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ABSTRACT
We study the problem of selecting the best action from mul-
tiple candidates in a stochastic environment. In such a s-
tochastic setting, when taking an action, a player receives a
random reward and affords a random cost, which are drawn
from two unknown distributions. We target at selecting the
best action, the one with the maximum ratio of the expect-
ed reward to the expected cost, after exploring the actions
for n rounds. In particular, we study three mechanisms: (i)
the uniform exploration mechanism MU; (ii) the successive
elimination mechanism MSE; and (iii) the ratio confidence
bound exploration mechanismMRCB. We prove that for all
the three mechanisms, the probabilities that the best action
is not selected (i.e., the error probabilities) can be upper
bounded by O(exp{−cn}), where c is a constant related to
the mechanisms and coefficients about the actions. We then
give an asymptotic lower bound of the error probabilities of
the consistent mechanisms for Bernoulli setting, and discuss
its relationship with the upper bounds in different aspects.
Our proposed mechanisms can be degenerated to cover the
cases where only the reward/costs are random. We also test
the proposed mechanisms through numerical experiments.
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1. INTRODUCTION
Sponsored search is a very effective means for and wide-

ly used by many businesses to advertise and promote their
products. In sponsored search, an advertiser needs to bid
a keyword for her ad to participate in ad auctions. After
bidding a keyword, whether she can win the ad auction de-
pends on how many other advertisers bid exactly the same
keyword and other related keywords. If she wins the auction,
whether her ad is clicked is determined by the behaviors of
the search users, which depends on many random factors. If
her ad is clicked, the payment to the search engine is deter-
mined by the click-through rate (CTR) and the bid of the
ad next to hers according to the generalized second pricing
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(GSP) mechanism.1 Thus, the reward (click or not) and
cost (the payment) of choosing a keyword are both random
in sponsored search. To maximize her utility, the advertiser
needs to identify the keyword (as well as setting a proper
bid) with the maximal ratio of the expected clicked number
to expected cost as soon as possible. Such a problem can
be abstracted as the best action selection in a stochastic en-
vironment, in which an action is the operation of bidding a
keyword (including selecting the keyword and setting a bid).

Cloud computing provides an effective way for firms to
reduce their computation and IT costs. There are more and
more firms moving their computation tasks to cloud. Ama-
zon EC2, the largest provider in cloud computing, provides
a specific kind of virtual machines, spot instances2, for price
sensitive firms. Spot instances let one bid on spare Amazon
EC2 instances to name one’s own price for computation ca-
pacity. The spot price fluctuates based on the supply and
demand of available EC2 capacity and thus is random. D-
ifferent types of spot instances have different computation
powers (due to the different resource configurations, such as
CPU, memory, IO, bandwidth, and geographical locations)
and different prices. Since the real performance of a spot
instance is impacted by the resource consumption of other
instances that are virtualized in the same physical server,
there is no guarantee that two spot instances of the same
type have the same performance, e.g., how many web visi-
tors can be supported concurrently if hosting a website on
the spot instance. Actually, it is more natural to model the
performances of spot instances as random variables. There-
fore, to be better off, a firm would like to select the type
of instance with the maximum ratio of the expected perfor-
mance to the expected cost as soon as possible after trying
different types of instances for several rounds. This instance
selection problem can also be modeled as the best action
selection in a stochastic environment.

The above two problems are related to the best arm iden-
tification for multi-armed bandits [6, 1, 15, 20]. A multi-
armed bandit (MAB) is a slot machine with K arms. After
pulling an arm, the player will receive a reward drawn from
an unknown distribution associated with the arm. After
pulling the arms for n rounds, the player needs to recom-
mend the arm with the largest expected reward she thinks.
The algorithms proposed for best arm identification cannot
directly fit our concerned problems, because in our problem,
the player will receive two observations, a random reward

1For more details, please refer to a recent survey about spon-
sored search auctions [18].
2https://aws.amazon.com/ec2/spot/
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and a random cost, after each selection, and is interested in
the ratio of the observations. In this work, we design new
mechanisms to solve the best action selection problem in a
stochastic environment.

Model Setup There are K(≥ 2) candidate actions to be s-
elected. For any i ∈ [K] (denote the set {1, 2, · · · ,K} as [K]
for simplicity), action i is associated with a reward distribu-
tion and a cost distribution, both of which are unknown and
with bounded supports. Without loss of generality, we as-
sume the two distributions are supported in [0, 1]. At round
t, taking action i results in a random reward Xλ

i,t and a

random cost Xµ
i,t, which are independently sampled3 from

the two distributions and are independent of the past ac-
tions and observations. Denote the expected reward and
cost of action i as λi and µi respectively, i.e., E{Xλ

i,t} = λi
and E{Xµ

i,t} = µi. We assume that 0 < λi, µi < 1 for
any i ∈ [K]. The best action is defined as the one with the
maximum ratio of the expected reward to the expected cost.
For simplicity, we assume that there is a single best action.
W.l.o.g, we set that λ1

µ1
> λ2

µ2
≥ λ3

µ3
≥ · · · ≥ λK

µK
throughout

this work. Therefore, action 1 is the best one, and the other
action are suboptimal ones. Please note that this order is
just for ease of theoretical analysis, and the player (e.g., the
advertiser to explore keywords in sponsored search and the
firm to try different instances in cloud computing) has no
such order information.

The player can explore the actions for n rounds, after
which she needs to find out the best action she thinks. Here
n is a positive integer known and fixed in advance. Denote
the action that the player selects after n rounds as Jn. The
player would like to maximize the probability of finding the
best action, i.e., minimize the error probability defined in
(1), whereM is the exploration mechanism the player uses.

En(M) = P{Jn is not the best action}. (1)

When the context is clear, we will omit M from En(M).
Proposed Mechanisms As far as we know, there is no

literature about how to select the action with the maxi-
mum ratio of the expected reward to the expected cost in
a stochastic environment. In this work, we design three
mechanisms for the problem. The first is the naive unifor-
m exploration mechanism MU, in which we take turns to
try each action, observe the rewards and costs. The second
is the successive elimination mechanism MSE, in which we
divide the n selection rounds into K − 1 phases (recall K
is the number of candidate actions); and at the end of each
phase, we eliminate the empirical worst action. The third is
the ratio confidence bound mechanism MRCB, which is an
adaptive version of the UCB mechanism [1]. For MU and
MRCB, we recommend the action with the maximum ratio
of the accumulative rewards to the accumulative costs. For
MSE, there is only one action that survives after n rounds
of selections and therefore we recommend this action.

