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ABSTRACT
We address ad hoc teamwork, where an agent must coordi-
nate with other agents in an unknown common task without
pre-defined coordination. We formalize the ad hoc teamwork
problem as a sequential decision problem and propose (i) the
use of an online learning approach that considers the differ-
ent tasks depending on their ability to predict the behav-
ior of the teammate; and (ii) a decision-theoretic approach
that models the ad hoc teamwork problem as a partially ob-
servable Markov decision problem. We provide theoretical
and empirical evaluation of the performance of our proposed
methods in several domains of different complexity.
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1. INTRODUCTION
The challenge of developing autonomous agents that are

capable of cooperatively engaging with other unknown agents
in a joint common task is known as the ad hoc teamwork
problem [3]. In this paper, we break down the ad hoc team-
work problem into three challenges that an agent must ad-
dress when paired within an ad hoc team. We claim that the
agent may not always know beforehand the task that it is
expected to complete. Therefore, it must identify the target
task, idenfy the teammates strategy and decide accordingly.

Research on ad hoc teamwork mostly focused on the deci-
sion-making step, relying on different assumptions that sim-
plify the other challenges. For example, Stone and Kraus [5]
admit knowledge of teammate and task and use bandit algo-
rithms to drive the teammate to the desired behavior. Pos-
terior works no longer use teammate knowledge, assuming
they are best responders, but still rely on task knowledge [4].
Recent works combine learning with planning, extending ad
hoc teamwork to complex cooperative domains [1].

In this paper, we formalize the ad hoc teamwork problem
as a sequential decision problem, in which the ad hoc agent
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does not know in advance the target task or how its team-
mates act towards completing it. Each task is represented
as fully cooperative matrix game; the ad hoc agent identi-
fies the target task by determining the corresponding pay-
off function from a set of possible alternatives. Teammates
are assumed to follow a bounded-rationality best-response
model [4], adapting their behavior to that of the learning
agent. We the propose two novel approaches to the ad hoc
teamwork problem: the first uses online learning to detect
the target task and act accordingly; the second models the
ad hoc teamwork problem as partially observable Markov
decision process (POMDP) that can be solved using stan-
dard approaches from the literature. Finally, we present
both theoretical bounds on and an empirical evaluation of
the performance of our approaches in several domains.

2. THE AD HOC TEAMWORK PROBLEM
An agent placed in a team of unknown agents executing an

unknown target task must, first of all, determine such target
task. We assume that the target task τ∗ lies in a known
finite set T of tasks, each represented as a fully cooperative
matrix game (N,×Nn=1An, uτ ), where N is the number of
agents, An is the action set of agent n and uτ is the utility
function of task τ . Once the task is identified, the agent
must determine how the teammates address that task so
that it can plan its own actions. These three steps (task
identification, teammate identification and planning) should
be expected from any ad hoc agent.

2.1 Online Learning (OL) Approach
We denote the ad hoc agent as α and its teammates as a

single meta-agent −α. As in other works [4], we assume −α
is a best responder to the last M plays of α.

Our first approach requires the ad hoc agent to predict,
at each time step n, the action A−α(n) of its teammate.
Therefore, at each step n, the ad hoc agent selects a joint
action Â(n) = 〈Aα(n), Â−α(n)〉 that includes its own action,

Aα(n), and its prediction, Â−α(n), and incurs a loss

`(Â(n), A−α(n)) = 1− δ(Â−α(n), A−α(n)). (1)

where δ is the Kroneker delta function. We cast the ad hoc
teamwork problem as an online prediction problem, associ-
ating with each task τ ∈ T an expert Eτ : H × A → [0, 1],
where Eτ (h1:n, a) is the probability of selecting the joint ac-
tion a as a best response to the history h1:n according to
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Figure 1: (a) Payoff in randomly generated scenarios vs the number of actions per agent. (b) POMDP
computation time vs the number of actions per agent. (c) Payoff in the pursuit domain.

task τ . The cumulative loss of Eτ given the history h1:n is

Lτ (h1:n) ,
n−1∑
t=0

`τ (h1:t, a−α(t+ 1)),

where a−α(t) is the actual action played by the teammate at
time-step t after history h1:t. Considering the exponentially
weighted average predictor (EWAP) given by:

P (h1:n, â) ,

∑
τ∈T e

−γnLτ (h1:n)Eτ (h1:n, â)∑
τ∈T e

−γnLτ (h1:n)
, (2)

where γn is a positive parameter, we get the next result [2]:

Theorem 1. If γt =
√

2 ln |E| /t1/2 for all t > 0, then,
for any finite history h1:n ∈ H, the regret Rn(P, E) of an ad

hoc agent following the EWAP is bounded above by
√
n/2 ln |E|,

where Rn(P, E) = E [LP (h1:n)− Lτ (h1:n)] and LP (h1:n) is
the cumulative loss of predictor P at step n, given h1:n.

2.2 Decision-theoretic (POMDP) Approach
This section further considers prior knowledge about the

target task, encoded as a prior distribution p0, and the im-
pact of the actions of agent on those of the teammate. The
prior p0 suggests a Bayesian approach to the ad hoc team-
work problem; the consideration of the agent α’s actions
impacts the way in which regret is defined.

We model the ad hoc teamwork problem as a POMDP
(X ,A,Z,P,O, c, γ), where at each time step n the state
takes values in X and consists of the history of past M
plays and the (unknown) target task. The action of the
agent takes values in A and again includes its own action,
Aα(n) and the prediction of the teammate’s action, Â−α(n).
After selecting an action, the agent observes A−α(n), which
corresponds to the observation space Z = A−α. The transi-
tion probabilities P encode the state dynamics as a function
of the agent’s actions, and are factored in two components:
the dynamics of the target task, which remains unchanged,
and the dynamics of the history, which evolve according to
the agent’s actions and the best-response model of the team-
mate. Finally, the observation probabilities, O, map the cur-
rent state to the teammate’s most recent action, and the
reward function r weights the payoff received from the in-
teraction (determined by uτ∗) with that of the loss in (1):

r(h, τ, a) =
∑
â,b̂∈A

Eτ (h, â)Eτ (h, b̂)(K − `(â, a))Uτ (aα, b̂−α)

where K is a normalizing constant. We have modeled the

ad hoc teamwork problem as a POMDP to which we can
apply any POMDP solver. We have the following result [2]:

Theorem 2. The POMDP-based approach to the ad hoc
teamwork problem is such that limn→∞

1
n
Rn(P, E) = 0.

3. EMPIRICAL EVALUATION
We empirically evaluate the performance in random prob-

lems with increasing complexity (Figs. 1(a) and 1(b)) and
the benchmark pursuit domain [1]. We compare the perfor-
mance of the OL and POMDP approaches with the perfor-
mance of an approach with task knowledge (MDP) and a
standard RL approach. As seen in Fig. 1(a), the POMDP
approach is clearly superior, although at a cost in computa-
tion (Fig. 1(b)). The two approaches proposed herein thus
offer a delicate tradeoff between performance and complex-
ity (see [2] for further discussion). In the pursuit domain
(Fig. 1(c)), we compare our OL approach to the BSKR ap-
proach (from [1]), which uses full knowledge of the task.
The domain is too large for the POMDP approach to be
competitive (in computational terms). The OL approach is
clearly superior to a naive RL approach, although not reach-
ing the superior performance of BSKR. For a more detailed
discussion, please refer to the full version of the paper [2].
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