similar. An example is presented as follows. Figure 1 shows
two simple maze tasks and their MDPs, where S and S′ are
start states, G and G′ are target states, and the black grid is
an obstacle. We can see that the only difference between the
two tasks is that Task II has an obstacle but Task I does not.
The MDPs below the mazes show the state transitions by
arrows. Actions and rewards of the transitions are labeled in
the braces. The distances between states of different MDPs
are computed using Equation (2). The results are shown in
Table 1. It is easy to get that Φ = 20. R1 is an “outlier” in
task I. The distance between two MDPs computed by Haus-
dorff metric is equal to mins d

′(s,R1) and it is too large to
consider the two MDPs similar.

S

R2

R1

G

(a) Task I

S'

R' G'

(b) Task II

S R1

R2 G

{right,0}

{down,0}
{up,0}

{left,0}

{down,10}

{right,10}

(c) MDP for task I

S'

R'

{down,0} {up,0}

{right,10}
G'

(d) MDP for task II

Figure 1: Example of measuring the distance between two
MDPs

Table 1: Distance between states

distance S′ R′ G′

S 10 20 20
R1 20 20 20
R2 20 5 20
G 20 20 0

To address the limitation of the above measure, we pro-
pose a new measure based on Kantorovich metric, which is
originally used to find an optimal allocation of transporta-
tion resources. In a transportation problem, there are piles
of sand (supply nodes) and holes (demand nodes) of the
same volume, and the goal is to find an optimal way to
move the sand into the holes. Kantorovich metric is an LP
method for solving this problem to reach the goal of get-
ting the minimum cost. When it is applied to two MDPs,
one MDP’s states are considered as the supply nodes and
the other’s are considered as demand nodes. Suppose that
there is a transportation arc from each supply node to each
demand node. A flow is an assignment of quantities to be
transported along each arc. In general, the total supply and
the total demand are equal, hence we set them to 1. The
supply quantity of each supply node is 1/|S1| with the as-
sumption that each state is equally important to the MDP,
where |S| is the size of the state space of the MDP. The de-
mand quantity of each demand node is 1/|S2| as well. The
unit cost of each arc equals to the distance of the corre-
sponding states. Then transportation expense of each arc is

471

the unit cost multiplied by the value of the flow along that
arc. The goal is to get the optimal assignment of the flows to
minimize the total transportation expenses. It can be seen
that the distance of the outlier (if exists) only affects the
transportation expense of some flows, so it has less impact
on the total transportation expenses.
Now we give the formal definition of the distance between

two MDPs based on Kantorovich metric:

Definition 3.6. Given two MDPs M1 = {S1, A, P1, R1}
and M2 = {S2, A, P2, R2}, their Kantorovich distance Ψ(S1,
S2) can be computed as

Ψ(S1, S2) = min
lij

|S1|∑
i=1

|S2|∑
j=1

lijd
′(si, s

′
j)

s.t.

|S2|∑
j=1

lij =
1

|S1|
, ∀i,

|S1|∑
i=1

lij =
1

|S2|
, ∀j,

lij ≥ 0,∀i, j,

(5)

where d′(si, s
′
j) is the state distance between si and s′j and

can be obtained according to Equation (2). Obviously, the
value of Ψi(S1, S2) can be computed by solving an LP.

The cost of computing the Kantorovich metric is O(|S1 +
S2||S1||S2| log(S1 + S2)).
We use the above example to illustrate the whole process

of computing the distance between two MDPs (see Figure 1
and Table 1). After computing the distances between states,
Kantorovich metric is applied to compute the distance be-
tween two MDPs. The illustration of the flows is shown in
Figure 2. The numbers beside the nodes are supply nodes’
supply quantities or demand nodes’ demand quantities. The
numbers on the bold arrows are the values of flows leaving
from the supply states to the demand states, and the values
of other flows are zero which are omitted in the figure. The
values of flows are lij in Equation (5). The distance between
two MDPs computed by Kantorovich metric is Ψ = 8.75,
and is much smaller than Φ. We can see from Figure 2, in
Kantorovich metric the outlier’s distance multiplies a weight
to reduce the effect of that.

