Best Action Selection in a Stochastic Environment’

Yingce Xia!, Tao Qin?, Nenghai Yu!, Tie-Yan Liu?

!University of Science and Technology of China

2Microsoft Research

yingce.xia@gmail.com, {taoqin, tie-yan.liu}@microsoft.com, ynh@ustc.edu.cn

ABSTRACT

We study the problem of selecting the best action from mul-
tiple candidates in a stochastic environment. In such a s-
tochastic setting, when taking an action, a player receives a
random reward and affords a random cost, which are drawn
from two unknown distributions. We target at selecting the
best action, the one with the maximum ratio of the expect-
ed reward to the expected cost, after exploring the actions
for n rounds. In particular, we study three mechanisms: (i)
the uniform exploration mechanism Muy; (ii) the successive
elimination mechanism Msgg; and (iii) the ratio confidence
bound exploration mechanism Mgrcg. We prove that for all
the three mechanisms, the probabilities that the best action
is not selected (i.e., the error probabilities) can be upper
bounded by O(exp{—cn}), where c is a constant related to
the mechanisms and coefficients about the actions. We then
give an asymptotic lower bound of the error probabilities of
the consistent mechanisms for Bernoulli setting, and discuss
its relationship with the upper bounds in different aspects.
Our proposed mechanisms can be degenerated to cover the
cases where only the reward/costs are random. We also test
the proposed mechanisms through numerical experiments.
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1. INTRODUCTION

Sponsored search is a very effective means for and wide-
ly used by many businesses to advertise and promote their
products. In sponsored search, an advertiser needs to bid
a keyword for her ad to participate in ad auctions. After
bidding a keyword, whether she can win the ad auction de-
pends on how many other advertisers bid exactly the same
keyword and other related keywords. If she wins the auction,
whether her ad is clicked is determined by the behaviors of
the search users, which depends on many random factors. If
her ad is clicked, the payment to the search engine is deter-
mined by the click-through rate (CTR) and the bid of the
ad next to hers according to the generalized second pricing
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(GSP) mechanism.! Thus, the reward (click or not) and
cost (the payment) of choosing a keyword are both random
in sponsored search. To maximize her utility, the advertiser
needs to identify the keyword (as well as setting a proper
bid) with the maximal ratio of the expected clicked number
to expected cost as soon as possible. Such a problem can
be abstracted as the best action selection in a stochastic en-
vironment, in which an action is the operation of bidding a
keyword (including selecting the keyword and setting a bid).

Cloud computing provides an effective way for firms to
reduce their computation and IT costs. There are more and
more firms moving their computation tasks to cloud. Ama-
zon EC2, the largest provider in cloud computing, provides
a specific kind of virtual machines, spot instances?, for price
sensitive firms. Spot instances let one bid on spare Amazon
EC2 instances to name one’s own price for computation ca-
pacity. The spot price fluctuates based on the supply and
demand of available EC2 capacity and thus is random. D-
ifferent types of spot instances have different computation
powers (due to the different resource configurations, such as
CPU, memory, 10, bandwidth, and geographical locations)
and different prices. Since the real performance of a spot
instance is impacted by the resource consumption of other
instances that are virtualized in the same physical server,
there is no guarantee that two spot instances of the same
type have the same performance, e.g., how many web visi-
tors can be supported concurrently if hosting a website on
the spot instance. Actually, it is more natural to model the
performances of spot instances as random variables. There-
fore, to be better off, a firm would like to select the type
of instance with the maximum ratio of the expected perfor-
mance to the expected cost as soon as possible after trying
different types of instances for several rounds. This instance
selection problem can also be modeled as the best action
selection in a stochastic environment.

The above two problems are related to the best arm iden-
tification for multi-armed bandits [6, 1, 15, 20]. A multi-
armed bandit (MAB) is a slot machine with K arms. After
pulling an arm, the player will receive a reward drawn from
an unknown distribution associated with the arm. After
pulling the arms for n rounds, the player needs to recom-
mend the arm with the largest expected reward she thinks.
The algorithms proposed for best arm identification cannot
directly fit our concerned problems, because in our problem,
the player will receive two observations, a random reward

'For more details, please refer to a recent survey about spon-
sored search auctions [18].
*https://aws.amazon.com/ec2/spot/



and a random cost, after each selection, and is interested in
the ratio of the observations. In this work, we design new
mechanisms to solve the best action selection problem in a
stochastic environment.

Model Setup There are K (> 2) candidate actions to be s-
elected. For any ¢ € [K] (denote the set {1,2,--- , K} as [K]
for simplicity), action 4 is associated with a reward distribu-
tion and a cost distribution, both of which are unknown and
with bounded supports. Without loss of generality, we as-
sume the two distributions are supported in [0, 1]. At round
t, taking action ¢ results in a random reward X{\’t and a
random cost X';, which are independently sampled® from
the two distributions and are independent of the past ac-
tions and observations. Denote the expected reward and
cost of action 7 as A\; and p,; respectively, i.e., E{Xﬁt} =N\
and E{X{ft} = p;. We assume that 0 < A, u; < 1 for
any ¢ € [K]. The best action is defined as the one with the
maximum ratio of the expected reward to the expected cost.
For simplicity, we assume that there is a single best action.
W.lo.g, we set that 2—1 > A2 > % > 2> i—i throughout
this work. Therefore, action 1 is the best one, and the other
action are suboptimal ones. Please note that this order is
just for ease of theoretical analysis, and the player (e.g., the
advertiser to explore keywords in sponsored search and the
firm to try different instances in cloud computing) has no
such order information.

