
A Memetic Multi-Agent Demonstration Learning Approach
with Behavior Prediction

Yaqing Hou
Interdisciplinary Graduate

School
Nanyang Technological

University, Singapore 639748
houy0003@e.ntu.edu.sg

Yifeng Zeng
School of Computing
Teesside University
Middlesborough, UK

y.zeng@tees.ac.uk

Yew-Soon Ong
School of Computer

Engineering
Nanyang Technological

University, Singapore 639748
asysong@ntu.edu.sg

ABSTRACT
Memetic Multi-Agent System (MeMAS) emerges as an en-
hanced version of multi-agent systems with the implementa-
tion of meme-inspired agents. Previous research of MeMAS
has developed a computational framework in which a series
of memetic operations have been designed for implementing
multiple interacting agents. This paper further endeavors
to address the specific challenges that arise in more com-
plex multi-agent settings where agents share a common set-
ting with other agents who have different and even compet-
itive objectives. Particularly, we propose a memetic multi-
agent demonstration learning approach (MeMAS-P) with
improvement over existing work to allow agents to improve
their performance by building candidate models and accord-
ingly predicting behaviors of their opponents. Experiments
based on an adapted minefield navigation task have shown
that MeMAS-P could provide agents with ability to acquire
increasing level of learning capability and reduce the candi-
date model space by sharing meme-inspired demonstrations
with respect to their representative knowledge and unique
candidate models.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
multiple agents; demonstration learning; memetic algorithms

1. INTRODUCTION
Memetic Multi-Agent System (MeMAS) has emerged as

an enhanced version of multi-agent system (MAS) wherein
all meme-inspired agents acquire increasing learning capac-
ity and intelligence through meme evolution independently
or via social interaction [1][8][16]. Taking inspiration from

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the Darwin’s theory of natural selections and Darkins’ no-
tion of a meme [13][19], MeMAS introduces a computational
framework in which a series of memetic operations have been
designed for modeling multiple interacting agents, whereby
memes form the fundamental building blocks of agents’ mind
universe, and can be transmitted to others. Importantly,
when compared to the state-of-the-art multi-agent learning
approaches, such as Advice Exchange Model (AE) [18], the
modelling of multiple agents with MeMAS exhibits signif-
icant superiority in achieving a greater level of adaptivity
and effective problem-solving. MeMAS has been successfully
applied into several problem domains, such as the minefield
simulation task [15] and 3D interactive video games [9].
Existing MeMAS has focused on a simple mutli-agent set-

ting where all agents tend to have same or similar behaviors,
and objectives. In case that multiple agents have different
objectives, the modeling of multiple agents becomes rather
difficult since agents are required to learn an“efficient”strat-
egy to interact with their opponents. Nevertheless, search-
ing for an optimal interaction strategy is a hard problem
since its effectiveness depends mostly on the strategies of
their opponents involved. Thus, it is further important to
extend the agents’ learning ability to recognize the strategies
of other agents present in the environment.
In this paper, our interest lies in addressing the specific

challenges that arise in more realistic and complex multi-
agent settings where agents have different and even com-
petitive objectives. Particularly, beyond the formalism of
MeMAS and taking meme as basic unit of demonstrations,
we propose a memetic multi-agent demonstration learning
approach (MeMAS-P) with improvement over existing work
to allow subject agents to improve their performance by
predicting behavior of their opponents. More specifically,
we make the contributions into the following two important
components in the development of MeMAS-P:

• Given the instance data that was recorded from previ-
ous interaction activities, subject agents in the MeMAS-
P are designed to automatically build candidate mod-
els of their opponents and predict their behavior by
solving the models;

• MeMAS-P provides the ability for subject agents to
enhance their learning performance and reduce the
complexity of behavior prediction by sharing meme-
inspired demonstrations with respect to their internal
representative knowledge while also the available can-
didate models.

In the present study, a popular “Temporal Difference - Fu-

539

sion Architecture for Learning and Cognition” (FALCON)
[23] is employed as the connectionist reinforcement learning
machine of our agents due to its well-established fast and
online self-learning capabilities. Further, to investigate the
effectiveness of the proposed MeMAS-P, we conduct the ex-
periment on an adapted Minefield Navigation Task (MNT).
The empirically results show that MeMAS-P could effec-
tively improve the learning performance of subject agents
while reducing the behavior prediction complexity through
the embedded demonstration learning techniques.
The rest of the paper is organized as the follows: Section 2

provides an overview of the related research literature. Sec-
tion 3 begins with a brief discussion of reinforcement learn-
ing which is followed by an introduction of MeMAS. Further,
study of the proposed MeMAS-P which is composed of the
behavior prediction and multi-agent demonstration learning
is presented in Section 4. Section 5 presents a comprehen-
sive empirical study of the proposed MeMAS-P based on an
adapted Minefield Navigation Task. Finally, we conclude
this paper with some brief remarks in Section 6.