Theoretical Results We prove that for all the above three
mechanisms, En can be upper bounded by O(exp{−cn}),
where c is a constant related to the mechanisms and coef-
ficients about the actions. Thus, all the three mechanisms

3Here we assume that the reward of an action is independent
of its cost. Note that an action with a higher cost does not
always have a higher reward. For example, in the keyword
bidding problem, a keyword k1 can have a higher cost than
another keyword k2 because more advertisers bid for k1,
but k1 does not necessarily lead to more clicks. We leave
the setting with dependent rewards and costs to future work.

are consistent in the sense that their error probabilities con-
verge to zero exponentially as n tends to infinity. We also
give an asymptotic lower bound of the error probability of
the consistent mechanisms for the setting that the reward
and cost distributions of all the actions are Bernoulli, which
is Ω(exp{−D∗n}) and D∗ is an action-related coefficient.
We show that for the aforementioned Bernoulli setting, the
upper bounds of the proposed three mechanisms match the
lower bound, in terms of the order of n. That is, the three
mechanisms are optimal in certain conditions. In addition,
we also make discussions on the impact of the action-related
parameters on the constants in the above bounds.

2. RELATED WORK
Bandit algorithms play important roles for mechanism de-

sign in stochastic environments [14, 4, 3, 21, 9, 19]. The
most important related work about our concerned problem
is the literature about best arm identification. There are two
settings for the best arm identification problem in MAB:

Fixed budget setting : The player needs to minimize the
error probability within n rounds of pulling and n is fixed
and known in advance. A UCB style exploration mechanism
was proposed in [1]. The idea of elimination policy was pro-
posed in [1, 2, 24]. Different criteria to recommend the best
arm were discussed in [7]: the maximum empirical average
reward, the maximum pulling time, and the probabilities
proportional to the pulling time of each arm.

Fixed confidence setting : The player needs to minimize
the pulling rounds while guaranteeing that the error proba-
bility is smaller than a given threshold. For this setting, a
lower bound of the sample complexity was given in [17], and
an action elimination mechanism was proposed in [11]. Fur-
thermore, the sample complexities under both settings were
compared in [16], and a unified approach for both settings
was presented in [12].

Another line of related work is the budgeted MAB [23,
10, 26, 19, 25], in which the goal of the player is to max-
imize the accumulate reward before the budget runs out.
The mechanism design in our paper can be seen as a dual
problem of the above five works. Compared with the bud-
geted MAB, we focus on searching for the best action rather
than minimizing the cumulative regret.

3. MECHANISMS
Before describing the mechanisms, we first introduce some

notations that are frequently used in the following sections.
For any t ∈ [n] and i ∈ [K], (1) It denotes the action selected
at round t; (2) Ti(t), X̄

λ
i,Ti(t)

and X̄µ
i,Ti(t)

denote the number

of selected rounds, the average reward and average cost of
action i until round t respectively. Mathematically,

Ti(t) =

t∑
s=1

1{Is = i}; X̄λ
i,Ti(t)

=
1

Ti(t)

t∑
s=1

Xλ
i,s1{Is = i};

X̄µ
i,Ti(t)

=
1

Ti(t)

t∑
s=1

Xµ
i,s1{Is = i}.

(2)

We propose three mechanisms to the applications modeled
in Section 1. Our mechanisms are inspired from the best
arm identification problem in conventional bandits.

First, we adapt the uniform exploration mechanism [6,
22] to the best action selection, and call the corresponding
mechanism MU, which is shown in Algorithm 1. The idea
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behindMU is very simple: one just selects actions one after
one and then recommends the action with the largest ratio
of the empirical average reward to the average cost.

Algorithm 1: Uniform Exploration Mechanism (MU)

1 for t← 1 to n do
2 Select action (t mod K)+1;

3 Return Jn = arg maxi{X̄λ
i,Ti(n)/X̄

µ
i,Ti(n)}.

The uniform exploration mechanism is simple. However,
it has a clear drawback: after exploring the actions for a
number of rounds, even if we know with high probabilities
that some actions cannot be the best one, we still need to
explore them as frequently as others.

Algorithm 2: Successive Elimination Mechanism(MSE)

1 Initialization: A1 = [K]; n0 = 0;{nk}k∈[K−1] in (3);
2 for phase k ← 1 to K − 1 do
3 For any i ∈ Ak, select action i for nk − nk−1 rounds;

4 Ak+1 ← Ak\{arg mini∈Ak (X̄λ
i,nk

/X̄µ
i,nk

)};
5 Return Jn = the unique action in AK .

The elimination policy [11, 24] is a strategy that can over-
come this drawback. It sequentially eliminates suboptimal
actions. We adapt it to our mechanisms and propose the
Successive Elimination mechanism MSE (See Algorithm 2).
The nk for any k ∈ [K − 1] that is used in MSE is defined
as below:

H(K) =
1

2
+

K∑
i=2

1

i
; nk =

⌈ 1

H(K)

n−K
K + 1− k

⌉
. (3)

Mechanism MSE works as follows. It divides the rounds
into K − 1 phases. At the end of each phase, it removes the
action with the smallest ratio of the average rewards to the
average costs. Intuitively, actions with closer ratios to the
best one are more likely to survive after more phases.

Algorithm 3: RCB Exploration Mechanism (MRCB)

1 Select each action once at the first K rounds;
2 for t← K + 1 to n do

3 ∀i ∈ [K], calculate the λ̂i(t) and µ̂i(t) defined in (4);
4 if {i|µ̂i(t) ≤ 0} is not empty then
5 Select action It = arg mini{Ti(t− 1)|µ̂i(t) ≤ 0};
6 else

7 Select action It = arg maxi{λ̂i(t)/µ̂i(t)};

8 Return Jn = arg maxi{X̄λ
i,Ti(n)/X̄

µ
i,Ti(n)}.