The player can explore the actions for n rounds, after
which she needs to find out the best action she thinks. Here
n is a positive integer known and fixed in advance. Denote
the action that the player selects after n rounds as J,. The
player would like to maximize the probability of finding the
best action, i.e., minimize the error probability defined in
(1), where M is the exploration mechanism the player uses.

(1)

When the context is clear, we will omit M from &, (M).
Proposed Mechanisms As far as we know, there is no
literature about how to select the action with the maxi-
mum ratio of the expected reward to the expected cost in
a stochastic environment. In this work, we design three
mechanisms for the problem. The first is the naive unifor-
m exploration mechanism My, in which we take turns to
try each action, observe the rewards and costs. The second
is the successive elimination mechanism Mgg, in which we
divide the n selection rounds into K — 1 phases (recall K
is the number of candidate actions); and at the end of each
phase, we eliminate the empirical worst action. The third is
the ratio confidence bound mechanism Mgcp, which is an
adaptive version of the UCB mechanism [1]. For My and
Mpgrci, we recommend the action with the maximum ratio
of the accumulative rewards to the accumulative costs. For
MsEg, there is only one action that survives after n rounds
of selections and therefore we recommend this action.
Theoretical Results We prove that for all the above three
mechanisms, &, can be upper bounded by O(exp{—cn}),
where ¢ is a constant related to the mechanisms and coef-
ficients about the actions. Thus, all the three mechanisms

&En (M) = P{Jyp is not the best action}.

3Here we assume that the reward of an action is independent
of its cost. Note that an action with a higher cost does not
always have a higher reward. For example, in the keyword
bidding problem, a keyword k1 can have a higher cost than
another keyword k2 because more advertisers bid for k1,
but k1 does not necessarily lead to more clicks. We leave
the setting with dependent rewards and costs to future work.
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are consistent in the sense that their error probabilities con-
verge to zero exponentially as n tends to infinity. We also
give an asymptotic lower bound of the error probability of
the consistent mechanisms for the setting that the reward
and cost distributions of all the actions are Bernoulli, which
is Q(exp{—D.n}) and D, is an action-related coefficient.
We show that for the aforementioned Bernoulli setting, the
upper bounds of the proposed three mechanisms match the
lower bound, in terms of the order of n. That is, the three
mechanisms are optimal in certain conditions. In addition,
we also make discussions on the impact of the action-related
parameters on the constants in the above bounds.

2. RELATED WORK

Bandit algorithms play important roles for mechanism de-
sign in stochastic environments [14, 4, 3, 21, 9, 19]. The
most important related work about our concerned problem
is the literature about best arm identification. There are two
settings for the best arm identification problem in MAB:

Fized budget setting: The player needs to minimize the
error probability within n rounds of pulling and n is fixed
and known in advance. A UCB style exploration mechanism
was proposed in [1]. The idea of elimination policy was pro-
posed in [1, 2, 24]. Different criteria to recommend the best
arm were discussed in [7]: the maximum empirical average
reward, the maximum pulling time, and the probabilities
proportional to the pulling time of each arm.

Fized confidence setting: The player needs to minimize
the pulling rounds while guaranteeing that the error proba-
bility is smaller than a given threshold. For this setting, a
lower bound of the sample complexity was given in [17], and
an action elimination mechanism was proposed in [11]. Fur-
thermore, the sample complexities under both settings were
compared in [16], and a unified approach for both settings
was presented in [12].

Another line of related work is the budgeted MAB [23,
10, 26, 19, 25], in which the goal of the player is to max-
imize the accumulate reward before the budget runs out.
The mechanism design in our paper can be seen as a dual
problem of the above five works. Compared with the bud-
geted MAB, we focus on searching for the best action rather
than minimizing the cumulative regret.

3. MECHANISMS

Before describing the mechanisms, we first introduce some
notations that are frequently used in the following sections.
For any ¢ € [n] and ¢ € [K], (1) I; denotes the action selected
at round ¢; (2) T;(¢), Xi):Ti(t) and Xf‘T“) denote the number
of selected rounds, the average reward and average cost of
action ¢ until round t respectively. Mathematically,

t

T;(t) =Y Wl =i} X)py ) =

s=1

t
X2 1{I, =i}
Ti(t); e o =1}

(2)
1

T;(t)

¢
X = > o XE {1 =i}
s=1
We propose three mechanisms to the applications modeled
in Section 1. Our mechanisms are inspired from the best
arm identification problem in conventional bandits.

First, we adapt the uniform exploration mechanism [6,
22] to the best action selection, and call the corresponding
mechanism My, which is shown in Algorithm 1. The idea



behind My is very simple: one just selects actions one after
one and then recommends the action with the largest ratio
of the empirical average reward to the average cost.

Algorithm 1: Uniform Exploration Mechanism (My)

1 fort <1 ton do
2 | Select action (t mod K)+1;

3 Return J, = arg maxi{Xf:Ti(n)/XﬁTi(n)}.

The uniform exploration mechanism is simple. However,
it has a clear drawback: after exploring the actions for a
number of rounds, even if we know with high probabilities
that some actions cannot be the best one, we still need to
explore them as frequently as others.