S R1 R2 G

S' R' G'

1/4 1/4 1/4 1/4

1/3 1/3 1/3

1/4

1/4

1/4
1/12

1/12

1/12

Figure 2: The transition between two MDPs

4. TRANSFER METHODS
Transfer learning for RL aims to improve the agent’s learn-

ing performance by transferring the knowledge from prior
learned task(s). The metrics for measuring the distance be-
tween MDPs can be used for automated source tasks selec-
tion in transfer learning, after which the knowledge learned

in the selected source tasks can be transferred to the target
task. The knowledge transfer mechanism adopted is value
function transfer. In this section, we propose two trans-
fer methods, one for Kantorovich metric (Ψ) only and the
other for both metrics, Kantorovich metric and Hausdorff
metric (Φ). We define the transfer method in two scenar-
ios: transferring from one source task (single source transfer)
and transferring from multiple source tasks (multiple source
transfer).

4.1 Weight Transfer
We first introduce the transfer method (called weight trans-

fer) which is only used when metric Ψ is adopted to mea-
sure the distance between MDPs. For each state of the tar-
get task, each weight lij defined in Definition 3.6 indicates
how similar it is to the corresponding state in the source
task. The more similar the two states are, the larger lij
is. Therefore, we can transfer value functions (or Q-values)
from states of the source task(s) to states of the target task
according to the values of lij .

The transfer method for transferring from multiple source
tasks is defined as follows.

Definition 4.1. Given the target task’s MDP M : {S,A,
R, P} and n (n ≥ 1) source MDPs M1 : {S1, A,R1, P1},M2 :
{S2, A,R2, P2}, . . . ,Mn : {Sn, A,Rn, Pn}, the value func-
tions of M can be initialized by the n source tasks’ value
functions. For every si ∈ S,

V (si) =
1

n

|n|∑
k=1

|Sk|∑
j=1

lkij
Lk

j

V k(skj), (6)

where skj is the j-th state in Sk, l
k
ij is the weight of d′(si, s

k
j)

in Ψ(S, Sk), L
k
j =

∑|S|
i=1 l

k
ij , and V k(skj) is the value function

of the state skj in source task Mk which has been computed.
Similarly, Q-values of M can be initialized by the following

formula:

Q(si, a) =
1

n

|n|∑
k=1

|Sk|∑
j=1

lkij
Lk

j

Qk(skj , a), (7)

where Qk(skj , a) is the Q-value of the state-action pair (skj , a)
in source task Mk which has been learned.

We choose the most similar n (n ≥ 1) source tasks, and
transfer their average weighted value functions (or Q-values)
to the target task. The value of n depends on specific prob-
lems, and the weights for the transfer are proportional to lij .
When n = 1, Equations (6) and (7) can be used to single
source transfer.

The above transfer methods may be applied to algorithms
which learn value functions or action value functions to solve
the RL tasks. However, we only consider value iteration [23]
and Q-learning [31] in this paper.

Algorithm 2 shows the pseudo code of transferring value
functions from m (m ≥ 1) source tasks Mk(k = 1, . . . ,m)
to the target task M (the process of transferring Q-values is
similar). The whole process of transfer learning consists of
three steps: (1) compute the distance Ψ(S, Sl) (l = 1, . . . ,m)
between the target task and each source task according to
Equation (5), and then sort the source tasks according to
the computed distances in ascending order; (2) select the
most similar n source tasks Mks (s = 1, . . . , n) and load the

472

weight matrix lks
ij and their value functions (or Q-values);

(3) transfer their value functions (or Q-values) to the target
task (Lines 3-8), then use value iteration (or Q-learning)
algorithm to solve the target task (Line 9).

Algorithm 2: Transfer value functions and learning

Input: discount rate γ, the number of transferred
source tasks n, coefficient matrix lkij and value

functions V k(sk) of the selected source tasks
Mk(k = 1 . . . n).

1 Initialization. weight ω = 0,
2 value functions of the target task: V (s) = 0.
3 foreach si ∈ S do
4 foreach Mk do
5 foreach skj ∈ Sk do

6 ω =
lkij

Lk
j

;

7 V (si) = V (si) + ωV k(skj);

8 V (si) =
V (si)

n
.