The UCB-style mechanisms (see Chapter 2 of [5] for an
introduction) play an important role of best arm identifi-
cation. We also adapt a UCB-style mechanism for our best
action selection problem, which we call the Ratio Confidence
Bound mechanism MRCB (see Algorithm 3). In MRCB, we
introduce an upper confidence bound for the reward and a
lower confidence bound for the cost as defined in (4):

λ̂i(t) = X̄λ
i,Ti(t−1) + Eαi (t), µ̂i(t) = X̄µ

i,Ti(t−1)
− Eαi (t), (4)

where i ∈ [K], t ∈ [n], Eαi (t) =
√
α/Ti(t− 1) and α is a

positive hyper-parameter. Note that both λ̂i(t) and µ̂i(t)
depend on α, and we omit the α for simplicity.

The “ratio” in MRCB is between the upper confidence
bound of the average reward and the lower confidence bound
of the average cost.4 To runMRCB, one needs a positive hy-
per parameter α as the input.

From the above descriptions, one can see that the ratios
of the empirical average rewards to costs are important to
all the three mechanisms. Note that it is practically possible
that the denominator of X̄λ

i,Ti(t)
/X̄µ

i,Ti(t)
is zero for some i

and t. In this case, we calculate the ratio as follows:

X̄λ
i,Ti(t)

/X̄µ
i,Ti(t)

= 0 if X̄λ
i,Ti(t)

= 0;

X̄λ
i,Ti(t)

/X̄µ
i,Ti(t)

=∞ if X̄λ
i,Ti(t)

> 0.
(5)

Furthermore, we break ties randomly when more than one
action is selected in the arg min or arg max operators in the
three mechanisms.

4. MECHANISM ANALYSIS
In this section, we prove the upper bounds of the error

probabilities of the proposed three mechanisms.
Before the formal theoretical analysis, we introduce two

new concepts defined as follows: For any i ≥ 2, we define
∆i and %i as follows:

∆i =
λ1

µ1
−
λi

µi
; %i =

µ1µi∆i

λ1 + µ1 + λi + µi
. (6)

∆i measures the gap between the best action and a subop-
timal action i, in terms of the ratio of the expected reward
to the expected cost. %i measures the difference between
the best action and a suboptimal action i in another way:
in order to make their ratios equal, we can increase λi and
µ1 by %i, while decreasing λ1 and µi by %i, i.e.,

λ1 − %i
µ1 + %i

=
λi + %i

µi − %i
. (7)

It is easy to verify λ1 > %i and µi > %i for any i ≥ 2.
We further define the following notations: (1) %1 = mini≥2{%i};
(2) H1 = max{µ−2

1 , %−2
1 }+

∑K
i=2 %

−2
i ; (3) H2 = maxi≥2 i%

−2
i .

The upper bounds of error probabilities ofMU,MSE and
MRCB depends on the aforementioned notations. We first
present the result for MU:

Theorem 1. The error probability of MU can be upper
bounded as below:

En(MU) ≤ 2

K∑
i=1

e2%
2
i exp{−2%2

i

n

K
}. (8)

Proof. If MU recommends a suboptimal action, i.e.,
Jn 6= 1, we know that the following event ξunif is true:

ξunif =
K⋃
i=2

{
X̄λ
i,Ti(n)

X̄µ
i,Ti(n)

≥
X̄λ

1,T1(n)

X̄µ
1,T1(n)

}
. (9)

According to (7), we know at least one of the following two
events holds:

(1)
X̄λ

1,T1(n)

X̄µ
1,T1(n)

≤
λ1 − %i
µ1 + %i

; (2)
X̄λ

1,T1(n)

X̄µ
1,T1(n)

≥
λi + %i

µi − %i
. (10)

4In the 5th step of Alogorithm 3, if µ̂i(t) is smaller than
zero, it is highly probable that 0 is within the lower confi-
dence bound for the cost. Therefore, we have to continue
exploring these actions to get more accurate estimations of
the expected costs.
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By intersecting the ξunif defined in (9) and the union of the
two events in (10), we have

ξunif ⊆
K⋃
i=2

{{ X̄λ
1,T1(n)

X̄µ
1,T1(n)

≤
λ1 − %i
µ1 + %i

}⋃{ X̄λ
i,Ti(n)

X̄µ
i,Ti(n)

≥
λi + %i

µi − %i

}}
,

which can be further decomposed as

ξunif ⊆
K⋃
i=2

{
{X̄λ

1,T1(n) ≤ λ1 − %i} ∪ {X̄µ
1,T1(n)

≥ µ1 + %i}

∪ {X̄λ
i,Ti(n) ≥ λi + %i} ∪ {X̄µ

i,Ti(n)
≤ µi − %i}

}
=
⋃K

i=2

{
{X̄λ

i,Ti(n) ≥ λi + %i} ∪ {X̄µ
i,Ti(n)

≤ µi − %i}
}

(11)

∪ {X̄λ
1,T1(n) ≤ λ1 − %1} ∪ {X̄µ

1,T1(n)
≥ µ1 + %1}. (12)

Please note that: (1) even if X̄µ
i,Ti(n) = 0 for some i, this

case also belongs to (11) or (12); (2) when usingMU, Ti(n)
for any i is deterministic, rather than random. Therefore,
according to Hoeffding’s inequality5, we can obtain

P{ξunif} ≤
K∑
i=2

{
P{X̄λ

i,Ti(n) ≥ λi + %i}+ P{X̄µ
i,Ti(n)

≤ µi − %i}
}

+ P{X̄λ
1,T1(n) ≤ λ1 − %1}+ P{X̄µ

1,T1(n)
≥ µ1 + %1}

≤ 2
K∑
i=1

exp{−2Ti(n)%2
i }.

It is obvious that Ti(n) ≥ n
K
−1 for any i ∈ [K] when using

MU, according to which we know

En(MU) ≤ P{ξunif} ≤ 2

K∑
i=1

e2%
2
i exp{−2%2

i

n

K
}. (13)

Therefore, we can conclude Theorem 1.

