Variational Inference with Agent-Based Models

Wen Dong
Department of Computer Science and Engineering &
Institute of Sustainable Transportation and Logistics
State University of New York at Buffalo
wendong@buffalo.edu

ABSTRACT

In this paper, we develop a variational method to track and make predictions about a real-world system from continuous imperfect observations about this system, using an agent-based model that describes the system dynamics. By combining the power of big data with the power of model-thinking in the stochastic process framework, we can make many valuable predictions. We show how to track the spread of an epidemic at the individual level and how to make short-term predictions about traffic congestion. This method points to a new way to bring together modelers and data miners by turning the real world into a living lab.

Keywords

1. INTRODUCTION

Agent-based modeling has been employed by researchers in many disciplines to specify the elements of a complex system and their interactions, to check their understandings of a system, to conduct thought experiments and to inform design and analysis [16, 47, 6, 21]. With the availability of big data in recent years [10, 30, 12], we hope to track and make predictions about a real world system from the data that represent the continuous observations of this system and an agent-based model that specifies how the system evolves, and consequently to turn our world into a living lab. In this paper, we identify the agent-based model as a discrete-event Markov process, and develop a variational inference method that searches the latent state trajectories of the elements of the system in the probability space that are most compatible with the noisy observations by minimizing the Bethe variational principle [4].

Data have traditionally been used by agent-based modelers to calibrate model parameters, drive model execution, and validate the model. The inquiry in this paper is instead about how continuous imperfect observations about a real-world system can help us make inferences about the system here and now. Instead of simulating traffic jams at rush hours using road network data and agent trips synthesized from census data [32, 42], we are more interested in predicting whether today’s traffic jams will be formed earlier or last longer from the trajectories of probe vehicles, and how the knowledge about future traffic states will help drivers use the road network more efficiently. Instead of constructing the S-shaped curve of an infectious population from simulation [8, 31], we are more interested in who got a sniffle from his dynamic social network and how we can prevent epidemics from further spreading [29, 14, 18]. Instead of showing the emergence of cities and roads from how people explore and exploit resources [2, 44, 19], We are more interested in identifying poverty and extracting census information from how people make phone calls [5, 10, 38]. Predictions with an agent-based model about real-world data are interpretable in terms of how agents interact with one another and change states, and are amenable to reason regarding non-recurrent scenarios. This transparency about the predictions is lacking in non-parametric approaches.

Our approach is to identify an agent-based simulator as a Markov process, and to search in the probability space specified by the simulator for agent behaviors and interactions that best match the continuous observations about our real-world system. The key observation behind this approach is that an agent-based simulator generates different sample paths with different probabilities — it therefore defines a stochastic process with a probability measure assigned to the space of the sample paths that describe the interactions among the elements of the system. In this stochastic process, the system state as a function of time is composed of the states of its elements. This stochastic process is driven by a number of events that change the system state and happen with event rates that are functions of the current system state. A sample path of the stochastic process is defined by a sequence of events and the corresponding times when those events happened, from which we can unambiguously recover the system state as a function of time. An agent-based simulator therefore iteratively samples the next event according to event rates then changes the world state according to the sampled state starting from the initial state, until the required amount of simulated time has passed.

To find out the maximum likelihood probability distribution of the system state X_t for $t_1 \leq t \leq t_2$ from observed system state x_1 at time t_1 and x_2 at time t_2, we follow the forward-backward algorithm: we first let the probability mass diffuse from x_1 in the forward step according to how

May 9–13, 2016, Singapore.
Copyright © 2016, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
this system evolves from t_1 to t_2, and then we iteratively trace backwards from t_2 to t_1 in the backward step how the probability mass ended at system state x_{t_1} instead of another state. After the forward step and the backward step, we get the probability distribution of system state X_t for $t_1 \leq t \leq t_2$ conditioned on both of its states x_{t_1} and x_{t_2}.

The challenge in making probabilistic inferences about an agent-based model is that we have to deal with an exploding state space — for just a simple task of tracking the binary states of 50 agents, we must cope with 2^{50} combinatorial states because the agents interact with one another. And, of course, a real-world system is much larger. To cope with this exploding state space, we use mean field approximation: the probabilistic evolution of an agent state is determined by the mean field (average) effect of the states of the other agents. The variational framework for making inferences about stochastic processes was developed in the field of machine learning [45] as minimizing Bethe variational principle [33, 24] and loopy belief propagation [34].