Algorithm 2: Successive Elimination Mechanism(Msg)
1 Initialization: Ar = [K]; no = 0;{nx}re(x—1 in (3);
2 for phase k <1 to K —1 do
3 For any i € A, select action i for nx — ng—1 rounds;
4 Agq1 < Ar\{arg min;c 4, (Xénk/Xﬁnk)},

5 Return J, = the unique action in Agk.

The elimination policy [11, 24] is a strategy that can over-
come this drawback. It sequentially eliminates suboptimal
actions. We adapt it to our mechanisms and propose the
Successive Elimination mechanism Mgy (See Algorithm 2).
The ny for any k € [K — 1] that is used in Mgg is defined

as below:
1 & 1 n-K
H(K)= 5 +> = me=|
1=2

H(K)K+1fk—" (3)

Mechanism Mgg works as follows. It divides the rounds
into K — 1 phases. At the end of each phase, it removes the
action with the smallest ratio of the average rewards to the
average costs. Intuitively, actions with closer ratios to the
best one are more likely to survive after more phases.

Algorithm 3: RCB Exploration Mechanism (Mgcg)

1 Select each action once at the first K rounds;
2 fort<+ K+1 ton do
Vi € [K], calculate the A;(t) and fi;(t) defined in (4);
if {i|f:(t) < 0} is not empty then

| Select action I; = argmin{T;(t — 1)|fis(t) < 0};
else

L Select action Iy

N0 Ok w

arg max; { \i(t) /fui (t) };

8 Return J, = arg maxi{XﬁTiw)/XﬁTi(n)}.

The UCB-style mechanisms (see Chapter 2 of [5] for an
introduction) play an important role of best arm identifi-
cation. We also adapt a UCB-style mechanism for our best
action selection problem, which we call the Ratio Confidence
Bound mechanism Mrce (see Algorithm 3). In Mgcg, we
introduce an upper confidence bound for the reward and a
lower confidence bound for the cost as defined in (4):

N(t) = XD ooy T EF ), pa(t) = Xl o)) —ER ), (4)
where ¢ € [K],t € [n],EX(t) = \/a/Ti(t—1) and a is a

positive hyper-parameter. Note that both X;(¢) and /i (t)
depend on «, and we omit the « for simplicity.
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The “ratio” in Mgcp is between the upper confidence
bound of the average reward and the lower confidence bound
of the average cost.* To run Mgrci, one needs a positive hy-
per parameter a as the input.

From the above descriptions, one can see that the ratios
of the empirical average rewards to costs are important to
all the three mechanisms. Note that it is practically possible

that the denominator of X7'r. () /X!y, ) is zero for some i
and t. In this case, we calculate the ratio as follows:

) o e oA
Xi,Ti(t)/XzH,Tq;(t) =0 X5 =0

_ _ . (5)
A : A
X/ Xy =00 i X)) >0,

Furthermore, we break ties randomly when more than one
action is selected in the arg min or arg max operators in the
three mechanisms.

4. MECHANISM ANALYSIS

In this section, we prove the upper bounds of the error
probabilities of the proposed three mechanisms.

Before the formal theoretical analysis, we introduce two
new concepts defined as follows: For any i > 2, we define
A; and p; as follows:

Ai
- Qi
Hi

1A

_M -
At N A

A; =
m

(6)

A; measures the gap between the best action and a subop-
timal action i, in terms of the ratio of the expected reward
to the expected cost. @; measures the difference between
the best action and a suboptimal action ¢ in another way:
in order to make their ratios equal, we can increase \; and
p1 by i, while decreasing A1 and u; by g, i.e.,

A1 —0;
p1+ 0i

:)\i+9i
Hi — Qi

(7)

It is easy to verify A1 > o¢; and p; > g; for any i > 2.
We further define the following notations: (1) g1 = min;>2{0;};
(2) Hi = max{p;?, 07} +30,5, 0,75 (3) Ha = maxi>2 ig; °.

The upper bounds of error probabilities of My, Mgk and
Mprce depends on the aforementioned notations. We first
present the result for My:

THEOREM 1. The error probability of My can be upper
bounded as below:

K
2 n
En(My) < 2 20; —202—1).
(My) <2 e exp{ QZK}

=1

(8)

Proor. If My recommends a suboptimal action, i.e.,
Jn # 1, we know that the following event &unir is true:

K (XX X
Ty (n) 1,7 (n)
Eunif = U { STy > ST } (9)
i=2 Xi,Ti(n) Xl,Tl (n)

According to (7), we know at least one of the following two
events holds:

X  — ox X2 At & o
(1) gl < S8 () ) 5 TS ()
1,71 (n) Pt e 1,Ty (n) Hi — Qi

“In the 5th step of Alogorithm 3, if ji;(¢) is smaller than
zero, it is highly probable that 0 is within the lower confi-
dence bound for the cost. Therefore, we have to continue
exploring these actions to get more accurate estimations of
the expected costs.