The proof of Theorem 1 illustrates the importance of the
concept %i defined in (6). The %i concept is also crucial to
the proofs of other mechanisms. MU is a simple and naive
mechanism. Next we show the theoretical results for MSE:

Theorem 2. The error probability of MSE can be upper
bounded as below:

En(MSE) ≤ 2K(K − 1) exp
{
−

2(n−K)

H2 ln 2K

}
. (14)

Proof. First of all, we can verify that Algorithm 2 takes
at most n steps. This is because the action eliminated at
phase k(≤ K − 1) is selected for nk rounds. Thus, the total
action selection rounds of MSE is:

(K−1∑
k=1

nk

)
+ nK−1 ≤ K +

n−K
1
2

+
∑K
i=2

1
i

(1

2
+

K∑
i=2

1

i

)
≤ n.

During phase k(≤ K−1), at least one of the k worst actions
survives. Therefore, if action 1 (i.e., the best action) has
been eliminated at phase k, it means that

X̄λ
1,nk

X̄µ
1,nk

≤ max
i∈{K,K−1,K+1−k}

X̄λ
i,nk

X̄µ
i,nk

. (15)

5A quick introduction can be found at https://en.
wikipedia.org/wiki/Hoeffding’s_inequality

According to (15), we have that

En(MSE) ≤
K−1∑
k=1

K∑
i=K+1−k

P
{ X̄λ

1,nk

X̄µ
1,nk

≤
X̄λ
i,nk

X̄µ
i,nk

}

≤
K−1∑
k=1

K∑
i=K+1−k

(
P
{ X̄λ

1,nk

X̄µ
1,nk

≤
λ1 − %i
µ1 + %i

}
+ P
{ X̄λ

i,nk

X̄µ
i,nk

≥
λi + %i

µi − %i

})

≤
K−1∑
k=1

K∑
i=K+1−k

(
P
{
X̄λ

1,nk
≤ λ1 − %i

}
+ P
{
X̄µ

1,nk
≥ µ1 + %i

}
+ P
{
X̄λ
i,nk
≥ λi + %i

}
+ P
{
X̄µ
i,nk
≤ µi − %i

})
≤
K−1∑
k=1

K∑
i=K+1−k

4 exp{−2nk%
2
i }

≤
K−1∑
k=1

K∑
i=K+1−k

4 exp{−2(
1

H(K)

n−K
K + 1− k

)%2
i }

≤
K−1∑
k=1

K∑
i=K+1−k

4 exp{−2(
1

H(K)

n−K
i%−2
i

)}

≤2K(K − 1) exp
{
−

2(n−K)

H(K)H2

}
≤ 2K(K − 1) exp

{
−

2(n−K)

H2 ln 2K

}
.

Therefore, we have proved Theorem 2.

From Theorem 1 and Theorem 2, we can see that the error
probabilities of both MU and MSE decrease exponentially
in terms of n. We can verify that when %2

1 ≤ K/[H2 ln (2K)],
(intuitively, %1 is very small and K is large) for a sufficiently
large n, the upper bound of En(MSE) will be smaller than
that of En(MU).

Finally, we have the following theorem for MRCB. (Keep

in mind that for any i and t, λ̂i(t) and µ̂i(t) in MRCB are
related to the hyper-parameter α.)

Theorem 3. If MRCB runs with hyper parameter 0 <
α ≤ 9

16
n−K
H1

, we have that

En(MRCB) ≤ 4nK exp
{
−

α

50
(λ1 + µ1)2

}
. (16)

In particular, for α = 9
16
n−K
H1

, we have

En(MRCB) ≤ 4nK exp
{
−

9(λ1 + µ1)2

800H1
(n−K)

}
. (17)

We will prove Theorem 3 by three steps from (S1) to (S3):

(S1) Preparation: Denote the event ξRCB as below:{
∀i ∈ [K], s ∈ [n], |X̄λ

i,s − λi| < x0

√
α

s
, |X̄µ

i,s − µi| < x0

√
α

s

}
,

in which x0 = (λ1 + µ1)/[3(λ1 + µ1) + 2 maxi≥2(λi + µi)].
According to Hoeffding’s inequality, we can get

P{ξ̄RCB} ≤ 4nK exp{−2x2
0α}. (18)

It is easy to verify that

(λ1 + µ1)/10 ≤ x0 < 1/3. (19)

Combining (18) and (19), P{ξ̄RCB} can be upper bounded
as below.

P{ξ̄RCB} ≤ 4nK exp
{
−

α

50
(λ1 + µ1)2

}
. (20)

We present two lemmas that will be used later. Please note
that the two lemmas can also be seen as side products of the
number of selection rounds of the actions:
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Lemma 4. Conditioned on ξRCB, for any i ≥ 2 and t ≤ n,
we have that

Ti(t) ≤
(1 + x0)2α

%2
i

+ 1. (21)

Lemma 5. Conditioned on ξRCB, for any i ≥ 2 and t ≤ n,
at least one of the following two events is true:

(a) Ti(t) ≥
α

4
(1− x0)2(λ1 + µ1)2Fi,where

Fi = min
{ 1

(µiµ1∆i)2
,

T1(t)− 1

α(1 + x0)2(λi + µi)2

}
;

(b) T1(t) ≤ (1 + x0)2αµ−2
1 + 1.

We prove Lemma 4 by induction. Lemma 5 can be similarly
proved and we omit its proof due to space limitations.

Proof of Lemma 4: Lemma 4 is proved by induction. It is
obvious that (21) holds for t ≤ K. Assume (21) holds at
round t(≥ K). At round t+ 1, if It+1 6= i, we have

Ti(t+ 1) = Ti(t) ≤
(1 + x0)2α

%2
i

+ 1.

If It+1 = i, at least one of the following two cases is true:

Case (i) X̄µ
i,Ti(t)

−
√

α
Ti(t)

≤ 0;

Case (ii)
X̄λ
i,Ti(t)

+
√

α
Ti(t)

X̄µ
i,Ti(t)

−
√

α
Ti(t)

≥
X̄λ

1,T1(t)
+
√

α
T1(t)

X̄µ
1,T1(t)

−
√

α
T1(t)

,

X̄µ
i,Ti(t)

−
√

α
Ti(t)

> 0, X̄µ
1,T1(t)

−
√

α
T1(t)

> 0.