2. LITERATURE REVIEW
Reinforcement learning (RL) is an interaction-based paradig-

m wherein agents learn to adjust their actions with the goal
of maximizing the reward signals from the environment. Ex-
isting approaches for developing RL agents, such as tempo-
ral difference [22], dynamic programming [6], policy search
[3], etc., focus on the independent learning through explor-
ing the environment. While such techniques have had great
success in individual learning and software applications, they
require a large amount of data and high exploration times
and have limited applications in many realistic and complex
problem domains.
On the other hand, learning from demonstration (LfD) is

proposed as an algorithm that provides agents with demon-
strations from a supposed expert, from which agents derive
suitable learning policies and hence increase their learning
speed [2]. Proposed techniques span a wide range of policy
learning methods, ranging from classification [11] to regres-
sion [17], and utilizing a variety of interaction methods, such
as natural language [21], kinesthetic teaching [7], observa-
tion [4] and advice exchanging [18]. Recently, LfD has also
been successfully introduced into RL. For example, Torrey
et al. [26] studied how a RL agent can best instruct another
agent using a limited amount of demonstrations while Brys
et al. [5] investigated the intersection of RL and LfD and
further used the expert demonstrations to speed up learn-
ing through a reward shaping process. Nevertheless, exist-
ing LfD approaches to date focus almost exclusively on the
problem of a single agent being taught by a single teacher
demonstrator while the multi-agent demonstration learning
has less been explored.
LfD can be problematic because of the number of trials

necessary to gather sufficient samples to learn correctly. The
problem becomes compounded in a multi-agent setting due
to the potentially much larger design space arising from the
number of and interactions between the agents. Currently,
the research of LfD starts to take steps toward reducing the
complexity. Multiple autonomous agents request advice and
provide demonstrations for each other [18], and agents with
similar behaviors learn from each other by leveraging broad-
casted demonstrations [24]. Further, in a recent memetic
multi-agents system, demonstrations have also been defined

as memes and transferred among agents via an evolutionary
imitation process [15]. However, most of the aforementioned
research focus on the simple mutli-agent setting where a-
gents tend to have same or similar behaviors, and objectives.
In this paper, we contribute to the development of LfD

in multi-agent RL system. Particularly, using an example
inspired from minefield navigation task, we investigate the
proposed MeMAS-P in addressing the complex MAS prob-
lems where agents have competitive objectives.

3. PRELIMINARIES
This section begins with a brief introduction of reinforce-

ment learning which is followed by an introduction of Memet-
ic Multi-Agent System (MeMAS).

3.1 Reinforcement Learning
RL is a paradigm for an agent to optimize its behaviors

through reward and punishment received from environment.
A standard RL problem is typically formulated as a Markov
decision process [22] which is composed of < S,A, T,R >
tuples where S indicates the observable environmental s-
tates, A denotes the available actions, T describes the s-
tochastic transition between state s and s′, usually defined
as T (s|a, s′); R is the reward function that determines the
scalar reward of a transition.
In case of the multiple-step decision making problems, the

action selection should not only depend on the current s-
tates, since the agent can only know the merit of an action
beyond several steps in the future. Thus, Temporal Dif-
ference (TD) method, such as Q-learning, is proposed to
estimate for a learning system to perform an action a giv-
en state s. The iterative estimation of the value function
Q(s, a) is usually defined by:

Q(s, a) ← Q(s, a) + αδ

where α ∈ [0, 1] is the learning parameter, and δ is the
temporal-difference error:

δ = R(s, a, s′) + γmaxa′Q(s′, a′)−Q(s, a)

where R is the immediate reward value of performing action
a given state s, γ ∈ [0, 1] is the discount parameter, and
maxa′Q(s′, a′) is the maximum estimated value of the next
state s′.

In this work, we consider a self-organizing neural network
“Temporal Difference - Fusion Architecture for Learning and
Cognition” (FALCON) [23] (which is depicted in Fig. 1) as
the connectionist RL machine of autonomous agents. FAL-
CON employs a three-channel neural network architecture
and comprises three input fields, namely, a sensory field F c1

1

for representing states, a motor field F c2
1 for representing

actions, and a feedback field F c3
1 for representing reward

values. It has a cognitive field F2 for the acquisition and
storage of learning knowledge, which encodes a relation a-
mong the patterns in the three input channels. Particularly,
in FALCON dynamics, the baseline vigilance parameter ρk is
an extremely important parameter since it controls the level
of knowledge generation where ρk ∈ [0, 1] for k = 1, 2, 3.

3.2 Memetic Multi-Agent System
In the design of MeMAS, which is depicted in Fig. 1,

the core evolutionary process contains meme representation,
meme expression, meme assimilation, meme internal evolu-
tion and meme external evolution. Particularly, the meme

540

in memetic, as with genes in genetic, is represented as the
building block of cultural transmission and replication. Fur-
ther, meme representation represents the stored memes which
is respectively described internally as the learned knowledge
in agents’ mind universe (Memotype) and externally as the
manifested demonstrations that can be observed by others
(Sociotype). Meme expression is the process for individual
to express their internal memotypes as demonstrations to
others while meme assimilation is the way for an individ-
ual to capture these demonstrations and update them into
their respective mind universe. Notably, the expression of
such memotypes might take the form of the domain-specific
knowledge that infect other agents’ perceptions, minds, etc.
In the present study, we consider a manifestation of neuronal
memes as memory items that fill agents’ mind universe.

Figure 1: Illustration of the Memetic Multi-Agent
System in which FALCON (inside the mind uni-
verse) is used as the learning machine for memetic
agents.

Meme internal evolution and meme external evolution com-
prise the main behavioral learning aspects. Meme internal
evolution is the process for agents to update their mind u-
niverse by self learning. Meme external evolution, on the
contrary, serves to model the social interaction among a-
gents. The implementation framework of MeMAS is out-
lined in Alg. 1. As indicated in the implementation, the
meme evolution process is made up of a sequence of learn-
ing trials which will continue until the ultimate conditions,
such as mission numbers, are satisfied. During the learning
process, a population of memetic agents firstly conduct the
meme internal evolution within the environment of interest
(see line 5). In case that an agent identifies a teacher agent
via meme selection, the meme external evolution happens
to instruct how an agent learns from the others mainly via
meme transmission process (see line 7-12).
MeMAS has been implemented in several applications.