This paper therefore advocates that we should combine the power of big data and the power of model-thinking in the stochastic process framework. Agent-based modeling is a physicist’s approach for modeling human societies when data are unavailable and experiments impossible [16], and we believe that big data will transform agent-based modeling. We have benchmarked our algorithm against other algorithms. We summarize what we achieve. In Section 4 we give examples and benchmark this system. In Section 3 we derive a mean-field solution to the generative model. In Section 2 we introduce a probabilistic production (rule) system to describe the microscopic dynamics of a generative model, and identify the simulation system as a stochastic process. In Section 4 we give examples and benchmark this algorithm against other algorithms. We summarize what we have accomplished and offer our speculation on big data in Section 5.

2. STOCHASTIC PROCESS INDUCED BY AGENT-BASED MODELS

In this section, we introduce the stochastic kinetic model described by the Gillespie algorithm [22] to make inferences about social dynamics from information about individuals in the social system. A “stochastic kinetic model” is a chemist’s way of describing the temporal evolution of a system with M agent species driven by V events (or chemical reactions) parameterized by rate constants $c = \{c_1, \ldots, c_V\}$. At any specific time t, the populations of the species are $x_t = \{x_t^{(1)}, \ldots, x_t^{(M)}\}$. An event v happens with rate $h_v(x_t,c_v)$, changing the populations by Δ_v. The V events are mutually independent.

Gillespie algorithm

1. Initialize the system at time $t = 0$ with rate constants c_1, \ldots, c_V and initialize the populations of the species as $x_0^{(1)}, \ldots, x_0^{(M)}$.

2. Simulate the time τ to the next event according to exponential distribution $\tau \sim \text{Exponential}(h(x_v,c_v) = \sum_{v=1}^V h_v(x,c_v))$.

3. Simulate the event v according to categorical distribution $v \sim \text{Categorical}(\frac{h_v(x,v)}{h(x,v)}, \ldots, \frac{h_V(x,v)}{h(x,v)})$.

4. Update and output time $t \leftarrow t + \tau$ and populations $x \leftarrow x + \Delta_v$.

5. Repeat steps 2-5 until the termination condition is satisfied.

The stochastic kinetic model specified by the Gillespie algorithm assigns a probability measure to a sample path of the system induced by a sequence of events v_1, \ldots, v_n happening between time 0 and time T, $0 = t_0 < t_1 < \cdots < t_n < T$, which is

$$P(v_1, \ldots, v_n, t_1, \ldots, t_n, x) = \prod_{i=1}^n h_{v_i}(x_{t_{i-1}}, c_{v_i}) \exp \left(- \sum_{i=1}^n h_0(x_{t_{i-1}}, c)(t_i - t_{i-1}) \right).$$

The stochastic kinetic model was designed to explain the macroscopic properties of a system via the microscopic interactions among particles in the system [47]. If we are able to observe particles, we expect not only to improve our estimation of the system properties but also to make inferences about the particles. When this model is applied to a social system, the particles are the individuals in the system, and the capability to make inferences about these particles becomes even more important. An event in the Gillespie algorithm looks like the following:

$$\alpha_v^{(1)} x^{(1)} + \cdots + \alpha_v^{(M)} x^{(M)} \rightarrow \beta_v^{(1)} x^{(1)} + \cdots + \beta_v^{(M)} x^{(M)},$$

$$h_v(x,c_v) = c_v g_v(x,c) = c_v \prod_{m=1}^M g^{(m)}(x^{(m)}) = c_v \prod_{m=1}^M (x^{(m)})^{\alpha_v^{(m)}}.$$

When $\alpha_v^{(1)}$ individuals of species 1, $\alpha_v^{(2)}$ individuals of species 2, ... meet, they trigger event v with rate constant c_v, which result in $\beta_v^{(1)}$ individuals of species 1, $\beta_v^{(2)}$ individuals of species 2, and so on. The rate $h_v(x,c_v)$ for this event to happen is rate constant c_v times a total of $\prod_{m=1}^M (x^{(m)})^{\alpha_v^{(m)}}$ different ways for the individuals to meet.

When the components of the agent-based model $X^{(1)}, \ldots, X^{(M)}$ lose meaning as the populations of agent species, we can find the probability distribution of a component state among a finite partition of the component’s state space. When the event rates cannot be expressed as the multiplications of component contributions in the form of Eq. 3, we
take Taylor expansions of the event rates around the mean value of the system state
\[h_v(x, c_v) = \sum_{|\alpha| \geq 0} \frac{(x - E(x))^\alpha}{\alpha!} \partial^\alpha h_v(E(x), c_v), \]
with each term being in the form of Eq. 3. \(\alpha \) is a multi-index and \(E \) is the expectation operator.