(22)

Next we will analyze the above two cases:
For Case (i): Since ξRCB holds, we have |X̄µ

i,Ti(t)
− µi| <

x0

√
α

Ti(t)
, which implies that X̄µ

i,Ti(t)
> µi−x0

√
α

Ti(t)
. There-

fore, we obtain that Ti(t) ≤ (1+x0)2α

µ2
i

. As a result, we have

Ti(t+ 1) ≤
(1 + x0)2α

µ2
i

+ 1 ≤
(1 + x0)2α

%2
i

+ 1. (23)

For Case (ii): In this case, if Ti(t) ≤ (1 + x0)2α/µ2
i , we

can obtain Lemma 4 by (23). Therefore, in the left content
for the proof based on Case (ii), we only need to consider

Ti(t) >
(1+x0)2α

µ2
i

, which implies that µi−(1+x0)
√

α
Ti(t)

> 0.

Conditioned on ξRCB, we have |X̄µ
j,Tj(t)

−µj | < x0

√
α

Tj(t)
for

any j ∈ [K]. We also have that X̄µ
j,Tj(t)

−
√

α
Tj(t)

> 0 for

any j ∈ {1, i}. They jointly imply that

0 < X̄µ
1,T1(t)

−
√

α

T1(t)
≤ µ1 − (1− x0)

√
α

T1(t)
.

Thus, conditioned on ξRCB, we have

λi + (1 + x0)
√

α
Ti(t)

µi − (1 + x0)
√

α
Ti(t)

≥
X̄λ
i,Ti(t)

+
√

α
Ti(t)

X̄µ
i,Ti(t)

−
√

α
Ti(t)

≥
X̄λ

1,T1(t)
+
√

α
T1(t)

X̄µ
1,T1(t)

−
√

α
T1(t)

≥
λ1 + (1− x0)

√
α

T1(t)

µ1 − (1− x0)
√

α
T1(t)

>
λ1

µ1
>
λi + %i

µi − %i
,

which shows that Ti(t) ≤ (1 + x0)2α/%2
i . Accordingly,

Ti(t+ 1) ≤ [(1 + x0)2α/%2
i ] + 1. Lemma 4 is proved. �

(S2) Problem Transformation: If we can prove the following
proposition, then we can conclude Theorem 3.

Proposition 6. Given ξRCB is true, for any i ∈ [K], we

have x0

√
α

Ti(n)
≤ %i.

This is because if Proposition 6 holds, given ξRCB is true,

for any i ≥ 2, we have that X̄µ
i,Ti(n) > µi − x0

√
α

Ti(n)
>

%i − x0

√
α

Ti(n)
≥ 0. And further, we can obtain

X̄λ
1,T1(n)

X̄µ
1,T1(n)

>
λ1 − x0

√
α

T1(n)

µ1 + x0

√
α

T1(n)

≥
λ1 − %i
µ1 + %i

=
λi + %i

µi − %i
≥
λi + x0

√
α

Ti(n)

µi − x0

√
α

Ti(n)

>
X̄λ
i,Ti(n)

X̄µ
i,Ti(n)

,

(24)

which means that action 1 can be eventually recommend-
ed. That is, by Proposition 6, ξRCB holds means that the
best action can be recommended. Therefore, En(MRCB) is
smaller than P{ξ̄RCB}, which has been shown in (20).

(S3) Proof of Proposition 6: By Lemma 4 and (19),

T1(n)− 1 = n− 1−
K∑
i=2

Ti(n) ≥ n−K −
K∑
i=2

α(1 + x0)2

%2
i

≥
16α

9
max{

1

µ2
1

,
1

%2
1

}+
16α

9

K∑
i=2

1

%2
i

−
K∑
i=2

α(1 + x0)2

%2
i

>α(1 + x0)2 max{µ−2
1 , %−2

1 }. (25)

Therefore, when t = n, the (b) in Lemma 5 does not hold
and thus, the (a) in Lemma 5 must hold.

We can verify that for any i ≥ 2,
α

4
(1− x0)2(λ1 + µ1)2 1

(µiµ1∆i)2
≥
αx2

0

%2
i

;

α

4
(1− x0)2(λ1 + µ1)2 α(1 + x0)2

%2
1α(1 + x0)2(λi + µi)2

≥
αx2

0

%2
i

.

(26)

According to (25), (26) and Lemma 5, we can conclude that

for any i ∈ [K], Ti(n) ≥ αx20
%2i

, i.e., Proposition 6 holds. �

(17) suggests that En(MRCB) is bounded byO(n exp{−cn})
where c is a constant independent of n. O(n exp{−cn}) is
bounded by O(exp{−c̃n}) for any c̃ ∈ (0, c). Therefore, like
En(MU) and En(MSE), En(MRCB) decreases exponentially
in terms of n.

From Theorem 3, one may notice that the upper bound
in (16) seems to increase w.r.t n, which is counterintuitive.
Actually, this impression is not correct. Parameter α can
also depend on n, and in particular, when α = 9

16
n−K
H1

, the

upper bound in (17) will decrease exponentially w.r.t. n.
Based on Theorem 1, 2 and 3, we can derive certain sample

complexities that make the error probabilities of the three
mechanisms smaller than ε ∈ (0, 1):

Corollary 7. For any ε ∈ (0, 1), to find the best action
with probability at least 1 − ε, a total of O(K%−2

1 ln(1/ε))
rounds of selection suffices for MU, O((H2 ln(2K)) ln(1/ε))
for MSE, and O(R(ε) lnR(ε)) for MRCB with α = (9(n −
K))/(16H1), where R(ε) = (H1/(λ1 + µ1)2) ln(1/ε).

According to Corollary 7, if we are only interested in
the complexity related to ε, all the three mechanisms are
O(ln 1

ε
);MSE andMRCB need less sample complexity than

MU when %1 is small and K is large.
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5. LOWER BOUND FOR THE BERNOUL-
LI SETTING

In this section, we provide an asymptotic lower bound for
consistent mechanisms when both the rewards and costs of
all the actions are sampled from Bernoulli distributions. For
ease of references, we call such settings Bernoulli settings,
which are a common choice for lower bound analysis for
bandit problems. Similar to [16], we say a mechanism M is
consistent if for every underlying reward/cost distribution,
for any ε ∈ (0, 1), there exists an integer n(ε) > 0, such
that for any n > n(ε), En(M) < ε. That is, for a consis-
tent mechanism M, En(M) converges to zero as n tends to
infinity.

