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ABSTRACT
We consider a general crowdsourcing setting with strategic
workers whose qualities are unknown and design a multi-
armed bandit (MAB) mechanism, CrowdUCB, which is de-
terministic, regret minimizing, and offers immediate pay-
ments to the workers. The problem involves sequentially
selecting workers to process tasks in order to maximize the
social welfare while learning the qualities of the strategic
workers (strategic about their costs). Existing MAB mech-
anisms are either: (a) deterministic which potentially cause
significant loss in social welfare, or (b) randomized which
typically lead to high variance in payments. CrowdUCB
completely addresses the above problems with the follow-
ing features: (i) offers deterministic payments, (ii) achieves
logarithmic regret in social welfare, (iii) renders allocations
more effective by allocating blocks of tasks to a worker in-
stead of a single task, and (iv) offers payment to a worker
immediately upon completion of an assigned block of tasks.
CrowdUCB is a mechanism with learning that learns the
qualities of the workers while eliciting their true costs, ir-
respective of whether or not the workers know their own
qualities. We show that CrowdUCB is ex-post individually
rational (EPIR) and ex-post incentive compatible (EPIC)
when the workers do not know their own qualities and when
they update their beliefs in sync with the requester. When
the workers know their own qualities, CrowdUCB is EPIR
and ε−EPIC where ε is sub-linear in terms of the number
of tasks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; I.2.6 [Learning]: Parameter learning
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1. INTRODUCTION
Crowdsourcing is emerging as a powerful sourcing alterna-
tive to organizations for the execution of tasks in a timely,
scalable, and cost-effective manner. The availability of a
large worker pool enables crowdsourcing to be used widely
to collect labels for large scale learning problems, like col-
lecting a ground dataset for supervised learning algorithms.
The rise in the number of crowdsourcing platforms in recent
times indicates the usefulness of crowdsourcing in various
real world applications.

On a crowdsourcing platform, a requester (one who is
seeking the tasks to be performed) naturally seeks high qual-
ity and low cost workers. We focus our attention on crowd-
sourcing platforms where the number of tasks is large and
individual tasks are simple, common, low cost tasks such as
image labeling. Due to diverse, heterogeneous demographics
of crowd workers and a rich variety of tasks available on a
crowdsourcing platform, the quality of a worker is typically
unknown to the requester and sometimes even to the worker
as well. We allow workers to bid their costs for a particular
task (for example, rent-a-coder.com). When there are low
cost tasks at hand and auction overheads are involved, it
is preferable to allocate a block of tasks to a worker rather
than allocate a single task. The problem of choosing an op-
timal worker becomes a challenging one when these costs
need to be elicited and qualities need to be learned via a
suitable learning algorithm. This problem can be posed as
a multi-armed bandit (MAB) mechanism design problem [5,
10], where, while eliciting the true costs, the requester needs
to either explore the workers (modeled as arms) to learn
their qualities or exploit the best worker identified so far.

There are two types of MAB mechanisms available in the
literature: (a) deterministic mechanisms [5, 10, 7] which are
known to incur high regret in social welfare (for example,

as high as, O(T 2/3) where T is the number of tasks) but
with zero variance in payments, and (b) randomized mech-
anisms [4, 6] where optimal (logarithmic) regret is achieved
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but with a high variance in payments. In this work, we pro-
pose a mechanism that (a) offers deterministic payments,
(b) achieves minimal regret (logarithmic in the number of
tasks), (c) allows allocation of blocks of tasks to workers,
and (d) offers immediate payments. Moreover, the proposed
mechanism allows workers the flexibility of modifying their
bids in successive rounds. Following are the two key fea-
tures that differentiate our work from extant work in the
literature.

Deterministic MAB Mechanism with Logarith-
mic Regret
The lower bound characterization results for deterministic
MAB mechanisms with dominant strategy incentive compat-
ibility (DSIC) notion assumes that the manipulating worker
has the power to know all the future events, leading to high
regret [5, 10]. While such an approach is theoretically ap-
pealing, in practice, however, a worker is not sure about
his own quality and thus cannot manipulate based on the
knowledge of future events. Recent works [11, 13] argue
against the approach of providing worst case guarantees for
large games and recommend instead, simpler yet optimal
strategies with pragmatic assumptions. For crowdsourcing,
this approach is more suitable due to the large population
of global workforce and the diversity in the nature of tasks
posted by requesters.

To achieve logarithmic regret, we use the notion of ex-post
incentive compatibility (EPIC). EPIC ensures that even after
considering the future events, for every task, it is best for any
worker to bid his cost truthfully when the other workers bid
truthfully. Though EPIC is a weaker notion than DSIC, it
is much stronger than Bayesian incentive compatibility that
is often used in mechanism design [14]. Further, we make
no assumptions about workers’ knowledge of success realiza-
tion (which future tasks will be successfully completed) and
about the number of tasks requester wants to execute.