By intersecting the {unir defined in (9) and the union of the
two events in (10), we have

£unlfg6{{X1Tl(n) Al_gl}U{ zT(n)>)\ +Ql}}7
1,71 (n) w1+ 0; XT() Hi — Qi
which can be further decomposed as
K
Eunit € U {{Xf\,Tl (n) <A - Qi} u {XiTl(n) > 1+ Qi}
i=2

U{X n)>)\+Qz}U{XlT(n)<Hz_Qz}}

:Uiz {{X;:Ti("> 2 i+ 0t UAX g,y St — gi}}

U{X D ) S A=} UKy 2o} (12)

Please note that: (1) even if X! = 0 for some ¢, this
case also belongs to (11) or (12); ( ) when using My, T;(n)
for any ¢ is deterministic, rather than random. Therefore,
according to Hoeffding’s inequality®, we can obtain

Ti(n)

IP>{§umf} < Z {P{XL T;(n) = >N+ Qz} +P{X1 T;(n) < pi— Qz}}

"I’P{Xl JT1(n) = < )\1 - Ql}‘i’P{XﬁTl(n) 2 M1 +Ql}
K

<2 Z exp{—2T;(n) o} }.

i=1

It is obvious that T;(n) > & — 1 for any i € [K] when using
My, according to which we know

K
2 n
En(Mu) < Pl€unic} <23 e*4% exp{—20] -}

=1

(13)

Therefore, we can conclude Theorem 1. []

The proof of Theorem 1 illustrates the importance of the
concept g; defined in (6). The g; concept is also crucial to
the proofs of other mechanisms. My is a simple and naive
mechanism. Next we show the theoretical results for Mgg:

THEOREM 2. The error probability of Msg can be upper
bounded as below:

2(n — K)

o (14)
HyIn2K

En(Mgp) < 2K(K — 1) exp{ _

PRrOOF. First of all, we can verify that Algorithm 2 takes
at most n steps. This is because the action eliminated at
phase k(< K — 1) is selected for ny rounds. Thus, the total
action selection rounds of Mgk is:

K-1 n K
(I;nk)‘f‘nK—lSK'i‘Tm( 22 )

During phase k(< K —1), at least one of the k worst actions
survives. Therefore, if action 1 (i.e., the best action) has
been eliminated at phase k, it means that

A A
‘)(1,77,;C Xz ,Mg (15)
X‘{‘nk = ie{K, Kot 1o K} Xl“nk

A quick introduction can be found at https://en.
wikipedia.org/wiki/Hoeffding’s_inequality
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According to (15), we have that

L X _ X
< Z <]P’{ _L,nk</\1 Qz}+P{ _Lnk7>\+Qz}
k=1 i=K+1—k Xinp M1t Xing — Hi— 0
K-1 K
< S (MR Sx-a+P{RE, > +ai)
k=1 i=K+1—k
-HP’{ _?,nk > A + Qi} +1P’{Xffnk < i — Lh})
K-1 K
< Z 4exp{—2n407}
k=1 i=K+1—k
K-1 K
1 n—K
< > dexp{-2( ———)oi}
k=1 i=K+1—k HE)K+1-k
K-1 K
1 n—-K
< > dexp{—2( —5 )}
k=1 i=K+1—k H(K) ig;
2(n — K
<K (K — 1) exp{ 7} <OK(K — 1)exp{ — 2n=K)
H(K)H Haln2K

O

Therefore, we have proved Theorem 2.

From Theorem 1 and Theorem 2, we can see that the error
probabilities of both My and Mgk decrease exponentially
in terms of n. We can verify that when ¢} < K/[H21n (2K)],
(intuitively, o1 is very small and K is large) for a sufficiently
large n, the upper bound of &,(Msgg) will be smaller than
that of &, (Mu).

Finally, we have the following theorem for Mgrcp. (Keep
in mind that for any ¢ and ¢, Xl(t) and fi;(t) in Mgcs are
related to the hyper-parameter a.)

THEOREM 3. If Mpgcp runs with hyper parameter 0 <

a< %”I;K, we have that
En(Mpep) < 4nKexp{ — — )\1 +p1)?} (16)
In particular, for a = % "I;K, we have
En(Mpep) < AnK exp{ M - K)}. (17)
800H1

We will prove Theorem 3 by three steps from (S1) to (S3):
(81) Preparation: Denote the event {rcp as below:

o - o
— A <m0‘/;,|X£S—p,i\ <a:01/§},

in Wthh Xo = ()\1 + Nl)/[B()\l + /,61) —|— 2maxi22()\i —|— ,uz)]
According to Hoeffding’s inequality, we can get

{Vi € [K],s € [n],|X},

P{ércp} < 4nK exp{—2z2a}. (18)
It is easy to verify that
(A1 +p1)/10 < o < 1/3. (19)

Combining (18) and (19), P{¢rcr} can be upper bounded
as below.

g()\1 +u1)2}- (20)
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We present two lemmas that will be used later. Please note
that the two lemmas can also be seen as side products of the
number of selection rounds of the actions:

P{ércp} < 4nKexp{ —



LEMMA 4. Conditioned on {rep, for anyi > 2 andt < n,
we have that
A +z0) e 20)20‘ +1.
Q;

Ti(t) < (21)

LEMMA 5. Conditioned on {rcp, for anyi > 2 andt < n,
at least one of the following two events is true:
(a) Ti(t) > %(1 — 20)2(M1 + p1)2F;, where

Ti(t) -1 }
+0)2(Ni + )2

F; = mi
2 mln{(uiulAi)Qv Oé(l

(b) T1() < (1 + z0)2op; > + 1.

We prove Lemma 4 by induction. Lemma 5 can be similarly
proved and we omit its proof due to space limitations.

Proof of Lemma 4: Lemma 4 is proved by induction. It is
obvious that (21) holds for ¢ < K. Assume (21) holds at
round ¢(> K). At round ¢ + 1, if I;41 # ¢, we have

(1 +20)%

Ti(t-i- 1) = 92
7

T;(t) < +1.