Particularly, in a simple minefield simulation task, Feng et
al. [15] discuss the efficiency of MeMAS in improving the
learning performance of agents by modeling the human-like
social interactions. Further, Chen et.al [9] considers a sce-
nario where agents have different memotypes, and MeMAS
in an adapted minefield simulation task shows emergent be-
haviors of learning agents. Besides, a practical 3D inter-
active game, namely “Home Defence” has also been stud-
ied where non-player characters trained by MeMAS interact
naturally with human-players online.

4. PROPOSED MEMAS-P
We propose a memetic multi-agent demonstration learn-

ing framework (MeMAS-P) where subject agents could de-

Algorithm 1: Pseudo Code of MeMAS

1 Begin:
2 Initialization: Generate the initial agents
3 while stop conditions are not satisfied do
4 for each current agent agt(c) do
5 Perform meme internal evolution process

/*Meme external evolution*/
6 if identify teacher agent agt(s) via meme

selection then
7 Perform meme expression with agt(s)

under the state of agt(c)
8 Perform meme variation with probability γ
9 /*γ is the frequency probability of variation

process*/
10 Perform meme transmission for agt(c) to

assimilate agt(s)’s action

11 /*Perform action from meme external evolution
if identified teacher agent, else perform action
from meme internal evolution*/

12 /*End meme internal evolution*/

13 End

velop effective interactive mechanisms with existing oppo-
nent agents by predicting their behaviors. The implementa-
tion of MeMAS-P is depicted in Fig. 2, wherein the behav-
ior prediction and multi-agent demonstration learning are
defined as two major components.

Figure 2: A Generic Illustration of the proposed
MeMAS-P.

4.1 Learning Problem Specification
The learning problem of subject agents (defined by MDP-

s in Section 3.1) in MeMAS-P is made up of a sequence
of simulations which will continue until the ultimate condi-
tions, such as success levels, are satisfied. For each current
step, subject agents select an appropriate action from a set
of possible actions and learn the association from their cur-
rent states, selected actions to the rewards received from the
environment. Further, during the learning process, subject
agents are likely to interact with one-or-more other agents,
which could also influence individual rewards. Different to
subject agents, the opponents that have competitive objec-
tives follow static strategies that are unknown to subject

541

agents. Both subject agents and their opponents act simul-
taneously at each time step while their actions cannot be
directly observed by others.

4.2 Behavior Prediction
In complex multi-agent systems, subject agents are likely

to encounter other opponent agents and may need to inter-
act with them to achieve their own goals. In this case, they
are required to be aware of the behavior or strategies of their
opponents and hence design an efficient interactive solution
to handle such encounters. However, agents are usually au-
tonomous and their strategies are private. Therefore, it is
essential to extend the the learning ability of subject agents
to recognize the capabilities, strategies, or models of their
opponents that are presented in the environment.
In our approach, subject agents are expected to build the

interactive strategy by predicting the behavior of their op-
ponents. Particularly, the prediction is achieved by solving
opponents’ models that are trained from the available da-
ta instances. Comparing with predicting behavior direct-
ly from the data, the model-based behavior prediction has
better scalability since the knowledge is reusable. Also, if
subject agents get access to the true model of the opponent,
they can predict its behavior in any environment and con-
duct more sensible decisions.
Since the built models (or strategies) of opponent agents

are not always known with certainty, subject agents need
to maintain a number of candidate models and assign them
confidence of being correct. When none of the available
models is likely to be exactly correct, we select the one of
them that better accounts for the collected data. Further,
the confidence that is assigned to candidate models being
correct can be adjusted online based on how well they pre-
dict the behavior of opponent agents. That means, in case
that opponent agents make changes on their strategies dur-
ing the interaction, subject agents can tune the confidence
levels that were assigned to candidate models accordingly.
Alg. 2 summarizes the detailed learning process of subject

agents with behavior prediction of their opponents. Specif-
ically, before the learning process, the instances of oppo-
nent agents, which are formatted as a set of <S,A,R> tu-
ples, are firstly collected to train all candidate models M =
{M1,M2, ...,Ml}. For example, given a <S,A,R> instance,
a FALCON candidate model will set a chosen action A, a
given states S and a received reward R as inputs of vector
F ck
1 . Then, it learns to associate the state F c1

1 , the action
F c2
1 and the reward F c3

1 and blends them into the cognitive
field F2. Notably, in the study of RL, such instance based
methods have been widely leveraged in predicting RL mod-
els [20][25]. Once the training process have been completed,
subject agents will be assigned with a set of candidate mod-
els and begin the online learning process (see step 2-7).
Particularly, the behavior prediction happens whenever

a subject agent detects any opponent agent agt(o) nearby
(see line 12). More specifically, an ε-greedy model selection
scheme is used to balance the exploration and exploitation
of candidate models (see line 13-16). It selects a candidate
model Ms of the highest confidence value conf(Ml) with
probability 1 - ε (0 ≤ ε ≤ 1), or chooses a random model
otherwise. The value of ε gradually decays with behavior
prediction times of each subject agent. Subsequently, the
subject agent will simulate the virtual operation for each
available action a and obtain a virtual state s(agt(c))′ (see

Algorithm 2: Self Learning with Behavior Prediction

Input: Candidate models M = {M1,M2, ...Ml},
Collected data D = {D1, D2, ...Dk}, where
Dk =< Sk, Ak, Rk >, Current state s, Action
set A = [a1, a2, ..., ai]

1 Begin:
2 for all Ml ∈ M do
3 for all Dk ∈ D do
4 Set input vector < Sk, Ak, Rk > in Ml

5 Training with vector < Sk, Ak, Rk >

6 Initialize subject agents and their opponents
7 Assign each subject agent with candidate models M
8 while stop conditions are not satisfied do
9 for each subject agent agt(c) do