Block Allocations, Dynamic Bids, and Immedi-
ate Payments
In the context of learning of qualities, the algorithms in the
literature usually allocate a single task at a time and make
the next allocation following evaluation of the performance
of the previous tasks. With low cost tasks, this could cause
significant overheads and the workers may quit the crowd-
sourcing platform. Our mechanism has the enhanced feature
of allocating blocks of tasks to the workers. The block sizes
are dynamically updated based on the learned qualities and
the bids of the workers. Our mechanism further allows the
workers to bid different costs in different rounds as the time
progresses and offers immediate payments to the workers.

Contributions
We propose two variants of our mechanism: (a) qualities
are unknown to the workers and (b) qualities are private
information of the workers. Following are the specific con-
tributions:

• We design a MAB mechanism, CrowdUCB which is
deterministic, regret optimal, makes block allocations,
and offers immediate payments (Section 4).

• We theoretically prove that CrowdUCB suffers mini-
mal regret that matches the lower bound in the space
of stochastic MAB problems (Theorem 3).

• When workers are unaware of their qualities and learn
these qualities as the mechanism progresses, we prove
that CrowdUCB is ex-post individually rational (EPIR)
and ex-post incentive compatible (EPIC)(Section 5).

• When workers know their qualities, we prove that Crow-
dUCB is ε−EPIC where ε is sub-linear in the number
of tasks T , making CrowdUCB asymptotically EPIC
in this setting (Section 6).

• We experimentally show that: (a) existing randomized
mechanisms suffer from high variance as opposed to
CrowdUCB and (b) the constants hidden within the
regret are reasonable enough (Section 7).

2. RELATED WORK
While the MAB problem is a well studied area in machine
learning community, designing MAB mechanisms is still a
relatively unexplored area. Though there are optimal regret
guarantees in MAB problems [8], strategic versions of the
problem fail to achieve such guarantees [5, 10]. The lower
bound proof in [5, 10] for any deterministic MAB mechanism
makes a crucial assumption that a worker is fully aware of
the complete success realization, thus giving more manipula-
tive power to the worker. Our mechanism is more practical
where we relax the above assumption and achieve logarith-
mic regret. In the literature, the high regret issue is allevi-
ated via a randomized mechanism [3, 21] and it turns out
that standard MAB algorithms like UCB1 [2] can be trans-
formed into a truthful randomized mechanism. However,
the payment scheme in such mechanisms involves a trade-
off between the revenue obtained and the variance in the
payment. It is then shown that this trade-off is necessary to
achieve truthfulness [21]. In our work, we provide a mecha-
nism that circumvents this trade-off in the specific context
of crowdsourcing via realistic assumptions.

The concept of MAB based algorithms and MAB mech-
anisms is not new to crowdsourcing [18]. When the costs
are fixed and known and qualities are unknown, the crowd-
sourcing setting can be formulated as a variation of a MAB
problem with crowd workers acting as the arms [19, 20, 1,
12]. In another setting, When the costs of the workers are
not known, but the qualities are homogeneous among work-
ers, the problem of designing a posted price mechanism is
formulated using a MAB algorithm with various prices as
the arms of the bandit [3, 17]. When workers arrive on-
line, designing a truthful mechanism for eliciting the bids
from the workers is considered in [16] but the work assumes
that the workers are homogeneous in terms of their quali-
ties. With an offline worker pool, designing truthful MAB
mechanisms in crowdsourcing setting for eliciting true costs
and learning qualities at the same time is also considered
by many authors. Authors in [7] considered an exploration
separated mechanism to the budgeted crowdsourcing setting
that is deterministic but incurs a high regret (O(T 2/3) with
T being the number of tasks). On the other hand, [6] pro-
poses a UCB1 [2] based algorithm for the allocation and
provides a randomized mechanism similar to [4] to compute
the payments which suffer high variation in payments. In
this work, we design a deterministic MAB mechanism that
achieves optimal regret similar to that of UCB1 with zero
variance.
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3. THE MODEL
There is a requester who seeks to allocate T homogeneous

tasks among K crowd workers. Worker i (i = 1, . . . ,K) has
a fixed quality qi ∈ [0, 1] which is the probability with which
worker i executes the task successfully. Due to heterogeneity
among the tasks available at crowdsourcing platforms, the
quality of a worker on a particular type of task is unknown to
the requester and sometimes to the worker as well. A worker
i incurs a cost ci ∈ [cmin, cmax] for completing the task and
ci is a private information of worker i. We assume that the
qualities and costs do not change over time for homogeneous
tasks that a requester seeks to get executed.