Although the stochastic kinetic model is a continuous time model, we work with a discrete-time stochastic model in the rest of this paper, because our goal is to track stochastic kinetics from observations of populations or individuals with countably many computational steps. There are two ways to turn a continuous stochastic process into a discrete one, both of which involve Jensen’s uniformization/randomization method [23].

The first method for discretizing a continuous time stochastic system is through approximating the continuous time process with a discrete time process on a countable set of equally spaced time points \(0, \tau, 2\tau, \ldots \), with a time interval so small that the probability of more than one event happening in the interval \(\tau \) is negligible. This approximation works because the state transition kernel from time 0 to time \(\tau \) is
\[p(x_0 \rightarrow x_\tau) = \sum_{n=0}^{\infty} (I + \frac{\tau}{Q})^n \exp(-\gamma\tau) \frac{(\gamma\tau)^n}{n!} \]
according to the uniformization method, where \(\gamma \) is a uniformization rate, \(I \) is the identity matrix and \(Q \) is the infinitesimal generator defined by \(h_k, k = 1, \ldots, V \).

Specifically, let \(v_1, \ldots, v_T \) be a sequence of events in the discrete-time stochastic system, \(x_1, \ldots, x_T \) be a sequence of states (populations of species), and \(y_1, \ldots, y_T \) be a set of observations about the populations. Our goal is to make inferences about \(\{v_t, x_t : t = 1, \ldots, T\} \) from \(\{y_t : t = 1, \ldots, T\} \) according to the following probability measure, where indicator function \(1(x_t = x_{t-1} = \Delta v_t) = 1 \) is 1 if the previous state is \(x_{t-1} \) and the current state is \(x_t = x_{t-1} + \Delta v_t \).

\[P(v_1, \ldots, v_T, x_1, \ldots, x_T, y_1, \ldots, y_T) = \prod_{t=1}^{T} P(x_t, y_t, v_t|x_{t-1}), \]
where
\[P(x_t, y_t, v_t|x_{t-1}) = P(v_t|x_{t-1})P(x_t = x_{t-1} = \Delta v_t)P(y_t|x_t), \]
and
\[P(v_t|x_{t-1}) = \begin{cases} \eta t \cdot g_k(x_{t-1}) & \text{if } v_t = k \\ 1 - \sum_j c_j \tau^g_j(x_{t-1}) & \text{if } v_t = 0 \end{cases}. \]

The second way to discretize a continuous time stochastic system is by introducing a uniformization rate \(\gamma \) that is faster than all event rates in \(Q \) and inspecting a discrete time Markov chain defined by the state transition matrix \(I + Q \) with the transitions happening at time \(t_1, t_2, \ldots, T \), sampled according to a uniform Poisson process with rate \(\gamma \). This works because according to the uniformization method the uniformised continuous time process has the same probability measure as the original process.

We employ a stochastic kinetic model to simplify the state transition kernel for several reasons. First, the stochastic kinetic model already successfully describes the time evolution of reaction systems in many areas, including chemistry and cell biology [1, 22]. It is therefore a more natural model for describing and tracking the spatio-temporal process driven by events. Second, the event based transition kernel is more general and flexible: we can define the number of events based on the complexity of real transitions.

3. Making Inferences with an Agent-Based Model

In this section, we derive a mean-field solution to infer the probabilities on a per-agent basis of all possible paths of system evolution, given a simulator and noisy observational data about this system generated by the simulator logic.

3.1 Variational Inference

Recall the forward-backward algorithm to make inferences with a state space model [39]. Let \(X_t \) be the hidden states and \(y_t \) be the observations of a discrete-time state-space model (Kalman filter and hidden Markov model) identified by a transition probability \(P(X_{t+1}|X_t) \) and an observation model \(P(Y_t|X_t) \), where \(t = 1, \ldots, T \). The forward-backward algorithm for making inferences about hidden states \(X_t \) from observations \(y_t \) is comprised of a forward/filtering sweep to compute the forward statistics \(\alpha(x_t) = P(x_t|y_1, \ldots, y_T) \) and a backward/smoothing sweep to estimate the one-slice statistics \(\gamma(y_t) = P(x_t|y_1, \ldots, y_T) \).

From the forward statistics and the one-slice statistics we can extract the backward statistics \(\beta(x_t) = \gamma(x_t)/\alpha(x_t) \) and the two-slice statistics \(\xi(x_t, x_{t+1}) = \alpha(x_t)P(y_{t+1}, x_{t+1}|x_t)\beta(x_{t+1})P(y_{t+1}|y_{t+1}, \ldots, y_T) \).