If I;+1 =i, at least one of the following two cases is true:

Case (i) XzH,Tj(t)f /%(OSO;

Xt @ O RRAO)
Case (ii) - > (22)

Ximw ~T® Xl EORE o

o

Xtrnw V1w >0 Xne Vom0
Next we will analyze the above two cases:
For Case (i): Since &rcp holds, we have |XlT(t) il <
o T_L(t), which implies that X@' Tyt > Hi—Toq/ 7 (t There-

2
fore, we obtain that T;(t) < (HZ# As a result, we have

i

(1 +20)%
2 2
3 k3

For Case (ii): In this case, if Ti(t) < (1 + x0)?a/p?, we

can obtain Lemma 4 by (23). Therefore, in the left content
for the proof based on Case (ii), we only need to consider

<0+ 3;0)204

Ti(t+1) < +1. (23)

Ti(t) > %, which implies that u; —(1+xo) 7 (t > 0.
Conditioned on {rcp, we have |XJ () — | < o 7 Ty for
any j € [K]. We also have that X]T W~ AT 7y > 0 for
any j € {1,i}. They jointly imply that
0<XfT1(t)*\/%Sm*(1*l“o) %(t)'
Thus, conditioned on {rcs, we have
Ai+ (1 +m0)\ /75 )_(,-):Ti(t) +\/%
pi— (1 +x0)\/T:<t> T Xlrw T
1T1<t>+\/;> )\1+(1—mo)\/%>ﬁ> Ntor
TR RN == TaaTEr)
which shows that T;(t) < (1 + x0)?c/0?. Accordingly,

T;(t+1) < [(1+z0)*a/0?] + 1. Lemma 4 is proved. O

(82) Problem Transformation: If we can prove the following
proposition, then we can conclude Theorem 3.
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PROPOSITION 6. Given Ercp is true, for any i € [K]|, we

have x , /ﬁ < 0i.

This is because if Proposition 6 holds, given £rcp is true,

for any i > 2, we have that X'Z.“TA(n) > pi = Toy/7tny >
0i — X0 /T ) > 0. And further, we can obtain
A _ —a
Xl,Tl(n) A= o \/ Ti(n) > A1 —0;
XK " Tt
1,y (n) M1+ 2oy /Ty ) M1 i
- (24)
) o G\
At > Ai +IO\/ T;(n) S Xi,Ti(n)
Hi—ei 1i = 204 | 7 a0y ffT,-(n)

which means that action 1 can be eventually recommend-

ed. That is, by Proposition 6, {rcs holds means that the
best action can be recommended. Therefore, &,(Mrcn) is
smaller than P{{rcp}, which has been shown in (20).

(83) Proof of Proposition 6: By Lemma 4 and (19),

Ti(n )—l—n—l—ZT (n)>n—K— Z 1+m0

'L
K K
16c 16c 1 a1+mo)
e 9 max{u2, 2} 297272
T

>a(l + x0)? max{,ul , 01 2 (25)

Therefore, when ¢ = n, the (b) in Lemma 5 does not hold

and thus, the (a) in Lemma 5 must hold.
We can verify that for any ¢ > 2,

1 azr?
0200 4 ) iy > S0
4 (mim1Ag) (26)
a a1l +aco) ox
—(1 —20)2(A\1 + p1)? —0.
4( 0) ( 1 Ml) Q%a(1+x0)2(>\z+ﬂl)2 - Q?

According to (25), (26) and Lemma 5, we can conclude that
2
for any i € [K], T;(n) > 2%, i.e., Proposition 6 holds. [J

(17) suggests that &, (MRCB) is bounded by O(n exp{—cn})
where c is a constant independent of n. O(nexp{—cn}) is
bounded by O(exp{—¢cn}) for any ¢ € (0, c). Therefore, like
én(Mu) and &, (Msk), &n(Mres) decreases exponentially
in terms of n.

From Theorem 3, one may notice that the upper bound
n (16) seems to increase w.r.t n, which is counterintuitive.
Actually, this impression is not correct. Parameter « can

also depend on n, and in particular, when o = = 2=£  the
) ’ 16 H;

upper bound in (17) will decrease exponentially w.r.t. n.

Based on Theorem 1, 2 and 3, we can derive certain sample
complexities that make the error probabilities of the three
mechanisms smaller than ¢ € (0, 1):

COROLLARY 7. For any e € (0,1), to find the best action
with probability at least 1 — ¢, a total of O(Koy2In(1/¢))
rounds of selection suffices for My, O((Hz In(2K))In(1/¢))
for Msg, and O(R(¢)In R(€)) for Mpcp with a = (9(n —
K))/(16H1), where R(e) = (H1/(M + p1)?) In(1/e).

According to Corollary 7, if we are only interested in
the complexity related to €, all the three mechanisms are
O(In 1); Msg and Mrcp need less sample complexity than
My when p; is small and K is large.



S. LOWER BOUND FOR THE BERNOUL-
LI SETTING

In this section, we provide an asymptotic lower bound for
consistent mechanisms when both the rewards and costs of
all the actions are sampled from Bernoulli distributions. For
ease of references, we call such settings Bernoulli settings,
which are a common choice for lower bound analysis for
bandit problems. Similar to [16], we say a mechanism M is
consistent if for every underlying reward/cost distribution,
for any € € (0,1), there exists an integer n(e) > 0, such
that for any n > n(e), 6,(M) < e. That is, for a consis-
tent mechanism M, &,(M) converges to zero as n tends to
infinity.