9 Solve the target task with value iteration.

4.2 State transfer
The weight transfer method can be only used for metric

Ψ since it needs the coefficient matrix lkij . Now we propose
another method, called state transfer, which can be used
for both Ψ and Φ. This method is also based on the idea
that transfer can occur between similar states. For each
state in the target task, its nearest state can be found in the
source task after the distances of states are computed, and
we directly transfer the value functions (or Q-values) of the
nearest state in the source task to it.

Definition 4.2. Given the target task’s MDP M1 = {S1,
A,R1, P1} and the source task’s MDP M2 = {S2, A,R2, P2},
the value function of each state s in M1 is initialized by the
following equations:

s′ = argmin
s′

d′(s, s′),

V (s) = V (s′).

Similarly, Q-values of M1 can be initialized by:

Q(s, a) = Q(s′, a).

In multiple source transfer situation, we transfer the av-
erage value functions (or Q-values) of the source tasks’ cor-
responding states to the target task.

5. EXPERIMENTAL EVALUATION
We evaluate our metrics in transfer learning for RL. We

consider the maze problem in which many transfer learning
methods have been applied [8, 9, 20]. An example of the
mazes used in our experiment is shown in Figure 3. ‘S’ is the
start position and ‘G’ is the goal position. The black squares
are called obstacles that block agent to go through, and
other things are the same as Gridworld [25]. The objective
of the learning agent is to find an optimal path to reach the
goal position from the start position. In each position, there
are four actions, up, down, left, and right, for the agent
to choose. After choosing an action, agent deterministically
gets to the corresponding neighbor position except when a
movement is blocked by an obstacle or the edge of the maze,

Figure 3: A 10× 10 maze

in which case the agent will stay in its current position, i.e.,
the (illegal) movement causes no effect. Reward is 100 when
arriving at the goal position and 0 in other cases.

We adopt value iteration and Q-learning as the basic learn-
ing methods. The transfer learning setting is as follows:
There is a library of source tasks and when given a target
task we hope to transfer knowledge from the library to im-
prove the learning performance of the target task. In this
paper, the maze tasks are homogeneous. The tasks in the li-
brary have been learned by the basic learning methods, and
their models and learned knowledge (i.e. value functions or
Q-values) have been stored. The target task will be also
learned by the basic learning methods.

The parameters of the methods are set as follows.

1) We set parameter c = 0.5, δ = 1, and the threshold
ξ = 0.01 when computing the distance of two states in
different MDPs (see Algorithm 1).

2) The discount factor γ is set to 0.9.

3) The Q-learning agent behaves in an ϵ-greedy way, i.e., it
selects the best action (indicated by the largest Q-values)
with probability 1− ϵ, and selects a random action with
the rest probability of ϵ. The exploration probability ϵ is
set to 0.1 and the learning factor α is set to 0.2.

We have conducted two sets of experiments: one is for
evaluating the property of the proposed metrics, i.e., the
relation between transfer performance and task distance,
and the other is for investigating whether the similar source
task(s) selected by our metrics can accelerate the learning
of the target task.

For the first set of experiments, we randomly generate
a 10 × 10 maze (the target task) and a series of 10 × 10
mazes (the source tasks) with different distances to the tar-
get maze. We use metrics Ψ and Φ to measure the distance
between the target task and each source task, after which
we record the distances of each pair of the tasks. Then, we
transfer the knowledge of all the source tasks to the tar-
get task using single source transfer methods. We have two
metrics, two transfer methods and two learning methods.
To keep it simple, we use letters “K”, “H”, “W”, “S”, “V” and
“Q”to represent metric Ψ, metric Φ, weight transfer method,
state transfer method, value iteration and Q-learning. The
combination of these letters represents the combination of
methods, e.g., KSV means using metric Ψ, state transfer and
value iteration to solve the transfer learning task. In Figure
4, four scatter diagrams and their rough fitting curves are
shown.