Define the KL divergence of two Bernoulli distributions
with parameter x and y as follows:

D(x‖y) = x ln
x

y
+ (1− x) ln

1− x
1− y

, where x, y ∈ (0, 1). (27)

Furthermore, for any i ≥ 2 and γ ≥ 0, define the δ-gap
δi(γ) as follows:

δi(γ) =
µ1µi∆i

γλ1 + µ1
. (28)

δi(γ) can be seen as an asymmetric adaptive version of ∆i:
to make suboptimal action i the best action, one can increase
λi by δi(γ) while decreasing the µi by γδi(γ). Please note
that when γ = 1, the asymmetric δ-gap becomes symmetric.

Furthermore, it is easy to verify that λ1
µ1

= λi+δi(γ)
µi−γδi(γ)

.

The following theorem shows that for Bernoulli settings,
the asymptotic lower bound of error probability of any con-
sistent mechanism is Ω(exp{−D∗n}), which decreases expo-
nentially in terms of n. (D∗ is defined in Theorem 8.)

Theorem 8. Considering best action selection with Bernoul-
li settings, for any consistent mechanism M, we have

limn→∞ −
1

n
ln En(M) ≤ D∗,

in which D∗ = inf(j,γ)∈Γ{D(λj+δj(γ)‖λj)+D(µj−γδj(γ)‖µj)}
and Γ = {(j, γj)|j ∈ [K]\{1}, λj + δj(γj) < 1, γj ≥ 0}. Note
that D∗ always exists and is positive.

Proof. Define D̂ν,υ as follows:

D̂ν,υ =

K∑
i=1

n∑
t=1

ln
νλi X

λ
i,t + (1− νλi )(1−Xλ

i,t)

υλi X
λ
i,t + (1− υλi )(1−Xλ

i,t)

+

K∑
i=1

n∑
t=1

ln
νµi X

µ
i,t + (1− νµi )(1−Xµ

i,t)

υµi X
µ
i,t + (1− υµi )(1−Xµ

i,t)
,

(29)

in which (1) νλi , ν
µ
i , υ

λ
i , υ

µ
i ∈ (0, 1) for any i ∈ [K]; (2)

Xλ
i,t, X

µ
i,t ∈ {0, 1} are the reward and the cost of action i

at round t; (3) ν and υ denote the two product Bernoulli
distributions. Mathematically,

ν = ⊗Ki=1Bern(νλi )×⊗Ki=1Bern(νµi ),

υ = ⊗Ki=1Bern(υλi )×⊗Ki=1Bern(υµi ),
(30)

where6 Bern(p) represents the Bernoulli distribution with
success probability p.

6For simplicity, ⊗Ki=1Bern(νλi ) represents a product of K
independent distributions, where the i-th one is Bern(νλi ).
Both ⊗ and × represent the products of distributions.

Let Fn denote the σ-algebra generated by {Xλ
i,t}i∈[K],t∈[n],

{Xµ
i,t}i∈[K],t∈[n] and the selection history. According to the

Lemma 15 of [16], we can obtain that for any A ∈ Fn,

Pυ{A} = Eν{exp(−D̂ν,υ)1{A}}

= Eν{exp(−D̂ν,υ)1{A}|1{A} = 1}Pν{A}

= Eν{exp(−D̂ν,υ)|1{A} = 1}Pν{A}

= Eν{exp(−D̂ν,υ)|A}Pν{A} ≥ exp(−Eν [D̂ν,υ |A])Pν{A}.

Accordingly, we have

Eν [D̂ν,υ |A] ≥ ln
Pν{A}
Pυ{A}

. (31)

Since A ∈ Fn, Ā ∈ Fn. By substituting the A in (31) with
Ā, we have

Eν [D̂ν,υ |Ā] ≥ ln
Pν{Ā}
Pυ{Ā}

.

Then we can obtain that

Eν{D̂ν,υ} = Eν{D̂ν,υ |A}Pν{A}+ Eν{D̂ν,υ |Ā}Pν{Ā}

≥ Pν{A} ln
Pν{A}
Pυ{A}

+ Pν{Ā} ln
Pν{Ā}
Pυ{Ā}

= D(Pν{A}‖Pυ{A}).

(32)

By some derivations, one can verify that

Eν{D̂ν,υ} = n

K∑
i=1

D(νλi ‖υλi ) + n

K∑
i=1

D(νµi ‖υ
µ
i ). (33)

Combining (32) and (33), we have

n
K∑
i=1

D(νλi ‖υλi ) + n
K∑
i=1

D(νµi ‖υ
µ
i ) ≥ D(Pν{A}‖Pυ{A}). (34)

To get the lower bound of the error probability for consistent
mechanisms, we specialize A, ν and υ as follows:

A = {Jn = 1}; (It is obvious that A ∈ Fn;)

υ = ⊗Ki=1Bern(λi)×⊗Ki=1Bern(µi); ν = νλ ⊗ νµ;

νλ = ⊗j−1
i=1 Bern(λi)⊗ Bern(λj + δj(γ) + ε)⊗Ki=j+1 Bern(λi);

νµ = ⊗j−1
i=1 Bern(µi)⊗ Bern(µj − γδj(γ)− ε)⊗Ki=j+1 Bern(µi),

in which the γ and ε are constraint by λj+δj(γ)+ε ∈ (0, 1)
and µj − γδj(γ)− ε ∈ (0, 1), and j ≥ 2.

For any consistent mechanism M and any ε ∈ (0, 1), we
can always find a large enough number n(ε) such that for
any n ≥ n(ε), Pν{A} ≤ ε ≤ Pυ{A}. Therefore, by setting
the notations in (34) with the corresponding ones specified
above, we have that for any j ≥ 2,

D(λj + δj(γ) + ε‖λj) +D(µj − γδj(γ)− ε‖µj)

≥
1

n
D(Pν{A}‖Pυ{A}) ≥

1

n
D(ε‖Pυ{A})

≥
1

n
(ε ln ε+ (1− ε) ln

1− ε
En

).