Here we follow the tradition, use upper case letters for random variables and use lower case letters for the values of random variables.

The challenge with making inferences about a non-trivial agent-based model is that we have to search in a formidable state space — \(X_t = (X_t^{(1)}, X_t^{(2)}, \ldots, X_t^{(M)}) \), where the superscripts \(1, \ldots, M \) represent the states of the interacting elements of the system. We therefore estimate the state distributions of the hidden states in an amenable state space with mean field approximation \(\eta_t(x_t) = \prod_{m} \eta_t^{(m)}(x_t^{(m)}) \): minimize over \(\xi_t(x_{t-1}, t, v_t) \):

\[\sum_{t, x_{t-1}, v_t} \xi_t(x_{t-1}, t, v_t) \log \frac{\xi_t(x_{t-1}, t, v_t)}{P(x_t, y_t, v_t|x_{t-1})} \]

subject to:

\[\sum_{t, x_t, m} \eta_t^{(m)}(x_t^{(m)}) \log \prod_{m} \gamma_t^{(m)}(x_t^{(m)}) \]

We apply the method of Lagrange multipliers to solve this optimization problem, which begins with forming the Lagrange function to be optimized:

\[\sum_{t, x_{t-1}, v_t} \xi_t(x_{t-1}, t, v_t) \log \frac{\xi_t(x_{t-1}, t, v_t)}{P(x_t, y_t, v_t|x_{t-1})} \]

\[- \sum_{t, x_t, m} \gamma_t^{(m)}(x_t^{(m)}) \log \prod_{m} \gamma_t^{(m)}(x_t^{(m)}) \]

856
The marginal forward statistics \(\gamma^m_t(x^m_t) \) is the mean field approximation of the original dynamics at time \(t \), we find that the solution to the Bethe variational principle maximizes the approximate partition function given by Eq. 12, and the solution is the fixed point of Eq. 13, where normalization constant \(Z_t = P(y_t|y_{1:t-1}) \):

\[
\log P(y_{1:t}) = \sum_{m} \sum_{x^m_{t-1}} \log \left(\prod_{m} a^m_t(x^m_{t-1}) P(x^m_t|x^m_{t-1}) \prod_{m} \beta^m_t(x^m_{t-1}) \right)
\]

\[
\xi_t(x^m_{t-1}, x^m_t, v_t) = \frac{1}{Z_t} P(x^m_t, v_t|x^m_{t-1}) \prod_{m} a^m_t(x^m_{t-1}) P(y^m_t|x^m_{t}) \beta^m_t(x^m_{t}),
\]

where \(P(x^m_t, v_t|x^m_{t-1}) = \left\{ \begin{array}{ll}
\sum_{k} \pi^m_k g^m_k(x^m_{t-1}) & \text{if } v_t = k \neq \emptyset \\
1 - \sum_{k} \pi^m_k g^m_k(x^m_{t-1}) & \text{if } v_t = \emptyset.
\end{array} \right. \)

Marginalizing Eq. 13 over all chains \(X^m_t \) for \(m \neq m' \) and \(t \), we find that the solution to the Bethe variational principle is the mean field approximation of the original dynamics with marginal two-slice statistic given by Eq. 15. From the mean field approximation, \(\alpha^m_t(x^m_t) \) and \(\beta^m_t(x^m_t) \) can be solved by forward-backward algorithm and fixed point iteration.

\[
\xi_t(x^m_{t-1}, x^m_t, v_t) = \frac{1}{Z_t} P(x^m_t, v_t|x^m_{t-1}) \prod_{m} a^m_t(x^m_{t-1}) P(y^m_t|x^m_{t}) \beta^m_t(x^m_{t}),
\]

where \(P(x^m_t, v_t|x^m_{t-1}) = \left\{ \begin{array}{ll}
\sum_{k} \pi^m_k g^m_k(x^m_{t-1}) & \text{if } v_t = k \neq \emptyset \\
1 - \sum_{k} \pi^m_k g^m_k(x^m_{t-1}) & \text{if } v_t = \emptyset.
\end{array} \right. \)

The above is a factorized stochastic kinetic model. The marginal two-slice probability \(\xi_t(x^m_{t-1}, x^m_t, v_t) \) in Eq. 15 takes the same form as the coupled two-slice probability \(\xi_t(x^m_{t-1}, x^{m'}_t, v_t) \) in Eq. 13. The marginal state transition kernel \(P(x^m_t, v_t|x^m_{t-1}) \) in Eq. 16 consists of choosing an event (or no event) \(v_t \) according to event probability \(P(v_t|x^m_{t-1}) \) and changing the state \(x^m_t \) in a deterministic way, similar to the joint state transition kernel \(P(x_t, v_t|x_{t-1}) \) in Eq. 14, except that we marginalize over all \(x^{m'} \) for \(m' \neq m \).