10 Perform self learning process
11 /*Behavior Prediction*/
12 if detect an opponent agent agt(o) then
13 if Rand > scheme(ε) then
14 Ms = Random{Ml : for all model M}
15 else
16 Ms = Max{conf(Ml) : for all modelM}
17 for each available action ai ∈ A do
18 s(agt(c))′ =Virtual Perform(agt(c), ai)
19 ao = Predict(Ms, s(agt(c))

′)
20 s(agt(o))′ =Virtual Perform(agt(o), ao)
21 if fail interaction after virtual move

then
22 Discard ai from action set A

23 Get as from A with highest reward of self
learning in agt(c)

24 Continue self learning process

25 Update conf(Ms)

26 End

line 18). The received state s(agt(c))′ is further used to
infer the corresponding state of agt(o), and thus predicts
its action ao by activating the internal knowledge of model
Ms (see line 19). Upon receiving the results after virtual
performing ao, subject agents will decide whether to discard
an action from the available action set A (see line 21-22).
Then, agent agt(c) will select an action as from the set A
with the highest reward yield. After each step of all agents,
the Ms leading to more success interactions is updated with
greater confidence conf(Ms) of being chosen for subsequent
behavior prediction (see line 25):{

conf(Ms) = conf(Ms) + reward, if succeeds
conf(Ms) = conf(Ms)− penalty, if fails

where reward and penalty are positive integers and conf(Ml) ∈
[−100, 100].

4.3 Multi-Agent Demonstration Learning
Intuitively, the predicted candidate model derived from

RL data could reveal the true behavior of opponent agents
if subject agents are aware of the true model of their oppo-
nents. However, to achieve such results could be extremely
time-consuming, and even impossible due to the large space
of candidate models ascribed to opponent agents. In the

542

past few years, most researchers have concentrated on re-
ducing candidate model complexity of other agents. Among
them, some work focuses on reducing the solution complexi-
ty by compressing the model space of other agents [14]. The
second category, instead of constructing and solving vari-
ous models, infers the model of their opponent directly from
available behavior data [28][12][10]. Nevertheless, most of
existing works to date focus on the learning of models for
single-agent decision making process and does not integrate
the behavior prediction method in a multi-agent setting.
Different to existing approaches, we propose a multi-agent

demonstration learning approach for enhancing subject a-
gents’ learning capability while also reducing their candidate
model complexity. In particular, the demonstration learning
between agents with unique learning capabilities happens by
means of imitation. In present multi-agent settings, all sub-
ject agents learn in the same environment and have the same
acting abilities. Therefore, the demonstration learning could
offer the advantage for student agents to behave at approxi-
mately the same performance level as their selected teachers.
Further, when multiple candidate models are available, sub-
ject agents with the demonstration learning approach do not
need to train all the models and they can acquire increasing
level of predictive capability from their partners by sharing
demonstrations with respect to their unique candidate mod-
els. The demonstration learning approach thus reduces can-
didate model complexity by assigning a small set of models
to subject agents.
The multi-agent demonstration learning process in MeMAS-

P is summarized in Alg. 3. More specifically, the subjec-
t agent will be assigned with a set of candidate model-
s Magt = {Magt

1 , ...,Magt
n }, where agt is the index of the

subject agent and n is the number of models in Magt (see
line 2). Further, the current agent agt(c) will check if there
exists a teacher agent agt(t) that has higher fitness value
Fit(agt(t)) (see line 4). Once a selection is made, the sub-
ject agent agt(c) passes its state to the selected teacher agen-
t agt(t) (see line 6). Meanwhile, if agent agt(c) detects an
opponent agent agt(o) nearby, it will also pass the inferred
state s(agt(o)) of the detected opponent to the teacher agen-
t agt(t) (see line 7-8). By simulating the states of current
agent s(agt(c)) and the detected opponents agent s(agt(o)),
the teacher agent agt(t) first conducts behavior prediction
according to its own models M t and discards failure actions
from the available action set A (see line 9-10). It further
predicts the action at from the action set A by activating its
internal learned knowledge and transmits it to agent agt(c).
Then, if transmitted action at is available, agent agt(c) will
imitate and assimilate the action at into its mind universe by
means of self learning (see line 13). In addition, a probability
γ is defined in line 12 to give the intrinsic innovation ten-
dency of selected actions in the multi-agent demonstration
learning process. This variation process serves to prevent
the agent agt(c) from learning from teacher agents blindly.

4.4 Complexity Analysis
As aforementioned, predicting accurate behaviors of oppo-

nent agents is computationally intractable due to the com-
plexity of candidate models and thus ways of mitigating the
computational intractability are critically needed. Since the
complexity is predominantly due to the space of candidate
models, we therefore focus on reducing the model space of
subject agents while avoiding a significant loss in optimality.