473

0 5 10 15 20 25
−10

0

10

20

30

40

Distance

It
e
ra

ti
o
n
s

(a) KWV

0 5 10 15 20 25
−5

0

5

10

15

20

Distance

It
e
ra

ti
o
n
s

(b) KSV

0 5 10 15 20 25
140

160

180

200

220

Distance

S
u
m

 o
f

av
er

ag
e

re
w

ar
d

(c) KWQ

0 5 10 15 20 25
140

160

180

200

220

240

Distance

S
u
m

 o
f

av
er

ag
e

re
w

ar
d

(d) KSQ

Figure 4: The relation between transfer performance and distance computed by metric Ψ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KSIQ(1)

KSIQ(2)

KSIQ(3)

(a) KSIQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KSMQ(4)

KSMQ(5)

KSMQ(6)

(b) KSMQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KWIQ(1)

KWIQ(2)

KWIQ(3)

(c) KWIQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KWMQ(4)

KWMQ(5)

KWMQ(6)

(d) KWMQ

Figure 5: Transferring from the most similar tasks using metric Ψ (ϵ = 0.1)

The horizontal axis represents the distance between the
source task and the target task. In subfigures 4(a) and 4(b),
vertical axis represents the number of iterations, and in sub-
figures 4(c) and 4(d) vertical axis represents the sum of the
average rewards of each step (we just call it average rewards
in the following sections) of the first 50 episodes. The target
task’s learning process is repeated 50 times and the number
of iterations (or the sum of the average rewards) is the aver-
age values of these processes. For value iteration, we use the
number of iterations to measure the learning performance of
the task, the smaller the better. For Q-learning, we use the
sum of average rewards of the first 50 episodes to measure
the learning performance of the task, the more the better.
We use “50 episodes” since the processes of Q-learning have
often converged within 50 episodes in this experiment.
We can see from the figures that the performance of trans-

fer is related to the distance computed by metric Ψ. In sub-
figures 4(a) and 4(b), the number of iterations to learn a
task increases as the distance increases. The sum of average
rewards decreases as the distance increases in subfigures 4(c)
and 4(d). This means the performance of transfer learning
improves as the similarity increases. The source tasks with
distance less than 5 have the similar distributions (num-
bers and positions) of obstacles with the target task while
the tasks with distance near 25 have quite different ones.
Therefore, metric Ψ can describe task similarity in transfer
learning correctly, and negative transfer can be avoided by
filtering the dissimilar tasks. However, metric Φ does not
have such property. The reason may be that it may mis-
s some actually similar MDPs due to “outliers”. Although
metric Φ does not has such property, the similar tasks s-
elected by it can improve the learning performance in the
target task, which will be demonstrated in the next set of
experiments.

For the second set of experiments, the target task is a ran-
domly generated 10× 10 maze and the source tasks consist
of 100 10 × 10 mazes which have several obstacles that are
generated randomly in the grids. After computing the dis-
tance between the target task and each source task by our
metrics Ψ and Φ, the source tasks are sorted according to
the distances in ascending order, and labeled by sequence
numbers according to the order. The smaller the number is,
the more similar the task is to the target task. The target
task is learned in many situations. First it is learned by val-
ue iteration (or Q-learning), and then single source transfer
and multiple source transfer are used to alter its learning
process. For single source transfer scenario, the most sim-
ilar source task’s knowledge is transferred using our single
source transfer method. The multiple source transfer sce-
nario is similar, in which knowledge from the most similar
n (we consider some different n in this section) source tasks
is transferred. The Q-learning agent behaves in an ϵ-greedy
way, and we test two situations, ϵ = 0.1 and ϵ = 0.01.

We consider all the combinations of metrics, transfer meth-
ods and learning methods. We use the combinations of let-
ters to represent the combination of methods. We add letter
“I” and “M” to represent single source transfer and multiple
source transfer. The “I” and “M” are put before the learn-
ing method (“Q” or “V”), e.g., KWIQ means using metric
Ψ, single source weight transfer and Q-learning to solve the
transfer learning task. The results of Q-learning are shown
in Figures 5, 6 and 7.