K Number of crowd workers
T Number of homogeneous tasks
t ∈ {1, . . . , T} Running index of tasks
M Reward to the requester for every suc-

cessfully completed task
qi ∈ [0, 1] Quality of worker i
ci ∈ [cmin, cmax] Cost per task of worker i
c−i Cost vector of all workers other than i
bi,t Cost bid by worker i for task t
b−i,t Cost bid by workers other than i for task

t
bt Cost bid vector of all the workers for

task t
It Worker allocated for task t
τt + 1 Number of tasks allocated as a block to

a worker from tasks t to t+ τt
Ni,t Number of tasks allocated to worker i

till tasks t
Si,t Number of tasks successfully completed

by worker i till tasks t
ht History till tasks t of alloca-

tions and observed success i.e.
{I1, SI1,1, . . . , It−1, SIt−1,t−1}

pi,t(bt;h
t) Payment to worker i for task t with his-

tory ht and cost bid vector bt
ui,t(bi,t, b−i,t;ht; ci) Utility to worker i for task t with cost

bid vector (bi,t, b−i,t), history ht, and
true cost ci

Table 1: Notation Table

For each successfully completed task, the requester derives
a reward of M , hence the expected reward of the requester
is given by Mqi, when the worker i is allocated a task. The
requester would like to allocate the tasks so as to maximize
the total expected reward. Since the qualities are unknown,
in order to learn the qualities, the requester can allocate the
tasks sequentially and can observe the qualities of the work-
ers over the allocated tasks. Based on the learnt qualities
over the previous tasks, the requester can compute alloca-
tions and payments for the future.

As the costs per task are private to the workers, we pro-
pose to use an auction for allocating tasks. Though the
private cost of a worker does not change over time, his be-
liefs about his quality get updated. Therefore, a worker can
update his bid to a different value for a task if he thinks it
would give him better utility. Note that, inviting bids for
every task t gives more flexibility to the workers. Let c−i
denote the private cost vector of all the workers other than
i. Let bi,t be the bid by a worker i for a task t and b−i,t is
the bid vector by the workers other than i. On completion
of the task, the requester pays to the worker i, an amount
pi,t, if i is selected for the task t. The utility of a worker

i for a task t with bid vector bt and true valuation ci is
given as ui,t(bt;h

t; ci) = 1{It(bt;ht) = i}(pi,t(bt;ht) − ci).
Here, It represents the index of the worker allocated the
task t and ht represents the history of all the allocations
and the corresponding performances of the allocated work-
ers in the past. Let Si,t denotes the reward of the worker i
if he is allocated task t, then the history at task t is given as
ht = {(I1, SI1,1), . . . , (It−1, SIt−1,t−1)} and depends on the
inherent quality of the workers.

A requester would like to update his beliefs about the
qualities of the workers after completion of every task and
select a worker for the next task based on updated beliefs.
However, single task allocations followed by belief updates
and invitation for bids involve considerable time overheads,
moreover, the workers prefer receiving multiple tasks at a
time. Our mechanism allows the requester to allocate a
block of tasks without losing on optimality in learning. Let
0 ≤ τt ≤ T − t denote the additional number of tasks allo-
cated as a block starting from task t to t + τt (thus giving
τt + 1 tasks to the worker). If worker It is allocated a block
of tasks from t to t+τt, bids are not sought for next τt tasks.
Thus, bi,t′ = bi,t ∀i, ∀t′ ∈ {t, . . . , t+ τt}. After τt + 1 tasks,
empirical quality of the worker i is updated. Notations are
provided in Table 1. We make the following key deviations
from existing settings:

• Most of the literature in this space [5, 4] assumes that
a strategic worker is fully aware of the future successes.
This assumption leads to either higher regret or vari-
ance in the payments. In this work, a strategic worker
is not cognizant of the future and has knowledge of
only past allocations. However, the workers are aware
of how a requester is learning and can manipulate their
bids to maximize their utility with this information.

• Due to anonymity in crowdsourcing platforms, a worker
does not have the knowledge of total number of tasks
T available. Hence, he would not like to lose the allo-
cations in the current rounds if the allocations result
in positive utility.

We now define some properties that CrowdUCB satisfies
in the settings considered.

Definition 1 Ex-Post Individual Rationality (EPIR):
A mechanism is said to be ex-post individually rational if
each worker receives a non-negative utility for each task, ir-
respective of the history prior to this task and irrespective of
the bids of other workers. That is, ∀i, ∀t, ∀ht, ∀b−i,t,

ui,t(ci, b−i,t;h
t; ci) ≥ 0, ∀ci.

Definition 2 Ex-Post Incentive Compatibility (EPIC):
A mechanism is EPIC if for any worker i, bidding truthfully
in all the rounds results in higher total utility as compared
to non-truthful bidding in any round when the other workers
are assumed to bid truthfully, i.e. ∀i, ∀c−i, ∀ci, ∀ht, ∀bi,t,

T∑
t=1

ui,t(ci, c−i;h
t; ci) ≥

T∑
t=1

ui,t(bi,t, c−i;h
t; ci).