Hence the solution to the above Bethe variational principle through Legendre-Fenchel transform [40] is one in which the interacting elements of the system evolve their states marginally according to the average effects of the other elements. As such, instead of searching the joint probability space of \((X_1, \ldots, X_T) \), we search the marginal probability spaces of \((X^m_1, \ldots, X^m_T) \).

3.2 Graphical Model Representation

The stochastic kinetic model with its distinct graphical model structure is more suitable than traditional models for modeling complex interactions in social dynamics. To illustrate this point, we compare its graphical model with the coupled hidden Markov model.

A coupled hidden Markov model (CHMM, Figure 1(a)) combines a number of conventional hidden Markov models (HMMs) to model the dynamics of interacting processes [7, 35]. In CHMM the latent state of HMM at time \(t \) depends on the latent states of all HMMs at time \(t - 1 \). Traditional ways to simplify the state transition kernel include the factorial hidden Markov model which decouples the inter-chain probability dependence [28] and the hidden Markov decision tree which assumes fixed and sparse inter-chain probability dependence [20].

A stochastic kinetic model has a graphical model representation different from CHMM, as shown in Figure 1(b). First, we define a set of stochastic events to summarize the complex interactions and decouple direct dependencies between nodes. Second, while the system can move from any state to any other state in a CHMM, in any infinitesimal time interval no more than one out of \(V \) possible events is happening in a stochastic kinetic model. Third, conditioned on the system state \(x^{(1)}_{t-1}, \ldots, x^{(M)}_{t-1} \) describing the populations of species 1, \ldots, \(M \), the latent state at the next time step \(x^{(1)}_t, \ldots, x^{(M)}_t \) could be dependent. (Consider an event that changes population \(m_1 \) and population \(m_2 \) simultaneously.) In contrast, in a CHMM the states \(x^{(1)}_t, \ldots, x^{(M)}_t \) at time \(t \) are conditionally independent given the states \(x^{(1)}_{t-1}, \ldots, x^{(M)}_{t-1} \) at time \(t - 1 \). Thus the inference algorithms of CHMM are not applicable for modeling the complex interactions in social dynamics driven by events.

The factorial stochastic kinetic model has a graphical model similar to the stochastic kinetic model except that it factorizes stochastic events to individual species (Figure 1(c)). The new graphical model further simplifies the inference algorithm.

3.3 Parameter Learning

In order to find the rate constants \(c_0 \) in a stochastic kinetic model and in a factorial stochastic kinetic model, we maximize the expected log likelihood and the Bethe entropy approximation respectively over these rate constants.

The likelihood of rate constants \(c_0 \) in a continuous time stochastic kinetic model with respect to a sample path iden-
Figure 1: In comparison of coupled hidden markov model (a), a stochastic kinetic model (b) decouples inter-chain interactions with events v and allows factorization (c).
As such, the rate constant \(c_v \) for event \(v \) matches the expected number of times this event could have happened \((\sum_1^\tau \alpha_{t-1}(x_{t-1})\xi_{t-1}(x_{t-1}))\) according to the event rates \((c_jg_j(x_{t-1}))\) along the sample path with the expected number of times the events happened \((\sum_1^\tau \xi(v_t=v))\).

Using Bethe entropy approximation, \(\alpha_{t-1}(x_{t-1}) = \prod_{j} \alpha_{j}(x_{t-1}^{(m)}) \) and \(\beta_{t}(x_{t}) = \prod_{j} \beta_{j}(x_{t}^{(m)}) \), and setting the discretization time interval \(\tau \) to be small enough, the rate constants \(c_v \) can be updated according to Eq. 19.

\[
\sum_t^\tau \xi(v_t = v) \rightarrow \frac{\sum_t^\tau \xi(v_t = v)}{\sum_t^\tau \xi_t(x_{t-1})g_t(x_{t-1})}.
\]

Therefore, the rate constant for event \(v \) is the expected number of occurrences of this event summed over all times, divided by the total cross-section of this event also summed over all times.

To summarize, we provide the variational agent-based inference algorithm below.