Define the KL divergence of two Bernoulli distributions
with parameter = and y as follows:

— X

, where z,y € (0,1). (27)

1
D(z||y) = eln S 4 (1—2)ln 1
Yy

Furthermore, for any ¢ > 2 and v > 0, define the §-gap
0i(7y) as follows:
i) = BB (29)

YA+ p1

0 () can be seen as an asymmetric adaptive version of A;:
to make suboptimal action ¢ the best action, one can increase
Ai by 0;() while decreasing the p; by vd;(y). Please note
that when v = 1, the asymmetric J-gap becomes symmetric.
Furthermore, it is easy to verify that 2—1 = %

The following theorem shows that for Bernoulli settings,
the asymptotic lower bound of error probability of any con-
sistent mechanism is Q(exp{—Dsn}), which decreases expo-
nentially in terms of n. (D. is defined in Theorem 8.)

THEOREM 8. Considering best action selection with Bernoul-
li settings, for any consistent mechanism M, we have

J— 1
limp—oo — — In & (M) < Dy,
n

in which D = inf () er{ D(A; +6; (M1 A;)+D (1t =73 () ll15) }
and I = {(j, ;)17 € [K]\{1},A; +6;(7;) <1,7; = 0}. Note
that D always exists and is positive.

PROOF. Define ﬁyyv as follows:

D _Zil ViAXz?:t'i'(l_Vi)\)(l_Xi):t)
e PO+ (T— o)1 - X2,
i=1t=1 T Tt i it (29)
N iiln vEXE + (=)= XE)
i=1t=1 Ué‘XZt +(1 _Uf)(l_Xﬁt)
in which (1) uﬁ,yf,vfyvl‘.‘ € (0,1) for any ¢ € [K]; (2)

X?,t,Xfft € {0,1} are the reward and the cost of action ¢

at round ¢; (3) v and v denote the two product Bernoulli
distributions. Mathematically,

v = ®Z~K:1Bern(1/i>‘) X (X)lK:lBern(ul‘.u)7 (30)
v = @ Bern(v}) x @ Bern(v}),

where® Bern(p) represents the Bernoulli distribution with
success probability p.

SFor simplicity, ®£1Bern(uf‘) represents a product of K

independent distributions, where the i-th one is Bern(}").
Both ® and x represent the products of distributions.
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Let F,, denote the o-algebra generated by { X\, }ic(],cc[n)»
{X}, }icix) te[n) and the selection history. According to the
Lemma 15 of [16], we can obtain that for any A € Fy,,
Pu{A} = Ev{exp(~Dy,»)1{A}}

= Ey{exp(—Dy)1{A}1{A} = 1}P, {A}

= Ey{exp(—Dy,0)[1{A} = 1}P, {A}

= Ey{exp(—Du,0)|A}P,{A} > exp(—Eu[Dy,v| AP {A}.
Accordingly, we have
P, {A}
P {A}
Since A € F,,, A € F,,. By substituting the A in (31) with

A, we have

E,[D,.|A] > In (31)

P, {A}

E,[Dy.u|A] > In .
[Dv,v]A] B AT

Then we can obtain that
Eu{Dy,0} = E{ Dy o AYP, {A} + B, {Dy.0| A}P,{ A}
P, {A} P, {A}

>P,{A}In B (A} +P,{A}In P (A} (32)
= D(P,{A}||P,{A}).
By some derivations, one can verify that
K K
Ev{Dyo} =n) D@}vi)+n) D@lvl).  (33)

i=1

Combining (32) and (33), we have

i=1

K K
ny D@Mvd) +n  DWflvf) > DB, {A}|Pu{A}). (34)

i=1 i=1
To get the lower bound of the error probability for consistent
mechanisms, we specialize A, v and v as follows:

A ={Jn =1}; (It is obvious that A € Fy;)

v = ®Z-K:1Bern()\i) X ®1K:1Bern(,ui); v=1v>QuH;

v = ®g;11Bern()\i) ® Bern(\; +6;(v) +¢) ®ZK:]~+1 Bern(\;);

v = ®JZ{ Bern(u;) ® Bern(p; — 735 (7) — £) @< ;4 Bern(ps),

in which the v and ¢ are constraint by A; +d;(y)+¢ € (0,1)
and p; — 75](’Y) —€€ (07 1)7 and j > 2.

For any consistent mechanism M and any € € (0,1), we
can always find a large enough number n(e) such that for
any n > n(e), P,{A} < e < P,{A}. Therefore, by setting
the notations in (34) with the corresponding ones specified
above, we have that for any j > 2,

DA +8(1) +£lA5) + Dl =35 (1) = elly)
>2 DAY PAAD) 2 - D[P {A) (35)
1—-¢

).

Let J;(v) denote D(X; +3;(v)[[A;) + D(uj —v3;(v)l;) for
any (7,7v) € I (defined in Theorem 8). Taking the supremum
limit with € — 0 on both sides of (35), we have

1
>—(elne+(1—¢)ln
n

on

—_— 1
My oo — —In&, < J; (7). (36)
n
Finally, we need to prove the existence of D.. For any

j > 2, denote the domain of J;(v) as T';, which is {v|(j,7) €
I'}. One can verify that for any j > 2, in I';, J;(v) either
increases w.r.t -y, or first decreases then increases w.r.t =.
By careful derivations, we can get that inf,er; J;(7) can be
achieved at some ~; € I';. Since K is limited, we can always
find the D., which is min;>o J;(77). O



5.1 Discussions

Generally speaking, the upper bounds of the error proba-
bilities for the proposed three mechanisms match the lower
bound given in Theorem 8, in terms of the order of n. To
gain more understanding of the relationship between the up-
per bounds and the lower bound, we also need to check the
constants in the bounds. For this purpose, we investigate
how the action-related coefficients (like A;) behave in the
lower and upper bounds of the error probabilities. We take
Msg as an example to give detailed discussions. We can get
similar conclusions for My and Mgcs.