Note that EPIC is a weaker notion than dominant strat-
egy incentive compatibility where the other workers can bid
different values in different rounds but it is stronger than
Bayesian Nash incentive compatibility where a worker is
truthful with respect to the expectation of other workers’
valuations.
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Let ui,t(bi,t, c−i;h
t; ci; qi) be the utility of worker i with

bid bi,t for task t when he knows his true quality qi. We
will show that when workers’ qualities are private knowledge
then CrowdUCB is ε−EPIC which we define as follows:

Definition 3 ε−EPIC:
A mechanism is said to be ε−EPIC if by misreporting bids
in any round(s), no worker can gain more than ε in his total
utility that he would have obtained by bidding truthfully in
all the rounds when the other workers are assumed to bid
truthfully. i.e. ∀i, ∀c−i, ∀ci, ∀ht and ∀bi,t,

E

[
T∑
t=1

ui,t(ci, c−i;h
t; ci; qi)

]
+ ε ≥ E

[
T∑
t=1

ui,t(bi,t, c−i;h
t; ci; qi)

]
.

Here, expectation is taken over success realizations given
true qualities.

Definition 4 Asymptotically EPIC:
We say that a mechanism is asymptotically EPIC when per
round utility gain over truthful bidding for every worker i
goes to zero with number of rounds to infinity when other
workers report truthfully, i.e. ∀i, ∀c−i, ∀ci, ∀ht, ∀bi,t.

lim
T→∞

1

T
E

[
T∑
t=1

(
ui,t(bi,t, c−i;h

t; ci)− ui,t(ci, c−i;ht; ci)
)]

= 0.

Definition 5 Regret in Social Welfare: Social welfare
is given by the sum of the valuation of all the workers and
the requester. The valuation of the requester and a worker
i is given by Mqi and −ci respectively, if the worker i is
given the task t. The regret in social welfare of an algorithm
A is defined as the difference in the social welfare achieved
by an optimal algorithm that knows the true qualities and
the social welfare by the algorithm A that is learning the
qualities. When the workers bid truthfully,

R(A) = T (Mqi∗ − ci∗ )−
T∑
t=1

K∑
i=1

1{It = i}(Mqi − ci),

where, i∗ ∈ arg maxi(Mqi − ci).

Here, 1{It = i}, is an indicator variable which is 1 if It = i
and 0 otherwise. For the rest of the paper, whenever we
talk about regret, we will be referring to regret in social
welfare. Social welfare is helpful for many socially desirable
outcomes, for example, a government procuring work from
crowd for creating job opportunities or government seeking
help from the volunteers through crowdsourcing of disas-
ter relief. Moreover, for revenue maximization, it is shown
that the revenue of social welfare maximizing mechanism
approaches to that of revenue maximizing mechanism with
large number of bidders [9]. Further, mechanisms with so-
cial welfare maximization are simple and more intuitive. We
say that an algorithm A has sub-linear regret if the regret
of the algorithm is sub-linear in the number of tasks i.e.
R(A) = o(T ). We now propose our mechanism CrowdUCB
that has sub-linear regret of O(lnT ). CrowdUCB is EPIR
and EPIC when workers are unaware of their qualities. Fur-
ther, when workers know their qualities but the mechanism
still learns the qualities of the workers, CrowdUCB is EPIR
and ε−EPIC where ε is sub-linear in the number of tasks T
hence is asymptotically EPIC.

4. PROPOSED MECHANISM: CROWDUCB
A deterministic mechanism,Mt(bt;h

t) = 〈It, τt, pIt〉, at any
time t, allocates τt + 1 number of tasks to a worker It, and
pays an amount pIt =

∑s=t+τt
s=t pIt,s. The allocated worker

It, the number of tasks τt+1 and the payment pIt depend on
the bid vector bt and history ht obtained so far. In the rest of
the paper, we will not show this dependence explicitly if it is
clear from the context. The next auction happens after τt+1
tasks are completed and thus, bi,s = bi,t, ∀i, ∀s, s.t. t ≤
s ≤ τt + t. A new bid vector bt+τt+1 is obtained from the
workers for task t + τt + 1. CrowdUCB uses some learning
bounds on qualites to make allocations and payments for the
current task. These bounds are shown in Table 2.

q̂i,t =
Si,t
Ni,t

Estimate of quality qi till tasks t

q̂+i,t = q̂i,t +√
2 ln(t)
Ni,t

Upper confidence bound (UCB) on the
quality of the worker i till tasks t.

q̂+
−→τ

i,t =
Si,t

Ni,t+τ
+√

2 ln(t+τ)
Ni,t+τ

UCB on the quality of worker i if he fails
on all the tasks from t, t+ 1, . . . , t+ τ

q̂+→τi,t =
Si,t
Ni,t

+√
2 ln(t+τ)
Ni,t

UCB on the quality of worker i when he
does not get any task from t to t+ τ

q̂+
∼→τ

i,t =
Si,t
Ni,t

+√
2 ln(t+τ)
Ni,t+τ

UCB on the quality of worker i when he
gets tasks from t to t+τ and he performs
the tasks with same empirical estimate
as at time t

Table 2: Learning Bounds on Qualities

4.1 Allocation Rule
For a task t, the allocation rule selects a worker It and the

number of additional tasks, τt, to be allocated to him. The
allocation rule is designed keeping in view of the following
two important yet conflicting objectives.