Variational Inference with Gillespie Algorithm

Given observations \(y_t^{(m)} \) for \(t = 1, \ldots, T \) and \(m = 1, \ldots, M \), and the stochastic kinetic model of a complex system defined by Eq. 4, find \(x_t^{(m)}, v_t^{(m)} \) and rate constants \(c_k \) for \(k = 1, \ldots, V \).

- **Latent state inference.** Iterate through the following forward pass and backward pass until convergence, where \(P(x_t^{(m)}, v_t^{(m)} | x_{t-1}^{(m)}) \) is given by Eq. 16.
 - **Forward pass.** For \(t = 1, \ldots, T \) and \(m = 1, \ldots, M \), update \(\alpha_{t}^{(m)}(x_{t}^{(m)}) \) according to
 \[
 \alpha_{t}^{(m)}(x_{t}^{(m)}) = \frac{1}{Z_t} \sum_t^{x_{t-1}^{(m)}} \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) P(x_t^{(m)}, v_t^{(m)} | x_{t-1}^{(m)}) P(y_t^{(m)} | x_t^{(m)}).
 \]
 - **Backward pass.** For \(t = T, \ldots, 1 \) and \(m = 1, \ldots, M \), update \(\beta_{t-1}^{(m)}(x_{t-1}^{(m)}) \) according to
 \[
 \beta_{t-1}^{(m)}(x_{t-1}^{(m)}) = \frac{1}{Z_t} \sum_{v_{t-1}, v_{t}} P(x_t^{(m)}, v_t^{(m)} | x_{t-1}^{(m)}) P(y_t^{(m)} | x_t^{(m)}) \beta_{t}^{(m)}(x_{t}^{(m)}).
 \]
- **Parameter estimation.** Iterate through latent state inference (above) and rate constants estimate of \(c_k \) according to Eq. 19, until convergence.

4. Experimental Results

In this section, we evaluate the performance of variational agent-based inference for two applications: epidemic dynamics and traffic dynamics. We selected these because they are important applications with significant practical value.

4.1 Epidemic Dynamics

In this section, we infer the progression of common cold in a dynamic social network using an agent-based susceptible-infectious-susceptible (SIS) model at the individual level through a small number of volunteers who report their symptoms, and estimate the total number of infectious individuals. Being able to estimate the outbreak of an epidemic in advance and determine who has the highest probability of infection is important for health-care providers and health policy researchers who must optimize limited medical resources. Conventional agent-based epidemic simulators [17, 26, 41, 27, 15] lack the capability to infer epidemic spreading with symptoms observations in the social network, and thus the sample paths given by these simulators can differ significantly from the truth.

In the SIS dynamics, each individual is either infectious \((I)\) or susceptible \((S)\), and the system has three events: a) an in infectious individual in the network infects a susceptible individual and turns that person infectious in the network with rate constant \(c_1 \) (probability per unit time), b) an infectious individual recovers and becomes susceptible again with rate constant \(c_2 \), and 3) a susceptible individual becomes infectious by contacting an infectious individual from outside the system with rate constant \(c_3 \).

\[
I + S \rightarrow 2 \times I, \quad \text{infection, rate constant } = c_1,
\]
\[
I \rightarrow S, \quad \text{recovery, rate constant } = c_2,
\]
\[
S \rightarrow I, \quad \text{infection from outside, rate constant } = c_3.
\]

To model the SIS dynamics at the individual level with Gillespie algorithm, we assign two "species" to each person \(p \): \(I^{(p)} \in \{0, 1\}, S^{(p)} \in \{0, 1\} \) and \(I^{(p)} + S^{(p)} = 1 \). The probability for a susceptible person \(p \) to become infectious through one unit time of contact with an infectious person \(q \) is thus

\[
h(x, c_1) = c_1 \cdot s^{(p)} \cdot i^{(q)} = c_1.\]

The mean field probability for the susceptible person \(p \) to become infectious is thus

\[
\sum_{q \neq \text{neighbor of } p} c_1 \cdot s^{(p)} \cdot E(I^{(q)}) = c_1 \cdot s^{(p)} \sum_{q \neq \text{neighbor of } p} E(I^{(q)}),
\]
i.e., the average total number of infectious neighbors in the individual’s social network times the probability of infection per infectious neighbor. If infection happens, we change \(S^{(p)} \) from 1 to 0 and change \(I^{(p)} \) from 0 to 1.