First, let us have a look at how the error probability &,
depends on A;, the sub-optimality of action ¢ compared to
the best action. Consider the following example: There is
a Bernoulli setting with the following parameters: for any

i € [K], A\i, i € [p,1—p], in which p € (0, %) We can bound
D. by setting v — oo in Theorem 8 as below.

AG)2 A2
D. S (2/1'1/"12 7,) 24 V’L > 2.
)‘1“1'( Nz) p3

Define Apmin = min;>2 A;. By (37), the lower bound of the
error probability of any consistent mechanism is

(37)

En > Q(exp{ — —=Arn }) (38)
The upper bound of (fn(MSE) is
En(Msg) < O(exp{ — 8K+4(2K)A12ni"n}>' (39)

(38) and (39) share the common term AZ; n within the ex-
ponential order. Therefore, as Apmin becomes smaller, both
the lower bound of the error probability of any consistent
mechanism and the upper bound of &,(Msg) increase.

Then we study how the error probabilities of the mech-
anisms change w.r.t. the magnitude of the parameters of
the actions. For ease of reference, we denote the param-
eters of the Bernoulli K-action setting as {\;, us }o;. Let
us check three variants of Bernoulli action setting by intro-
ducing a hyper parameter § € (0,1]. The three variants
of the settings are (V1) {9)\1-,,112-}{{:1; (V2) {)\i,eui}f{:l; (Vs)

{67,014 }£,. The 6 for the variant (V1) should be small-
er than min{p1/(A1p:),1} for any ¢ > 2. We get that the
asymptotic lower bound (related to n and 6 simultaneously)
of any consistent mechanism for the three variants is

En > Q(eXP{_L(Vi)en}7 (S {17273}7 (40)

_ (Mg = Aipn)?
where L) = 111121121 m7 (41)
L(VQ) — L(VS) — M (42)

) Mui(l—p)

(41) and (42) can be obtained by a similar derivation to
that of (37). Specifically, we need to set v in Theorem 8 as
0 to get (41) and as co to get (42).

The upper bounds of the error probabilities Mgg under
the three variants share the following common form:

)\ 2
<eXP{ min <,\1§_1I;\Lz +211H-i M)QKT:(;K) })

From (40) and (43), we come to two conclusions: (1) De-
creasing the expected rewards (or, the expected costs) of all
the actions lead to a larger lower bound and a larger upper
bound of the error probabilities. (2) If the expected rewards
and the expected costs decrease simultaneously, the lower
bound of the error probability of any consistent mechanism
becomes larger and the upper bound of the error probability
of Mgk also becomes larger.

(43)
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6. TWO DEGENERATED CASES

In this section, we consider the two degenerated cases as

follows”. For any i € [K] and t € [n],
(Case 1): the rewards are random variables but the costs
are deterministic, i.e., X}, = ;.
(Case 2): the rewards are deterministic but the costs are
random variables, i.e., X{\’t = \i.

Our proposed three mechanisms can be applied to solve
the above cases: (1) Both My and Msgg can be directly
applied to the two degenerated cases. (2) Mgcp can be
applied with minor revisions. Since we do not need to intro-
duce confidence bounds for deterministic observations,

For Case 1, we set f1;(t) in (4) as pi;
For Case 2, we set \i(t) in (4) as A;.

We extend the definition of p; for any i« > 2 by introducing

two binary variables 8y, 8, € {0,1}:

JEYIYAY
Bu(A1 + Ai) + Ba(p + p4)

Similarly, define g1(8x, 8,) = min;>2 0:(Bx, Bu). We can re-
gard S and S, as binary variables, which represent whether
the rewards and costs are random variables or not (“1” means
“yes”). We redefine H, and Hy as H1(Bx, 8,) and Ha2(Bx, Bu)
with the corresponding ;(8x, Bu)’s

The error probabilities for the two degenerated cases can
be bounded in unified forms using 5 and 8,. For My and
Msg, we have

0i(Bx, Bu) = (44)

En(Mu) < (Bx + By) Ze% (Bx-Pu) exp{—20? (ﬁ»ﬁu)f}

i=1

Sa(Msi) < (83 + B K(K ~ Dexp{ - 201y,

n (2K)H2(Bx, Bu)

By setting 0 < a < for Mgrcg, we get

16H(/; B

2a(BuA1 + Bap1)?
En K _—
(Mrcg) < 2(Bx + Bu)n eXP{ 255 + B)? }
In particular, for a = %#AI(B)’ we have

K)(BuA1 + Bap1)? }
200 [A + Bu)2H1(Bx, Bu)

We can verify that by substituting both the 8\ and the g,
with 1 in the above formulas, (which means that the rewards
and costs are random) the obtained error probabilities are

the same as the corresponding ones in Theorem 1, 2 and 3.

The lower bounds for the degenerated cases are shown
below: (45) for Case 1 (i.e., 8y = 1,8, = 0) and (46) for
Case 2 (i.e., By =0,0, = 1).