Learning: Let, q̂+i,t = q̂i,t+
√

2 ln(t)
Ni,t

be the upper confidence

bound (UCB) on the quality of the worker i. Here, Ni,t is
the number of tasks allocated to the worker i till task t and
q̂i,t is the empirical estimate of qi. A worker It for the task
t is selected as:

It ∈ arg max
i

(Mq̂+i,t − bi,t), (1)

We refer, Mq̂+i,t − bi,t as the UCB index of the worker i.
Note that for the fixed values of M and ci, UCB index on
Mqi − ci can be computed by upper bounding qi which is
the only stochastic parameter. Hence, UCB index is de-
fined accordingly. Thus, the allocation rule selects a worker
It having the highest UCB index. The above strategy of
optimism in the face of uncertainty is crucial for learning.
Block allocations: As already stated, though it is benefi-
cial for the requester to allocate one task at a time, in this
work, we propose the block allocation of tasks to reduce
auction overheads. We propose a block size of τt + 1 while
allocating the task t. Here, τt + 1 is the smallest block of
tasks such that the worker It remains optimal even when he
fails on every task in this block. Let Si,t denote the num-
ber of successfully completed tasks till task t (This implies,

q̂i,t =
Si,t
Ni,t

). Let q̂+
−→τ

i,t =
Si,t

Ni,t+τ
+

√
2 ln(t+τ)
Ni,t+τ

, denote UCB
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Figure 1: Allocation block given to the worker It from tasks t to
t+ τt. The dotted arrows represent the utility to worker It from
tasks t to t+ τt.

on quality of a worker i if he fails on all the tasks from

t, t+ 1, . . . , t+ τ . Similarly, let q̂+→τi,t =
Si,t
Ni,t

+
√

2 ln(t+τ)
Ni,t

de-

note UCB on quality of a worker i when he does not get any
task from t to t+τ . Then τt, the block size at the allocation
of the task t is defined as:

τt = arg max
0≤τ≤T−t

Mq̂+→τi,t − bi,t ≤Mq̂+
−→τ

It,t
− bIt,t,

∀i 6= It

 . (2)

Thus, τt represents the maximum number of additional tasks
that can be given to worker It even if he fails to successfully
complete the tasks in the future while UCB indices on qual-
ities of other workers evolve according to q̂+→τi,t . Figure 1
demonstrate this scheme pictorially.

4.2 Properties of the Allocation Rule
We first make the following observation.

Observation 1: ∀t > e, t ≥ n ≥ 0, τ ≥ 0, ln(t)
n
≥ ln(t+τ)

n+τ
.

Proof. t ≥ n and ln(t) ≥ 1 =⇒ τ ln(t)
n
≥ τ

n
≥ τ

t
.

Using, ∀x > −1, x ≥ ln(1 + x), we get τ
t
≥ ln(1 + τ

t
).

Thus,

τ ln(t)

n
≥ ln(1 +

τ

t
) ≥ ln(t+ τ)− ln(t)

=⇒ ln(t)(1 +
τ

n
) ≥ ln(t+ τ) =⇒

ln(t)

n
≥

ln(t+ τ)

n+ τ
.�

Let, Γji,t,bt(τ) = Mq̂+→τj,t − bj,t −Mq̂+
−→τ

i,t + bi,t. Intuitively,
this term captures minimum loss in social welfare if the
mechanism allocates next τ + 1 tasks to a worker j in-
stead of i with the bid vector bt. We will drop bt from
the notation if it clear from the context. From Equation (2),
ΓjIt,t(τ) ≤ 0, ∀j 6= It, ∀τ, 0 ≤ τ ≤ τt. The following Lemma

shows that ∀j, ΓjIt,t(τ) increases monotonically with τ .

Lemma 1 The term ΓjIt,t(τ) increases with τ , ∀j 6= It.

That is, ΓjIt,t(τ + s) ≥ ΓjIt,t(τ), ∀j 6= It, ∀s ≥ 0.