We benchmark the performance of the variational agent-based inference algorithm using the Dartmouth College campus data set [29]. This data set contains the locations of 13,888 on-campus WiFi users from April 2001 to June 2004. On top of this dynamic social network we synthesized epidemic progression using the SIS model and set parameters such that an individual is on average infected twice per year and takes one week on average to recover. We randomly select 10% of individuals as volunteers who report their daily symptoms from these we infer the daily infectious/susceptible state of the other 90% individuals. As far as we know, there is no real data set with both a large amount of sensor data and symptom reports; we hope our research encourages data collection and analysis in this direction.
these data, the simulator will proceed to execute travel, to score daily itineraries, and to perturb daily itineraries in an attempt to improve them, and then repeat the three steps until equilibrium is reached. Simulation without continuous observations about a real-world transportation network however doesn’t tell us whether today’s traffic jams will be formed earlier or last longer.

Many existing algorithms to track and predict real-time traffic dynamics on the other hand — vector ARIMA [3], state space models [46], neural networks [48], and Bayesian network models [25, 13] — have difficulty in coping with noisy and missing data, with making predictions in non-recurrent scenarios, and with explaining predictions in terms of agent trips. According to Vlahogianni [43], the challenge in short-term traffic forecasting is not only to predict but also to explain phenomena at the city network level — to fuse new data sources such as those from telematics units and to easily incorporate the effects of non-recurrent conditions.

To join the event model of a discrete-event simulator with continued observations about real-world social systems, we make use of the fact that all discrete event simulators (at least, to the best of our knowledge) have a way to dump the events happening in a simulation run. As such, we can reconstruct simulation runs according to the event sequences and so reconstruct the stochastic discrete-event model from simulation runs outside the simulator, instead of hacking the source code of a specific simulator over many man-months. MATSIM, for example, has about 140 thousand lines of code, and hacking its source code to make real-time inferences with real-world data wouldn’t be easy.

In this way, we dump four events: vehicle leaving a building, vehicle entering a link, vehicle leaving a link and vehicle entering a building. From these four events, we have constructed a data frame representing continued observations of the locations (the link or building) of all vehicles at equally spaced time steps. From the data frame we constructed a state transition matrix to represent vehicle dynamics (with each row and column representing a link/building), along with entries giving the state transition probabilities according to how long a vehicle stays at a link/building and how frequently a vehicle chooses the next link/building. By uniformly sampling a given fraction of tracked vehicles, we have constructed an observation model that provides the probability distribution of observed vehicles at a location given the total number of vehicles there. This system has only one event \(p_i \circ l_1 \rightarrow p_i \circ l_k \), a vehicle moving from link/building \(j \) to link/building \(k \) with rate constant \(p_i/j_k \), changing the location of a vehicle from \(X_t^{(l)} = l_j \) to \(X_{t+1}^{(l)} = l_k \), changing the number of vehicles on link \(l_i \) from \(X_t^{(l)} = x_t^{(l)} \) to \(X_{t+1}^{(l)} = x_{t+1}^{(l)} \), and changing the number of vehicles on link \(l_k \) from \(X_t^{(l)} = x_t^{(l)} \) to \(X_{t+1}^{(l)} = x_{t+1}^{(l)} \). But the inference is much more complex due to the interactions between vehicles and links.

We employ the mobility traces of more than 500 taxi cabs collected over 30 days in the San Francisco metropolitan area [36] to benchmark the advantages of considering possible future traffic conditions for individual transportation planning. We extract the road network from OpenStreetMap, a collaborative project to create a free editable map of the world. We obtain population distribution and daily trip statistics from the U.S. Census, and obtain the state transi-

![Figure 2: Statistical inference in Dartmouth data](image-url)
tion matrices from one link/building to another at equilibrium from simulations. We map the latitudes and longitudes of tracked vehicle locations to links and buildings because our stochastic inference is at the link/building level.

To benchmark how the estimation of travel time can be improved by considering future traffic conditions even though traffic conditions vary significantly, we extract the 20% of trips with the highest difference between actual travel time and estimated travel time according to traffic at the time of departure, then estimate the average travel time according to our probabilistic model. Such travel often occurs at the rising edge of overall traffic volume, during bad weather, and on less developed roads.

Figure 3 compares these estimated travel times according to only traffic at the time of departure with the same data considering possible future traffic estimations through a random sample of 128 trips. The travel estimations that do not project future traffic exhibit on average a 35% relative error (in comparison with a 29% when projecting future traffic), and therefore occasionally differ significantly from the actual travel time.