En(MRreB) < 2(Ba+Bu)nK eXp{

En > Q(exp{=D( — pa Al M)} ); (45)
> . ) Hl,uz
En > Q(GXP{— IngHQID(m 4 z)n}> (46)

Note that for simplicity, (45) is obtalned with an additional
setting that A1/pu1 > A2/u2 > i/, for any i > 3. We can
also refine the discussions in Section 5 to get their counter-
parts for the two degenerated cases.

Furthermore, by setting p; = 1 for all ¢, our best action
selection problem will degenerate to the conventional best
arm identification problem in [1]. The coefficients before n in
exp{- - -n} of our upper bounds for &, (Msg) and &, (Mgrcs)
are up to constant factors to those in [1].

"We do not consider the case that both the rewards and the

costs are deterministic because it is trivial to identify the
best action after taking each action once.




7. EMPIRICAL PERFORMANCE
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Figure 1: Experimental Results

In this section, we test the empirical performance of the
proposed mechanisms through numerical simulations. We
repeat each experiment for 500 times and use the relative
frequencies (normalized by 500) that a mechanism does not
recommend the best action as a proxy of &,.

We first simulated a 10-action Bernoulli setting and a 50-
action Bernoulli setting. In the 10-action setting, for any
i€ {1, 2, ,5}, Ai = 0.44-0.1%, s = X;—0.1; A¢ = pe = 0.9;
for any ¢ € {7,8,9,10}, \; = 1.5—0.14, pu; = A\; +0.1. In the
50-action setting, the parameters are randomly duplicated
while keeping the best action unique. We set Nip = 10000
and Nso 50000. For the z-action setting, the number
of selection rounds is set as YN, where z € {10,50} and
~v€{0.1,0.2,---,1}.

MRrcs is associated with a hyper-parameter a. According
to Theorem 3, and the previous literature [1, 13], we set a =
"7HL17 where 7 is a hyper-parameter. We first study the sensi-
tivity of the error probability w.r.t n for Mrcr. We take the
50-action Bernoulli setting with selection rounds 0.7Nso for
example. The 7 is chosen from {T,2°,2% 2% ... 210 21l 220}
where T'= 9/16. T is the parameter suggested in Theorem
3. From Figure 1(a), we can see that &,(Mgcg) is sensitive
to the choice of the hyper-parameter, which is a drawback
of Mgrcs. However, on the other side, this is the flexibility
of Mgcg, since by tuning the 1, Mgrcp can achieve very
good results. One should not set 1 too small (like T, 1,2)
when n is not large enough, for which the mechanism can

(f) (%) Selections of each action
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be easily trapped in the empirical best selection and make
little exploration. The n should not be set too large (like
210 220)7 for which Mgrcp behaves like My. Therefore we
choose 17 = 16 for all the following experiments.

The results for the two Bernoulli settings are shown in
Figure 1(b) and Figure 1(c). From the figures we have sev-
eral observations. (1) As n increases, the error probabilities
of all the mechanisms decrease. (2) Mgy outperforms My.
Though Mgk does not need to know anything about the
bandit, the error probabilities of Mgk are not much worse
than Mgcs. (3) Mrcp performs the best among the three
mechanisms. (4) My is not as good as other two mecha-
nisms since it wastes too many selections on the actions that
are certainly not the best one. Note that the error probabili-
ty of My is acceptable for a sufficiently large n if the number
of actions is not large (like Figure 1(b)), because it can still i-
dentify the best action with high probability even if it wastes
some rounds of selections. (5) Fixing n, the error probabili-
ties of the three mechanisms increase w.r.t K. Take n = 10*
for example: the error probabilities of My, Msg, Mrcp are
0.28,0.22,0.16 for K = 10, and 0.72,0.64,0.63 for K = 50.
This is not surprising, since more actions make the optimal
one harder to be distinguished from others.

We also simulate a 10-action beta setting and a 50-action
beta setting, whose rewards and costs follow beta distribu-
tions. From Figure 1(d) and Figure 1(e), we can get similar
observations as those for the Bernoulli settings.

At last we study the selection frequency of each action for
the 50-action Bernoulli setting with n = 0.7N5o (See Figure
1(f)). The z-axis is the action index ordered by the expected
reward to the expected cost ratio in non-increasing orders.
(The z-axis of the small figure starts from action 2.) We can
see that both Mgk and MRgrcp spend most of the selections
on the best action and those close to the best one, which are
the most uncertain actions. Mgrcp selects the best action
most, thus the head of its curve is the heaviest. Next comes
Msg. The curve of My is flat since it allocates each action
the same selection rounds.

Overall, the experimental results suggest that My is not
so effective as Mgg and Mgrcg for the best action selection
problem in a stochastic environment, and Mgcp performs
the best by carefully setting the hyper parameter.

8. CONCLUSION AND FUTURE WORK

We designed three mechanisms for the best action selec-
tion problem in a stochastic environment. We theoretically
upper bounded the error probabilities of the proposed three
mechanisms and empirically tested their performances. We
also provided a lower bound of the error probability of any
consistent mechanism with the Bernoulli setting.

We will explore the following directions in the future.
First, we will study the setting that the rewards and costs of
each action are dependent. Second, we will study the multi-
ple actions identification problem, i.e., select the top-m(> 1)
best actions like the problems studies in [8, 27]. Third, we
defined the best action as the one with the largest ratio of
the expected reward to expected cost. It is interesting to
consider other definitions of the best action.
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