Algorithm 3: Multi-Agent Demonstration Learning

Input: Candidate models {M1,M2, ...Magt}, where
Magt = {Magt

1 , ...,Magt
n }, Current state s,

Action set A = [a1, a2, ..., ai]
1 Begin:

2 Assign each subject agent with candidate model Magt

3 for each subject agent agt(c) do
4 if identify {agt(t)|Fit(agt(c) < Fit(agt(t))} then
5 Get s(agt(c)) of current agt(c)
6 Pass s(agt(c)) to the teacher agent agt(t)
7 if detect an opponent agent agt(o) then
8 Pass s(agt(o)) to agent agt(t)

9 Perform Behavior Prediction with M t

10 Discard failure actions from action set A

11 Get at from A with highest reward of self
learning in agt(t)

12 Perform variation on at with probability γ

13 Get as = at from agt(t), otherwise get as from A
with highest reward of self learning in agt(c)

14 The left steps are same as that in self learning
process (see Alg. 2)

15 End

Specifically, in our framework, the entire candidate mod-
els M are partitioned into different partial sets according to
the number of subject agents: M = {M1

1 ,M
1
2 ,M

2
3 , ...M

agt
l }

where Magt aggregates the candidate model set labelled by
the same subject agent mark. Then, subject agents will on-
ly train candidate models from their corresponding partial
sets. According to the proposed demonstration learning pro-
cess, these non-familial peer subject agents with unique can-
didate models Magt could communicate socially and takes
advantage from each other (see Alg. 3). Hence, the proposed
MeMAS-P with demonstration learning can reduce the can-
didate model space of each subject agent in the multi-agent
system.

5. EMPIRICAL STUDY
Minefield navigation task (MNT) has been known as one

of the most classical and widely used minefield simulation
task where all agents have the same objective to complete
the navigating task successfully. Taking the classical MNT
as an example, we validate the effectiveness of MeMAS-P in
an adapted setting where agents may have similar or con-
flicting objectives.

5.1 Minefield Navigation Task
In a classic minefield navigation task, all green tanks (sub-

ject agent, denoted by Navigator) have the same objective
to navigate across a minefield and arrive at the target (red
flag) within given limited time frame. The tank shall avoid
any mines or other agents. In our novel competitive sce-
nario (depicted in Fig. 3), we further import a new kind of
red tanks (denoted as Predator) with the objective to track-
ing down the navigators before they flees to the red flag.
Notably, the red tanks cannot be destroyed by the mines.
Both navigators and predators that spawn randomly with-

in the field at the beginning of each trial run are equipped
with sonar sensors so that they have access to a set of detec-
tions, including mine detection, Navigator detection, Preda-

543

Figure 3: A screenshot of the adapted minefield nav-
igation task with the illustration of Mission Endings.

Table 1: Summary of the parameter setting in the
proposed MeMAS-P.

Falcon Parameters
Choice Parameters (αc1, αc2, αc3) (0.1, 0.1, 0.1)
Learning Rates (βc1, βc2, βc3) (1.0, 1.0, 1.0)

Contribution Parameters (γc1, γc2, γc3) (0.5, 0.5, 0)
Baseline Vigilance Parameters (ρc1, ρc2, ρc3) (0.2, 0.2, 0.5)
Temporal Difference Learning Paramters

TD learning rate α 0.5
Discount Factor γ 0.1
Initial Q-value 0.5

ε-greedy Model Selection Parameters
Initial ε value 1
ε decay rate 0.0005

Demonstration Variation Parameter
Frequency of Variation γ 0.1

tor detection and target bearing. According to these detect-
ed states, each autonomous agent then performs one of the
five possible actions at each step with a 180◦ forward view:
A = {LEFT, LEFT FRONT, FRONT, RIGHT FRONT,
RIGHT}. Particularly, a navigator is rewarded with a pos-
itive value 1 if it arrives at the target while a predator re-
ceives a reward 1 only if it catches one of the navigators
before they reach the red flag. Otherwise, if an agent hits
a mine, collides with others, be caught, or does not reach
the target within the given limited time steps, it will be as-
signed with 0 reward. In our experimental study, we have
a total of 6 autonomous robots, 6 mines and 1 target flag
which are randomly generated over trials in a 12× 12 field.
A trial completes only if all navigators reach the target, be-
ing caught by the predators, hit a mine or other navigators,
or exceed 30 time steps.

5.2 Experimental Settings
In our study, we conduct the experiments for 30 indepen-

dent simulations with each of which has a total of 3000 mis-
sions. The parameter settings of FALCON and the proposed
MeMAS-P configured in the present experimental study are
summarized in Table 1. These configurations of the learn-
ing machines are considered to be consistent with previous
studies [23] for the purpose of fair comparisons. The results
with respect to the following metrics are then reported:

• MN: the number of training missions;

• SR: the average success rate of the agents on complet-
ing the missions.

5.3 Brief Study of MeMAS
The objective of the present experimental study is to in-

vestigate the performance of MeMAS with all 6 FALCON
navigators on completing the classic Minefield Navigation
Tasks. For the purpose of comparison, two state-of-the-
art multi-agent demonstration learning approaches, name-
ly Advice Exchange Model (AE) [18] and Parallel Trans-
fer Learning (PTL) [24] are also implemented. Specifically,
agents in AE with poor performance learn from their eli-
tist by seeking their advice while agents in PTL learn from
others by taking advantage from their broadcasted knowl-
edge. Fig. 4 depicts the learning trends of navigators un-
der these three demonstration learning approaches and the
conventional MAS where agents cannot learn from others.
As can be observed, all demonstration learning approaches
outperform the conventional MAS. Particularly, MeMAS is
noted to achieve superior performance in terms of success
rate throughout the learning process when compared to the
existing state-of-the-art multi-agent demonstration learning
approaches.

0 500 1000 1500 2000 2500 3000
15

20

25

30

35

40

45

50

55

60

65

Number of Missions (MN)

S
uc

ce
ss

 R
at

e
(S

R
)

MeMAS
AE
PTL
Conventional MAS

Figure 4: Success rates of navigators under MeMAS,
PTL, AE and conventional MAS on completing the
missions in classic Minefield Navigation Tasks.