(35)

Let Jj(γ) denote D(λj + δj(γ)‖λj) +D(µj −γδj(γ)‖µj) for
any (j, γ) ∈ Γ (defined in Theorem 8). Taking the supremum
limit with ε→ 0 on both sides of (35), we have

limn→∞ −
1

n
ln En ≤ Jj(γ). (36)

Finally, we need to prove the existence of D∗. For any
j ≥ 2, denote the domain of Jj(γ) as Γj , which is {γ|(j, γ) ∈
Γ}. One can verify that for any j ≥ 2, in Γj , Jj(γ) either
increases w.r.t γ, or first decreases then increases w.r.t γ.
By careful derivations, we can get that infγ∈Γj Jj(γ) can be
achieved at some γ∗j ∈ Γj . Since K is limited, we can always
find the D∗, which is minj≥2 Jj(γ

∗
j ).
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5.1 Discussions
Generally speaking, the upper bounds of the error proba-
bilities for the proposed three mechanisms match the lower
bound given in Theorem 8, in terms of the order of n. To
gain more understanding of the relationship between the up-
per bounds and the lower bound, we also need to check the
constants in the bounds. For this purpose, we investigate
how the action-related coefficients (like ∆i) behave in the
lower and upper bounds of the error probabilities. We take
MSE as an example to give detailed discussions. We can get
similar conclusions for MU and MRCB.

First, let us have a look at how the error probability En
depends on ∆i, the sub-optimality of action i compared to
the best action. Consider the following example: There is
a Bernoulli setting with the following parameters: for any
i ∈ [K], λi, µi ∈ [p, 1−p], in which p ∈ (0, 1

2
). We can bound

D∗ by setting γ →∞ in Theorem 8 as below.

D∗ ≤
(µ1µi∆i)

2

λ2
1µi(1− µi)

≤
∆2
i

p3
, ∀i ≥ 2. (37)

Define ∆min = mini≥2 ∆i. By (37), the lower bound of the
error probability of any consistent mechanism is

En ≥ Ω
(

exp
{
−

1

p3
∆2

minn
})
. (38)

The upper bound of En(MSE) is:

En(MSE) ≤ O
(

exp
{
−

p4

8K ln(2K)
∆2

minn
})
. (39)

(38) and (39) share the common term ∆2
minn within the ex-

ponential order. Therefore, as ∆min becomes smaller, both
the lower bound of the error probability of any consistent
mechanism and the upper bound of En(MSE) increase.

Then we study how the error probabilities of the mech-
anisms change w.r.t. the magnitude of the parameters of
the actions. For ease of reference, we denote the param-
eters of the Bernoulli K-action setting as {λi, µi}Ki=1. Let
us check three variants of Bernoulli action setting by intro-
ducing a hyper parameter θ ∈ (0, 1]. The three variants
of the settings are (V1) {θλi, µi}Ki=1; (V2) {λi, θµi}Ki=1; (V3)
{θλi, θµi}Ki=1. The θ for the variant (V1) should be small-
er than min{µ1/(λ1µi), 1} for any i ≥ 2. We get that the
asymptotic lower bound (related to n and θ simultaneously)
of any consistent mechanism for the three variants is

En ≥ Ω(exp{−L(Vi)θn}, i ∈ {1, 2, 3}, (40)

where L(V1) = min
i≥2

(λ1µi − λiµ1)2

µ2
1λi(1− λi)

; (41)

L(V2) = L(V3) = min
i≥2

(λ1µi − λiµ1)2

λ2
1µi(1− µi)

. (42)

(41) and (42) can be obtained by a similar derivation to
that of (37). Specifically, we need to set γ in Theorem 8 as
0 to get (41) and as ∞ to get (42).

The upper bounds of the error probabilities MSE under
the three variants share the following common form:

O
(

exp
{
−min
i≥2

( λ1µi − λiµ1

λ1 + λi + µ1 + µi

)2 2θ2n

K ln(2K)

})
. (43)

From (40) and (43), we come to two conclusions: (1) De-
creasing the expected rewards (or, the expected costs) of all
the actions lead to a larger lower bound and a larger upper
bound of the error probabilities. (2) If the expected rewards
and the expected costs decrease simultaneously, the lower
bound of the error probability of any consistent mechanism
becomes larger and the upper bound of the error probability
of MSE also becomes larger.

6. TWO DEGENERATED CASES
In this section, we consider the two degenerated cases as

follows7. For any i ∈ [K] and t ∈ [n],
(Case 1): the rewards are random variables but the costs
are deterministic, i.e., Xµ

i,t = µi.
(Case 2): the rewards are deterministic but the costs are
random variables, i.e., Xλ

i,t = λi.
Our proposed three mechanisms can be applied to solve

the above cases: (1) Both MU and MSE can be directly
applied to the two degenerated cases. (2) MRCB can be
applied with minor revisions. Since we do not need to intro-
duce confidence bounds for deterministic observations,

For Case 1, we set µ̂i(t) in (4) as µi;

For Case 2, we set λ̂i(t) in (4) as λi.
We extend the definition of %i for any i ≥ 2 by introducing

two binary variables βλ, βµ ∈ {0, 1}:

%i(βλ, βµ) =
µ1µi∆i

βµ(λ1 + λi) + βλ(µ1 + µi)
. (44)

Similarly, define %1(βλ, βµ) = mini≥2 %i(βλ, βµ). We can re-
gard βλ and βµ as binary variables, which represent whether
the rewards and costs are random variables or not (“1”means
“yes”). We redefine H1 and H2 as H1(βλ, βµ) and H2(βλ, βµ)
with the corresponding %i(βλ, βµ)’s.

The error probabilities for the two degenerated cases can
be bounded in unified forms using βλ and βµ. For MU and
MSE, we have

En(MU) ≤ (βλ + βµ)

K∑
i=1

e2%
2
i (βλ,βµ) exp{−2%2

i (βλ, βµ)
n

K
}.

En(MSE) ≤ (βλ + βµ)K(K − 1) exp
{
−

2(n−K)

ln (2K)H2(βλ, βµ)

}
.

By setting 0 < α ≤ 9
16

n−K
H1(βλ,βµ)

for MRCB, we get

En(MRCB) ≤ 2(βλ + βµ)nK exp
{
−

2α(βµλ1 + βλµ1)2

25(βλ + βµ)2

}
.