Proof. From the definition of q̂+→τi,t , ∀i,

q̂+→τ+si,t ≥ q̂+→τi,t . (3)

Applying Observation 1,
√

2 ln(t+τ+s)
NIt,t+τ+s

≤
√

2 ln(t+τ)
NIt,t+τ

and since
SIt,t

NIt,t+τ+s
≤ SIt,t

NIt,t+τ
,

q̂+
−→τ+s

It,t
≤ q̂+

−→τ
It,t

. (4)

Using the above two inequalities,

ΓjIt,t(τ + s) = Mq̂+→τ+sj,t − bj,t −Mq̂+
−→τ+s

It,t
+ bIt,t

≥Mq̂+→τj,t − bj,t −Mq̂+
−→τ

It,t
+ bIt,t ≥ ΓjIt,t(τ).�

Thus, ∀τ, s, ΓjIt,t(τ) > 0 =⇒ ΓjIt,t(τ + s) > 0. Therefore,
for deciding a block size τt, it is enough to take the first
value of τ such that ΓjIt,t(τ + 1) > 0 for some worker j.

To achieve incentive compatibility, it is important that the
allocation rule satisfies monotonicity condition with respect
to the cost [15]. The following Lemma ensures this property:

Lemma 2 The number of allocated tasks to any worker i for
any task t, monotonically decreases with his reported cost if
the costs of the other workers are fixed.

Proof. Consider two bids by a worker i, b+i,t > bi,t and

the corresponding bid vectors be b+t and bt respectively.
From Equation (1), It(bt) 6= i =⇒ It(b

+
t ) 6= i, thus, sat-

isfying monotonicity condition trivially. If It(bt) = i but
It(b

+
t ) 6= i, then there is nothing to prove. Let k and k′

denote the additional number of tasks, worker i gets with
bid bi,t and b+i,t respectively. From Equation (2),

k = arg max
0≤τ≤T−t

{
Γji,t,bt (τ) ≤ 0, ∀j 6= i

}
,

=⇒ Γji,t,bt (k + 1) > 0 for some j 6= i.

Note that for a fixed τ and j, Γji,t,bt(τ) monotonically in-
creases with bi,t when all the other bids are fixed. Thus,
Γj
i,t,b+t

(k + 1) ≥ Γji,t,bt(k + 1) > 0 =⇒ k′ ≤ k.

4.3 Payment Scheme
We use externality based payment which also accounts for

the loss of learning the qualities of the other workers. Let
jτ ∈ arg maxj 6=It(Mq̂+→τj,t − bj,t), be the second best worker
with the current beliefs about the qualities and the reported

bids. Let, q̂+
∼→τ

It,t
=

Si,t
Ni,t

+
√

2 ln(t+τ)
Ni,t+τ

be the UCB on the

quality of worker i when he gets tasks from t to t+ τ and he
performs the tasks with same empirical estimate as at time
t. Then, the payment to the worker It is the bid required by
him to match the utility of the requester by assigning the
task t + τ to the worker jτ by performing the future tasks
with the same quality. The payment for task t + τ , with,
0 ≤ τ ≤ τt is given as:

pIt,t+τ (bi,t, b−i,t;h
t) = Mq̂+

∼→τ
It,t

−
(
Mq̂+→τjτ ,t − bjτ ,t

)
. (5)

To avoid notation clutter, we will use index j instead of
jτ , but it should be clear from the context that this index
depends on the value of τ . We make an implicit assumption
that each worker genuinely submits an assigned task and
honestly performs the task. So, CrowdUCB offers a payment
to a worker for each allocated task even if the submission is
not successful. Not performing the task honestly, may affect
the learning of the algorithm and hence more sophisticated
analysis may be needed. Moreover, since we are interested in
low cost tasks this assumption holds true in many practical
situations. The mechanism can be easily modified to the
case where a payment is not offered to a worker in the event
the worker fails to submit the task successfully.
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5. PROPERTIES OF CrowdUCB: UNKNOWN
QUALITY SETTING

When the workers are unaware of their true qualities and
learn their qualities as the mechanism progresses, we show
that CrowdUCB is EPIR (Theorem 1), EPIC (Theorem 2),
and achieves logarithmic regret (Theorem 3).

Theorem 1 CrowdUCB is EPIR.

Proof. We need to prove that ∀i, ∀t, ∀ht, ∀b−i,t,
ui,t(ci, b−i,t;h

t; ci) ≥ 0 . If It 6= i, ui,t(ci, b−i,t;h
t; ci) = 0

and hence nothing to prove. If It = i, ui,t(ci, b−i,t;h
t; ci) =

−ci + pi,t(ci, b−i,t;h
t). Hence it is enough to prove that,

pIt,t+τ (cIt , b−It,t;h
t)− cIt ≥ 0 , ∀τ, 0 ≤ τ ≤ τt.