5.4 Study of the MeMAS-P with Actual Mod-
el of Predators

We further consider a more complex MNT involving a
mixture of 3 navigators and 3 predators where both naviga-
tors and predators employ FALCON with ρk = (0.2, 0.2, 0.5)
as their RL learning machines. Notably, the predator has
been well trained before the online learning process of navi-
gators. In this set of experiment, we assume all 3 navigators
are aware of the actual trained FALCON model ascribed
to predators and thus have the ability to predict the exact
behaviors of their opponents.
As aforementioned, the proposed MeMAS-P is composed

of two major components, namely behavior prediction and
multi-agent demonstration learning. To study the effective-
ness of each component, we investigate the average perfor-
mance of navigators with respect to the following different
learning abilities for comparison consideration:

• Navigator-BP: navigators with behavior prediction;
• Navigator-DL: navigators with mutli-agent demonstra-

tion learning;
• Navigator-BD: navigators with both behavior predic-

tion and mutli-agent demonstration learning;
• Navigator-Conv: navigators under the conventional MAS

that has no behavior prediction and mutli-agent demon-
stration learning.

544

Fig. 5 shows the learning trends of different kinds of navi-
gators in terms of success rates. Notably, the success rate of
Navigator-Conv in this novel MNT scenario is much lower
than that under the classic MNT in the previous subsec-
tion. The results indicate that the navigators suffer from
the interaction with predators in the novel MNT and have
a high probability being caught by their opponents. On
the other hand, Navigator-BP achieves significantly higher
performance in terms of success rate than Navigator-Conv.
This demonstrates that the behavior prediction process in
MeMAS-P can effectively help navigators survive from their
encounters with predators.

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

45

50

55

60

Number of Missions (MN)

S
uc

ce
ss

 R
at

e
(S

R
)

Navigator−BD
Navigator−BP
Navigator−DL
Navigator−Conv

Figure 5: Success rates of navigators with and with-
out MeMAS-P components on completing the mis-
sions in the novel Minefield Navigation Tasks.

Further, Navigator-DL and Navigator-BD also report su-
periority in attaining higher success rates than navigators
that have no demonstration learning process. This is at-
tributed to the multi-agent demonstration learning process
which endows navigators with capacities to benefit from the
demonstrations sharing from the better performing agents,
thus accelerating the learning rate of the navigators in solv-
ing the missions.

5.5 Study of MeMAS-P with candidate FAL-
CON models

In this experiment, we consider a more common scenario
where the exact trained model of the predator is not ac-
cessible for navigators. Instead, we assign navigators with
a number of candidate models which will be trained using
instance data of predators that are recorded from previous
interaction activities. According to these trained candidate
models, navigators could further predict actions of preda-
tors, and use these predictions in place of predators’ behav-
iors.
To facilitate discussion, we consider several FALCONmod-

els as candidates that assign different values to the baseline
vigilance parameter ρk. Table 2 shows the details of pa-
rameter settings and the complete results pertaining to the
success rate of navigators with different candidate models.
Particularly, we classify all candidate models into three sets
according to their ρk values, known as 1) a low parameter
set ρk ∈ [0, 0.1] , 2) a medium parameter set ρk ∈ [0.1, 0.5]
and 3) a high parameter set ρk ∈ [0.5, 1], respectively. The
average performance of navigators with respect to the fol-
lowing settings is then reported:

• Navigator-S: navigators that are assigned with a single
candidate model;

• Navigator-All: navigators that are assigned with all
candidate models;

• Navigator-L,M,H: navigators that are assigned with
candidate models of the low, medium and high pa-
rameter sets, respectively;

• Navigator-AVG: average performance of Navigator-L,
Navigator-M and Navigator-H;

• Navigator-DL: 3 navigators are assigned with candi-
date models of low, medium, high parameter set, re-
spectively. Each can learn from their partners accord-
ing to multi-agent demonstration learning process;

Table 2: Performance of navigators with different
candidate models.

FALCON Candidate Model Navigator Performance

Model Set (ρ1, ρ2, ρ3) Success Rate
1

Low
(0.05,0.05,0.05) 48.97

48.67

55.59

2 (0.05,0.05,0.1) 49.82
3

Medium
(0.2,0.2,0.5) 54.97

54.94
4 (0.5,0.5,0.5) 54.74
5

High
(0.5,0.5,0.9) 55.52

55.94
6 (0.9,0.9,0.9) 55.92

We first investigate the performance of Navigator-S in
terms of success rate. Notably, Navigator-Ss with differen-
t FALCON candidate models of different baseline vigilance
parameter ρk report distinct success rates after the learn-
ing process (see Table 2, column 4). Particularly, naviga-
tors with FALCON candidate model of ρk = (0.9, 0.9, 0.9)
obtain significant higher success rate than that of ρk =
(0.05, 0.05, 0.05). Such difference among various FALCON
candidate models highlights the importance of selecting a
correct candidate model for navigators to predict the be-
havior of predators. On the other hand, Navigator-All sig-
nificantly outperforms most of Navigator-Ss. At the end of
the learning process, it attains a success rate of 55.59% (see
Table 2, column 6), only a bit lower than Navigator-S with
the candidate model of highest ρk (see Table 2, row 6, colum-
n 4). The outstanding performance of Navigator-All verifies
the effectiveness of the proposed behavior prediction process
in making choice of the most reliable candidate models.

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

45

50

55

60

Number of Missions (MN)

S
uc

ce
ss

 R
at

e(
C

R
)

Navigator−L
Navigator−M
Navigator−H
Navigator−AVG

(a) Navigator-L,M,H&AVG.

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

45

50

55

60

Number of Missions (MN)

S
uc

ce
ss

 R
at

e(
C

R
)

Navigator−All
Navigator−Avg
Navigator−DL

(b) Navigator-All,AVG&DL.

Figure 6: Success rates of navigators using all and
part of candidate FALCON models on complet-
ing the missions in the novel Minefield Navigation
Tasks.