The horizontal axis x represents the number of learning
episodes and the vertical axis y represents the average re-
wards in episode x. The learning process is repeated 50 times
and the average rewards are the average values of these pro-
cesses. In the figures, for single source transfer, the num-
ber n in the parentheses after the combinations of letters
means transferring from source task with sequence number

474

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KSIQ(1)

KSIQ(2)

KSIQ(3)

(a) KSIQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KSMQ(4)

KSMQ(5)

KSMQ(6)

(b) KSMQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KWIQ(1)

KWIQ(2)

KWIQ(3)

(c) KWIQ

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

KWMQ(4)

KWMQ(5)

KWMQ(6)

(d) KWMQ

Figure 6: Transferring from the most similar tasks using metric Ψ (ϵ = 0.01)

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

HSIQ(1)

HSIQ(2)

HSIQ(3)

(a) HSIQ (ϵ = 0.1)

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

HSMQ(4)

HSMQ(5)

HSMQ(6)

(b) HSMQ (ϵ = 0.1)

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

HSIQ(1)

HSIQ(2)

HSIQ(3)

(c) HSIQ (ϵ = 0.01)

0 10 20 30 40 50
0

1

2

3

4

5

Learning episodes

A
v
er

ag
e

re
w

ar
d

Qlearning

HSMQ(4)

HSMQ(5)

HSMQ(6)

(d) HSMQ (ϵ = 0.01)

Figure 7: Transferring from the most similar tasks using metric Φ

n. For multiple source transfer, the number n in the paren-
theses means transferring from n most similar source tasks.
For example, KWIQ(1) means using metric Ψ, single source
weight transfer and Q-learning, and transferring from the
source task with sequence number 1 to solve the transfer
learning task.
We can see from the figures that the similar tasks select-

ed by our metrics can speed up the learning process of the
target task. Moreover, when ϵ = 0.01, transfer learning can
improve the asymptotic performance as shown in Figure 6
and Figures 7(c) and 7(d). The curves of transferring from
different source tasks in each figure are very close since the
distances are close. Therefore, our metrics can perform well
in helping finding the similar tasks in transfer learning to im-
prove the learning performance in the target task. We can
also see from Figures 5(a), 6(a), 7(a) and 7(c) that, although
source tasks selected by Hausdorff metric can benefit learn-
ing in the target task, the really similar tasks (e.g. the green
curves in Figures 5(a) and 6(a)) may be missed. However,
Kantorovich metric can find them.
The results of value iteration are shown in table 2. .

Table 2: The number of iterations in single source transfer

No HSIV KSIV
1 1 1
2 11 11
3 14 15
4 14 14

The column “No” in the table represents the sequence
number of the transferred source task. In addition to this
column, other columns are numbers of iterations using the
transfer learning methods. Value iteration for the target
task without transfer can converge after 20 iterations. We

can see from the table that HSIV and KSIV can acceler-
ate the process of value iteration. We also test the multiple
source transfer scenario, and multiple source transfer meth-
ods cannot improve the learning performance. As a result,
single source state transfer methods can be applicable to
value iteration, and our metrics can perform well in help-
ing finding the similar tasks when using single source state
transfer methods.

6. CONCLUSION
In this work, we propose two metrics for measuring the

distance between MDPs. We extend Kantorovich metric
and Hausdorff metric to define the distance between MDPs.
We show that the metrics can be applied in transfer learning
for RL where tasks are modeled as MDPs. The metrics can
help with selecting similar tasks to effectively transfer and
avoid negative transfer. Since the metrics are based on the
distances between states, value functions (or action-value
functions) are used as the transfer knowledge and we propose
two value function transfer methods. Experimental results
show that the metrics are effective in finding similar tasks
to avoid negative transfer, and the learning algorithms are
significantly improved by our metrics and transfer methods.

In the future, we hope to generalize our metrics to other
settings, where MDPs are not homogeneous. Our metrics
are defined on MDPs with finite state space, and we are
trying to establish an extension for infinite state space.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the support for

this work from the National Natural Science Foundation of
China (Grant Nos. 61432008, 61503178, 61321491) and the
Natural Science Foundation of Jiangsu Province of China
(BK20150587).

475

REFERENCES
[1] Pac-man. http://en.wikipedia.org/wiki/Pac-Man,

2014.

[2] H. B. Ammar, E. Eaton, M. E. Taylor, D. C. Mocanu,
K. Driessens, G. Weiss, and K. Tuyls. An automated
measure of mdp similarity for transfer in
reinforcement learning. In Workshops at the 28th
AAAI Conference on Artificial Intelligence, 2014.

[3] R. Bellman. Dynamic programming. Princeton
University Press, 1957.