CrowdUCB allocation rule is designed such that, ∀j 6= It,∀τ ∈
{0, 1, 2, . . . , τt}, ∀bj,t, ΓjIt,t,bt(τ) ≤ 0. This leads to the fol-

lowing inequalities: ∀ j 6= It, ∀ τ ∈ {0, 1, . . . , τt},

Mq̂+→τj,t − bj,t −Mq̂+
−→τ

It,t
+ cIt ≤ 0

=⇒ cIt ≤Mq̂+
−→τ

It,t
+ bj,t −Mq̂+→τj,t

=⇒ cIt ≤Mq̂+
∼→τ

It,t
+ bj,t −Mq̂+→τj,t

(As, q̂+
∼→τ

It,t
=

SIt
NIt

+

√
2 ln(t+τ)
NIt+τ

≥ SIt
NIt+τ

+

√
2 ln(t+τ)
NIt+τ

=q̂+
−→τ

It,t
)

=⇒ cIt ≤ pIt,t+τ (cIt , b−i,t;h
t) (From Equation (5)).

We first make following observation before proving that Crow-
dUCB is EPIC.
Observation 2: If tasks t to t+ kt are allocated to worker
i, then ∀j 6= i, ∀τ, 0 ≤ τ ≤ kt following holds: q̂+→ktj,t

= q̂+→kt−τj,t+τ

Proof. Since tasks t to t+ kt are given to worker i and
not to worker j, Sj,t = Sj,t+τ and Nj,t = Nj,t+τ . Thus, the
observation is immediate from the definition of q̂+→τj,t .

Theorem 2 CrowdUCB is EPIC when the workers have the
same beliefs about their qualities as the requester and do not
know the value of T .

Proof. We need to prove that ∀i, ∀c−i, ∀ci, ∀ht, ∀bi,t
T∑
t=1

ui,t(ci, c−i;h
t; ci) ≥

T∑
t=1

ui,t(bi,t, c−i;h
t; ci). (6)

We will show that for any task t, it is not beneficial for
a worker to underbid or overbid even after considering the
future utility gains. For a task t, there are two possibilities
of manipulation for the worker i,
(I) underbidding: bi,t < ci
(II) overbidding: bi,t > ci.

Let kt, k
′
t ≥ 0 denote the number of tasks allocated to

the worker i with bids ci and bi,t respectively. We will prove
that non-truthful bidding results in lesser utility for all tasks
from t to max(t+kt−1, t+k′t−1), thus proving Equation (6).
Underbidding
For this case, k′t ≥ kt from Lemma 2.
Case 1: kt = 0: That is It 6= i if everybody bids truth-
fully. If k′t = 0, there is nothing to prove. If k′t > 0,
∀τ, s.t, 0 ≤ τ ≤ k′t − 1 : ui,t+τ (bi,t, c−i;h

t; ci) = −ci +

Mq̂+
∼→τ

i,t −Mq̂+→τj,t + cj , with j = arg maxj 6=iMq̂+→τj,t − cj .
Moreover, since kt = 0, ∃l s.t. Mq̂+i,t − ci ≤ Mq̂+l,t − cl ≤

Mq̂+→τl,t − cl ≤ Mq̂+→τj,t − cj . From Observation 1, q̂+
∼→τ

i,t ≤
q̂+i,t =⇒ ui,t+τ (bi,t, c−i;ht; ci) ≤ 0 ≤ ui,t+τ (ci, c−i;h

t; ci).
The later inequality follows from the EPIR property.
Case 2: kt > 0: Since the payment to the worker i is inde-
pendent of his bid, ∀τ,with 0 ≤ τ ≤ kt − 1 :
ui,t+τ (bi,t, c−i;h

t; ci) = ui,t+τ (ci, c−i;h
t; ci). If k′t = kt,

Equation (6) holds true. Let k = k′t−kt > 0. In this case, we
will prove that ∀τ, 0 ≤ τ ≤ k−1, ui,t+kt+τ (bi,t, c−i;h

t; ci) =
ui,t+kt+τ (ci, c−i;h

t+kt ; ci) if worker i beliefs over his quality
is same as that of the requester. Let, skt = q̂i,t ∗ kt denotes
the belief of a worker i about the number of successes he will
get in alloted kt tasks. If truthful bidding again at t + kt
results positive number of allocations for worker i then,

ui,t+kt+τ (bi,t, c−i;h
t; ci)

= −ci +Mq̂+
∼→kt+τ

i,t −Mq̂+→kt+τj,t + cj

= −ci +M

(
Si,t

Ni,t
+

√
2 ln(t+ kt + τ)

Ni,t + kt + τ

)
−Mq̂+→kt+τj,t + cj

= −ci +M

(
Si,t + skt

Ni,t + kt
+

√
2 ln(t+ kt + τ)

Ni,t + kt + τ

)
−Mq̂+→kt+τj,t + cj

Since worker i believes that his estimated quality will remain
the same as t i.e. q̂i,t = q̂i,t+kt , thus:

ui,t+kt+τ (bi,t, c−i;h
t; ci) = −ci +Mq̂+

∼→τ
i,t+kt

−Mq̂+→kt+τj,t + cj

= −ci +Mq̂+
∼→τ

i,t+kt
−Mq̂+→τj,t+kt

+ cj

(From Observation 2)

= ui,t+kt+τ (ci, c−i;h
t+kt ; ci).