Further, we investigate the performance of navigators with
the proposed multi-agent demonstration learning. For com-
parison consideration, we first study the learning perfor-
mance of Navigator-L, M and H, respectively, and report
their average success rate by Navigator-AVG in Fig. 6(a).
The success rates obtained by Navigator-All, Navigator-AVG
and Navigator-DL are further depicted in Fig. 6(b). Com-
pared to Navigator-AVG, both Navigator-ALL and Navigator-
DL have demonstrated superiority in attaining higher suc-
cess rates. Particularly, Navigator-DL is noted to obtain

545

success rates that are similar to Navigator-All. This is at-
tributed to the reason that navigators with the multi-agent
demonstration learning approach can take advantage from
their partners that have better learning capabilities.

Table 3: Computing time taken by Navigator-All
and Navigator-DL for training candidate models and
behavior prediction.

Navigator-DL Navigator-All

Metrics Low ρk Medium ρk High ρk Avg Avg
1 MT (s) 0.47 0.69 3.91 1.69 5.07
2 PN 8119 8359 10594 9024 9856
3 PT (s) 2.21 4.43 45.60 17.41 21.73

Moreover, in order to quantitatively evaluate how effec-
tive the proposed demonstration learning approach reduces
the candidate model complexity of subject agents, the com-
putational cost taken per simulation by Navigator-All and
Navigator-DL for behaviors predicting is reported in Table 3,
where MT is the training time of candidate models, PN is the
numbers of prediction and PT is the computational time for
behavior prediction. When referring to MT, Navigator-All
tends to be more computationally expensive than Navigator-
DL since subject agents in Navigator-All need to train all
six models while that in Navigator-DL are only assigned
with two models. Particularly, when we have a larger agent
system with much more candidate models, demonstration
learning exhibits significantly better scalability. For exam-
ple, when 10 agents are in the system and 100 models are
available, Navigator-DL reduces the training cost to a tenth
of the required amount for Navigator-All.
On the other hand, Navigator-DL has also been observed

to outperform Navigator-All by reporting lower computa-
tional cost in terms of PT (17.41s, see Table 3, row 3).
This is due to the reason that, peer subject agents from
Navigator-DL can take advantage form partners with unique
candidate model sets. As can be observed, the subject agent
with candidate model of high ρk tends to share its predict-
ed demonstrations with others and hence obtains the most
number of PNs (10594), much more than those obtained by
subject agent with low ρk and medium ρk (8119 and 8359,
see Table 3, row 2). Therefore, the proposed MeMAS-P is
demonstrated to have the superiority in both reducing the
candidate model spaces of subject agents, while also improv-
ing their generic learning performance.

5.6 Extensive Study of MeMAS-P with Differ-
ent RL Candidate Models

Last but not least, we investigate the performance of the
proposed MeMAS-P where navigators use different RL tech-
niques as the candidate models of their opponents. In par-
ticular, we study the scenario where not only FALCON but
a classical multi-layer perceptron (MLP) with gradient de-
scent based back propagation [27] are considered as the can-
didate models. For a fairness consideration, both the MLP
and FALCON candidate models are configured to be consis-
tent with the studies in [23] and will also be trained using
available RL instances of predators recorded from previous
interactive activities.
The first experiment is conducted to verify the effective-

ness of FALCON and MLP as candidate models when pre-
dicting predator’ behavior. In particular, three navigators
in this experiment are assigned with FALCON, MLP and

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

45

50

55

60

Number of Missions (MN)

S
uc

ce
ss

 R
at

e(
C

R
)

Navigator−FALCON
Navigator−MLP
Navigator−Conv
Navigator−All

(a) Navigators with no
demonstration learning.

0 500 1000 1500 2000 2500 3000
10

15

20

25

30

35

40

45

50

55

60

Number of Missions (MN)

S
uc

ce
ss

 R
at

e(
C

R
)

Navigator−FALCON
Navigator−MLP
Navigator−Conv

(b) Navigators with demon-
stration learning.

Figure 7: Success rates of navigators using FALCON
and/or MLP as candidate models on completing the
missions in the novel Minefield Navigation Tasks.

no candidate models, respectively, in the same environment.
Fig. 7(a) depicts the learning performance in terms of suc-
cess rate of navigators with respect to the following settings:

• Navigator-FALCON: the navigator using FALCON as
the candidate model;

• Navigator-MLP: the navigator using MLP as the can-
didate model;

• Navigator-All: the navigator using both FALCON and
MLP as candidate models;

• Navigator-Conv: the navigator under the conventional
MAS that has no behavior prediction of predators.

As can be observed, Navigator-FALCON demonstrates it-
s superiority in attaining much higher success rates than
Navigator-MLP and Navigator-Conv. This is reasonable s-
ince the FALCON candidate model is the same as the exact
learning model of predators, and hence could predict com-
paratively accurate behaviors.
Further, we endow all navigators with the ability to learn

from their partners’ valuable demonstrations. According to
the result in Fig. 7(b), all of the three navigators with the
proposed demonstration learning approach have reported
success rates that are approximate to Navigator-All. Partic-
ularly, Navigator-MLP and Navigator-Conv show approxi-
mately 7.0% and 9.1% improvements in success rates, re-
spectively. The improved performance demonstrates the ef-
ficacy of proposed MeMAS-P in improving the learning per-
formance of navigators using different RL techniques as the
candidate models in the adapted MNT.