In particular, for α = 9
16

n−K
H1(βλ,βµ)

, we have

En(MRCB) ≤ 2(βλ+βµ)nK exp
{
−

9(n−K)(βµλ1 + βλµ1)2

200(βλ + βµ)2H1(βλ, βµ)

}
.

We can verify that by substituting both the βλ and the βµ
with 1 in the above formulas, (which means that the rewards
and costs are random) the obtained error probabilities are
the same as the corresponding ones in Theorem 1, 2 and 3.

The lower bounds for the degenerated cases are shown
below: (45) for Case 1 (i.e., βλ = 1, βµ = 0) and (46) for
Case 2 (i.e., βλ = 0, βµ = 1).

En ≥ Ω
(

exp{−D(λ1 − µ1∆min‖λ1)n}
)

; (45)

En ≥ Ω
(

exp{−min
i≥2

D
(
µi −

µ1µi∆i

λ1
‖µi
)
n}
)
. (46)

Note that for simplicity, (45) is obtained with an additional
setting that λ1/µ1 > λ2/µ2 > λi/µi for any i ≥ 3. We can
also refine the discussions in Section 5 to get their counter-
parts for the two degenerated cases.

Furthermore, by setting µi = 1 for all i, our best action
selection problem will degenerate to the conventional best
arm identification problem in [1]. The coefficients before n in
exp{· · ·n} of our upper bounds for En(MSE) and En(MRCB)
are up to constant factors to those in [1].
7We do not consider the case that both the rewards and the
costs are deterministic because it is trivial to identify the
best action after taking each action once.
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7. EMPIRICAL PERFORMANCE
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(a) Sensitivity w.r.t η
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(b) K = 10, Bernoulli
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(c) K = 50, Bernoulli
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(d) K = 10, Beta
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(e) K = 50, Beta
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Figure 1: Experimental Results

In this section, we test the empirical performance of the
proposed mechanisms through numerical simulations. We
repeat each experiment for 500 times and use the relative
frequencies (normalized by 500) that a mechanism does not
recommend the best action as a proxy of En.

We first simulated a 10-action Bernoulli setting and a 50-
action Bernoulli setting. In the 10-action setting, for any
i ∈ {1, 2, · · · , 5}, λi = 0.4+0.1i, µi = λi−0.1; λ6 = µ6 = 0.9;
for any i ∈ {7, 8, 9, 10}, λi = 1.5−0.1i, µi = λi+ 0.1. In the
50-action setting, the parameters are randomly duplicated
while keeping the best action unique. We set N10 = 10000
and N50 = 50000. For the x-action setting, the number
of selection rounds is set as γNx, where x ∈ {10, 50} and
γ ∈ {0.1, 0.2, · · · , 1}.
MRCB is associated with a hyper-parameter α. According

to Theorem 3, and the previous literature [1, 13], we set α =
η n
H1

, where η is a hyper-parameter. We first study the sensi-
tivity of the error probability w.r.t η forMRCB. We take the
50-action Bernoulli setting with selection rounds 0.7N50 for
example. The η is chosen from {T, 20, 21, 22, · · · , 210, 211, 220},
where T = 9/16. T is the parameter suggested in Theorem
3. From Figure 1(a), we can see that En(MRCB) is sensitive
to the choice of the hyper-parameter, which is a drawback
of MRCB. However, on the other side, this is the flexibility
of MRCB, since by tuning the η, MRCB can achieve very
good results. One should not set η too small (like T, 1, 2)
when n is not large enough, for which the mechanism can

be easily trapped in the empirical best selection and make
little exploration. The η should not be set too large (like
210, 220), for which MRCB behaves like MU. Therefore we
choose η = 16 for all the following experiments.

The results for the two Bernoulli settings are shown in
Figure 1(b) and Figure 1(c). From the figures we have sev-
eral observations. (1) As n increases, the error probabilities
of all the mechanisms decrease. (2) MSE outperforms MU.
Though MSE does not need to know anything about the
bandit, the error probabilities of MSE are not much worse
than MRCB. (3) MRCB performs the best among the three
mechanisms. (4) MU is not as good as other two mecha-
nisms since it wastes too many selections on the actions that
are certainly not the best one. Note that the error probabili-
ty ofMU is acceptable for a sufficiently large n if the number
of actions is not large (like Figure 1(b)), because it can still i-
dentify the best action with high probability even if it wastes
some rounds of selections. (5) Fixing n, the error probabili-
ties of the three mechanisms increase w.r.t K. Take n = 104

for example: the error probabilities ofMU,MSE,MRCB are
0.28, 0.22, 0.16 for K = 10, and 0.72, 0.64, 0.63 for K = 50.
This is not surprising, since more actions make the optimal
one harder to be distinguished from others.

We also simulate a 10-action beta setting and a 50-action
beta setting, whose rewards and costs follow beta distribu-
tions. From Figure 1(d) and Figure 1(e), we can get similar
observations as those for the Bernoulli settings.

At last we study the selection frequency of each action for
the 50-action Bernoulli setting with n = 0.7N50 (See Figure
1(f)). The x-axis is the action index ordered by the expected
reward to the expected cost ratio in non-increasing orders.
(The x-axis of the small figure starts from action 2.) We can
see that bothMSE andMRCB spend most of the selections
on the best action and those close to the best one, which are
the most uncertain actions. MRCB selects the best action
most, thus the head of its curve is the heaviest. Next comes
MSE. The curve ofMU is flat since it allocates each action
the same selection rounds.

Overall, the experimental results suggest that MU is not
so effective asMSE andMRCB for the best action selection
problem in a stochastic environment, and MRCB performs
the best by carefully setting the hyper parameter.

8. CONCLUSION AND FUTURE WORK
We designed three mechanisms for the best action selec-

tion problem in a stochastic environment. We theoretically
upper bounded the error probabilities of the proposed three
mechanisms and empirically tested their performances. We
also provided a lower bound of the error probability of any
consistent mechanism with the Bernoulli setting.

We will explore the following directions in the future.
First, we will study the setting that the rewards and costs of
each action are dependent. Second, we will study the multi-
ple actions identification problem, i.e., select the top-m(≥ 1)
best actions like the problems studies in [8, 27]. Third, we
defined the best action as the one with the largest ratio of
the expected reward to expected cost. It is interesting to
consider other definitions of the best action.
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