As such, we can combine the sporadically observed vehicle locations with the large compilation of typical trip plans to continuously estimate current and future traffic conditions. Starting from the number and behavior of tracked vehicles in a road link, we can determine the total number of vehicles in the link by scaling and estimating traffic conditions. If we trace the origins and destinations of the estimated number of vehicles through the factorial stochastic process model (filling any gaps with prior individual travel behaviors), we can extract information about the traffic at other road links. If we then iterate estimations between the traffic at links and the trip choices of simulated vehicles, we improve our estimation of both.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have developed a variational method to make inferences about a real-world system from continuous imperfect observations about the system, using an agent-based model that describes the dynamics of this system. To demonstrate the value of combining the power of big data and the power of model-thinking in the stochastic process framework, we show how we can track epidemics at the individual level from only a small number of volunteers who report their symptoms, and we make short-term predictions about road traffic from sporadically observed probe vehicles. This is just a taste of what this powerful combination of approaches can do, and we expect to see further applications and theoretical development to test the bounds of this methodology.

APPENDIX

The duality between Eq. 7 and Eq. 12 is a duality between maximum relative entropy and maximum pseudo-likelihood. To get the dual form of the Bethe variational problem in Eq. 12, we set the derivatives of Eq. 11 over \(\xi_t(x, t, v_t) \) and \(\gamma_t(m) (x_t^{(m)}) \) to 0.

\[
\frac{\partial L}{\partial \gamma_t(m) (x_t^{(m)})} = \log \gamma_t(m) (x_t^{(m)}) + 1 - \beta_t(m) - \alpha_t(m) \quad \text{set} \quad \alpha_t(m) = 0
\]

\[
\Rightarrow \xi_t(x_{t-1}, v_t) \propto \exp \left(\sum_{m} \beta_t(m) (x_t^{(m)}) \right) \exp \left(\sum_{m} \alpha_t(m) (x_t^{(m)}) \right)
\]

\[
\Rightarrow \gamma_t(m) (x_t^{(m)}) \propto \exp \left(\alpha_t(x_t^{(m)}) + \beta_t(m) (x_t^{(m)}) \right)
\]

After taking \(\xi_t(x_{t-1}, v_t) \) and \(\gamma_t(m) (x_t^{(m)}) \) into Eq. 7, we get Eq. 12.

To derive Eq. 15, we marginalize Eq. 13 over all \(x_{t-1}, t \) for \(m' \neq m \).

\[
\mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) = \frac{1}{N} \sum_{x_{t-1}, t, v_t} \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m)})
\]

\[
\Rightarrow \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) \propto \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m)}) \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')})
\]

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have developed a variational method to make inferences about a real-world system from continuous imperfect observations about the system, using an agent-based model that describes the dynamics of this system. To demonstrate the value of combining the power of big data and the power of model-thinking in the stochastic process framework, we show how we can track epidemics at the individual level from only a small number of volunteers who report their symptoms, and we make short-term predictions about road traffic from sporadically observed probe vehicles. This is just a taste of what this powerful combination of approaches can do, and we expect to see further applications and theoretical development to test the bounds of this methodology.

APPENDIX

The duality between Eq. 7 and Eq. 12 is a duality between maximum relative entropy and maximum pseudo-likelihood. To get the dual form of the Bethe variational problem in Eq. 12, we set the derivatives of Eq. 11 over \(\xi_t(x, t, v_t) \) and \(\gamma_t(m) (x_t^{(m)}) \) to 0.

\[
\frac{\partial L}{\partial \gamma_t(m) (x_t^{(m)})} = \log \gamma_t(m) (x_t^{(m)}) + 1 - \beta_t(m) - \alpha_t(m) \quad \text{set} \quad \alpha_t(m) = 0
\]

\[
\Rightarrow \xi_t(x_{t-1}, v_t) \propto \exp \left(\sum_{m} \beta_t(m) (x_t^{(m)}) \right) \exp \left(\sum_{m} \alpha_t(m) (x_t^{(m)}) \right)
\]

\[
\Rightarrow \gamma_t(m) (x_t^{(m)}) \propto \exp \left(\alpha_t(x_t^{(m)}) + \beta_t(m) (x_t^{(m)}) \right)
\]

After taking \(\xi_t(x_{t-1}, v_t) \) and \(\gamma_t(m) (x_t^{(m)}) \) into Eq. 7, we get Eq. 12.

To derive Eq. 15, we marginalize Eq. 13 over all \(x_{t-1}, t \) for \(m' \neq m \).

\[
\mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) = \frac{1}{N} \sum_{x_{t-1}, t, v_t} \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m)})
\]

\[
\Rightarrow \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')}) \propto \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m)}) \mathcal{E}(x_{t-1}, t, x_t^{(m)}, x_t^{(m')})
\]
REFERENCES

[33] Thomas P. Minka. Expectation propagation for approximate bayesian inference. In Jack S. Breese and