6. CONCLUSIONS
In this paper, we have presented a memetic multi-agent

demonstration learning framework (MeMAS-P) for model-
ing multiple interacting agents. The framework improves
on early memetic techniques by providing an instance-based
behavior prediction approach for subject agents to interac-
t with present opponents. To reduce the candidate model
complexity, we have provided a demonstration learning ap-
proach for subject agents to leverage sharing from their part-
ners. The effectiveness of the proposed MeMAS-P has been
testified in an adapted minefield navigation task. Future
work could investigate incremental approaches for predict-
ing opponents’ behavior from online data.

Acknowledgments
This research is supported by the National Research Foun-
dation Singapore under its Interactive Digital Media (IDM)
Strategic Research Programme.

546

REFERENCES
[1] G. Acampora, J. M. Cadenas, V. Loia, and E. M.

Ballester. A multi-agent memetic system for
human-based knowledge selection. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 41(5):946–960, 2011.

[2] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[3] J. Baxter and P. L. Bartlett. Infinite-horizon
policy-gradient estimation. Journal of Artificial
Intelligence Research, pages 319–350, 2001.

[4] D. C. Bentivegna, C. G. Atkeson, A. UDE, and
G. Cheng. Learning to act from observation and
practice. International Journal of Humanoid Robotics,
1(04):585–611, 2004.

[5] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova,
M. E. Taylor, and A. Nowé. Reinforcement learning
from demonstration through shaping. In Proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[6] L. Busoniu, R. Babuska, B. De Schutter, and
D. Ernst. Reinforcement learning and dynamic
programming using function approximators,
volume 39. CRC press, 2010.

[7] S. Calinon and A. Billard. Incremental learning of
gestures by imitation in a humanoid robot. In
Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages
255–262. ACM, 2007.

[8] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan. A
multi-facet survey on memetic computation. IEEE
Transactions on Evolutionary Computation,
15(5):591–607, 2011.

[9] X. Chen, Y. Zeng, Y.-S. Ong, C. S. Ho, and Y. Xiang.
A study on like-attracts-like versus elitist selection
criterion for human-like social behavior of memetic
mulitagent systems. In Evolutionary Computation
(CEC), 2013 IEEE Congress on, pages 1635–1642.
IEEE, 2013.

[10] Y. Chen, P. Doshi, and Y. Zeng. Iterative online
planning in multiagent settings with limited model
spaces and pac guarantees. In Proceedings of the 2015
International Conference on Autonomous Agents and
Multiagent Systems, pages 1161–1169. International
Foundation for Autonomous Agents and Multiagent
Systems, 2015.

[11] S. Chernova and M. Veloso. Interactive policy learning
through confidence-based autonomy. Journal of
Artificial Intelligence Research, 34(1):1, 2009.

[12] R. Conroy, Y. Zeng, M. Cavazza, and Y. Chen.
Learning behaviors in agents systems with interactive
dynamic influence diagrams. In Proceedings of the 24th
International Conference on Artificial Intelligence,
pages 39–45. AAAI Press, 2015.

[13] R. Dawkins. The selfish gene. Oxford: Oxford
University Press, 1976.

[14] P. J. Doshi. Decision making in complex multiagent
contexts: A tale of two frameworks. AI Magazine,
33(4):82, 2012.

[15] L. Feng, Y.-S. Ong, A.-H. Tan, and X.-S. Chen.
Towards human-like social multi-agents with memetic
automaton. In Evolutionary Computation (CEC),
2011 IEEE Congress on, pages 1092–1099. IEEE,
2011.

[16] L. Feng, Y.-S. Ong, A.-H. Tan, and I. W. Tsang.
Memes as building blocks: a case study on
evolutionary optimization+ transfer learning for
routing problems. Memetic Computing, 7(3):159–180,
2015.

[17] D. H. Grollman and O. C. Jenkins. Dogged learning
for robots. In Robotics and Automation, 2007 IEEE
International Conference on, pages 2483–2488. IEEE,
2007.

[18] E. Oliveira and L. Nunes. Learning by exchanging
advice. In R.Khosla, N. Ichalkaranje, and L. Jain,
editors, Design of Intelligent Multi-Agent Systems,
chapter 9. Spring, New York, NY, USA, 2004.

[19] Y.-S. Ong, M. H. Lim, and X. Chen. Research
frontier-memetic computation-past, present & future.
IEEE Computational Intelligence Magazine, 5(2):24,
2010.

[20] D. Ormoneit and Ś. Sen. Kernel-based reinforcement
learning. Machine learning, 49(2-3):161–178, 2002.

[21] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso.
Interactive robot task training through dialog and
demonstration. In Human-Robot Interaction (HRI),
2007 2nd ACM/IEEE International Conference on,
pages 49–56. IEEE, 2007.

[22] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998.

[23] A.-H. Tan, N. Lu, and D. Xiao. Integrating temporal
difference methods and self-organizing neural networks
for reinforcement learning with delayed evaluative
feedback. Neural Networks, IEEE Transactions on,
19(2):230–244, 2008.

[24] A. Taylor, I. Dusparic, E. Galván-López, S. Clarke,
and V. Cahill. Transfer learning in multi-agent
systems through parallel transfer. In Theoretically
Grounded Transfer Learning at the 30th International
Conference on Machine Learning (ICML). Omnipress,
2013.

[25] M. E. Taylor, N. K. Jong, and P. Stone. Transferring
instances for model-based reinforcement learning. In
Machine learning and knowledge discovery in
databases, pages 488–505. Springer, 2008.

[26] L. Torrey and M. Taylor. Teaching on a budget:
Agents advising agents in reinforcement learning. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages
1053–1060. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[27] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, U.K, May
1989.

[28] Y. Zeng, Y. Chen, and P. Doshi. Approximating
behavioral equivalence of models using top-k policy
paths. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume
3, pages 1229–1230. International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

547