[4] C. Boutilier, T. Dean, and S. Hanks. Decision
theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial
Intelligence Research, 11:1–94, 1999.

[5] D. Braun, J. Mayberry, A. Powers, and S. Schlicker.
The geometry of the hausdorff metric. http://
faculty.gvsu.edu/schlicks/Hausdorff_paper.pdf,
2003.

[6] J. L. Carroll and K. Seppi. Task similarity measures
for transfer in reinforcement learning task libraries. In
Proceedings of the IEEE International Joint
Conference on Neural Network, pages 803–808, 2005.

[7] Y. Deng and W. Du. The kantorovich metric in
computer science: A brief survey. Electronic Notes in
Theoretical Computer Science, 253(3):73–82, 2009.

[8] K. Ferguson and S. Mahadevan. Proto-transfer
learning in markov decision processes using spectral
methods. In Proceedings of the 23rd ICML Workshop
on Transfer Learning, pages 895–900, 2006.

[9] F. Fernández and M. Veloso. Probabilistic policy reuse
in a reinforcement learning agent. In Proceedings of
the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 720–727, 2006.

[10] N. Ferns. Metrics for markov decision processes.
Master’s thesis, McGill University, 2003.

[11] N. Ferns, P. Castro, P. Panangaden, and D. Precup.
Methods for computing state similarity in markov
decision processes. In Proceedings of the 22nd
Conference in Uncertainty in Artificial Intelligence,
pages 174–181, 2006.

[12] N. Ferns, P. Panangaden, and D. Precup. Metrics for
finite markov decision processes. In Proceedings of the
20th Conference in Uncertainty in Artificial
Intelligence, pages 162–169, 2004.

[13] N. Ferns, P. Panangaden, and D. Precup. Metrics for
markov decision processes with infinite state spaces. In
Proceedings of the 21st Conference in Uncertainty in
Artificial Intelligence, pages 201–208, 2005.

[14] A. Haitham, Bou, E. Eric, R. Paul, and T. Matthew.
Online multi-task learning for policy gradient
methods. In Proceedings of the 31st International
Conference on Machine Learning, pages 1206–1214,
2014.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[16] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 895–900, 2007.

[17] G. Konidaris, I. Scheidwasser, and A. G. Barto.
Transfer in reinforcement learning via shared features.
Journal of Machine Learning Research,
13(1):1333–1371, 2012.

[18] A. Lazaric. Transfer in reinforcement learning: a
framework and a survey. In Reinforcement Learning,
pages 143–173. Springer, 2012.

[19] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of
samples in batch reinforcement learning. In
Proceedings of the 25th International Conference on
Machine Learning, pages 544–551, 2008.

[20] H. Li, X. Liao, and L. Carin. Multi-task reinforcement
learning in partially observable stochastic
environments. Journal of Machine Learning Research,
10:1131–1186, 2009.

[21] M. G. Madden and T. Howley. Transfer of experience
between reinforcement learning environments with
progressive difficulty. Artificial Intelligence Review,
21(3–4):375–398, 2004.

[22] D. N. Perkins and G. Salomon. Transfer of learning.
International encyclopedia of education, 2:6452–6457,
1992.

[23] M. L. Puterman. Markov decision processes: Discrete
stochastic dynamic programming. Journal of the
Operational Research Society, 46(6):792–793, 1995.

[24] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G.
Dietterich. To transfer or not to transfer. In NIPS
Workshop on Inductive Transfer, 2005.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning:
an introduction. IEEE Transactions on Neural
Network, 9(5):1054–1054, 1998.

[26] M. E. Taylor and P. Stone. Representation transfer for
reinforcement learning. In AAAI 2007 Fall Symposium
on Computational Approaches to Representation
Change during Learning and Development, 2007.

[27] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10:1633–1685, 2009.

[28] M. E. Taylor and P. Stone. An introduction to
intertask transfer for reinforcement learning. AI
Magazine, 32(1):15, 2011.

[29] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning
via inter-task mappings for temporal difference
learning. Journal of Machine Learning Research,
8(1):2125–2167, 2007.

[30] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skill
acquisition via transfer learning and advice taking. In
Proceedings of the 17th European Conference on
Machine Learning, pages 425–436, 2006.

[31] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8(3-4):279–292, 1992.

476