However, if truthful bidding again at t + kt results in zero
number of allocations for worker i then the arguments go
similar to case 1.
Overbidding
For this case, k′t ≤ kt from Lemma 2.
Case 1: kt = 0: This implies k′t = 0 and there is nothing
to prove.
Case 2: kt > 0: If k′t = 0, then from Theorem 1,
ui,t+τ (ci, c−i;h

t; ci) ≥ 0 ∀τ, 0 ≤ τ ≤ kt − 1. However,
it may happen that by overbidding, the worker i loses ini-
tial allocations which goes to another worker say j, thus
decreasing the UCB index of worker j. In this case, if the
payment made to the worker i when he gets allocation for
later tasks depends on the UCB index of worker j then the
utility of the worker i for those tasks can increase. How-
ever, since the worker i is unaware of the number of remain-
ing tasks, he will prefer not to lose the confirmed alloca-
tions with positive utility for small gain in utility for future
tasks which may not happen. Thus, overbidding does not
benefit the worker. If k′t = kt, then ui,t+τ (ci, c−i;h

t; ci) =
ui,t+τ (bi,t, c−i;h

t; ci) ∀τ, 0 ≤ τ ≤ kt − 1, as the payment
does not depend on the bid of the worker i. If k′t < kt,
then ∀τ, 0 ≤ τ ≤ k − 1, ui,t+kt+τ (bi,t+kt , c−i;h

t+kt ; ci) =
ui,t+kt+τ (ci, c−i;h

t; ci) from Case 2 of Underbidding using
similar arguments.

Theorem 3 The allocation induced by CrowdUCB is same
as the allocation induced by UCB1. This leads to the social
welfare regret of CrowdUCB to be O(lnT ).

Proof. Since, CrowdUCB is EPIC, we assume that all
the workers bid truthfully for every task. Using induction,
we will prove that for any task t, an agent It is selected

91



by CrowdUCB if and only if he is selected by UCB1. For
task t = 1, the condition is trivially satisfied as both UCB1
and CrowdUCB allocates in round robin fashion to get first
estimates. By induction hypothesis, workers selected by
CrowdUCB and UCB1 till tasks t− 1 are same. For task t,
UCB1 selects the worker It with highest UCB index. Since
the workers selected by UCB1 and CrowdUCB for previ-
ous tasks were same, UCB indices of all the workers at t
remain same. If bidding happens for task t then Crow-
dUCB will also select worker with highest UCB index i.e.
It. If bidding does not happen at task t and CrowdUCB
selects agent j 6= It then for some previous task s, we have:

Mq̂+
−→t−s

j,s − cj ≥ Mq̂+→t−sIt,s
− cIt . But, this would mean

Mq̂+j,t − cj ≥ Mq̂+It,t − cIt (assuming there exists a single
agent with highest UCB otherwise we would break the ties
in similar way for both the algorithms) thus contradicting
the fact that It has the highest UCB index at t. Thus, j = It
and the allocation induced by CrowdUCB is same as UCB1.
Hence, CrowdUCB and UCB1 achieve same regret.

6. PROPERTIES OF CrowdUCB: KNOWN
QUALITY SETTING

We now show that when the workers are aware of their own
qualities but do not know qualities of other workers then
they can manipulate the learning of the requester by non-
truthful bidding. However, when the workers do not know
the number of tasks a requester has, then CrowdUCB is
ε−EPIC under the assumption that at any round t, maxi-
mum block size τt does not exceed some constant B. The
parameter ε depends on the total number of tasks and and
is sub-linear in T . As a corollary, we get that CrowdUCB is
asymptotically EPIC.

Theorem 4 CrowdUCB is ε−EPIC
with ε =

√
2MB(ln(T ))

3
2 .

Proof. Let, worker i gets k′t, kt tasks with bid bi,t and
ci respectively. We look at underbidding (bi,t < ci) and
overbidding (bi,t > ci) cases separately and first bound the
gain in utility εi,t by non-truthful bidding.

Underbidding(k
′
t ≥ kt)

Case 1:kt = 0 : If k
′
t = 0 then i 6= It in both the cases,

hence utility in both the cases is zero. If k
′
t > 0 then from

Theorem 2 case 1 of underbidding, worker i will get negative

utility for tasks t to t+ k
′
t − 1 as the utility of a worker for

any task depends only on the learnt quality by the requester
and not on his true quality. However, he may improve his
learning by getting negative utility in initial rounds so as to
increase his future utility. Since, the worker is unaware of
the total number of tasks, he would not risk to incur loss in
immediate utility.

Case 2:kt > 0: If kt = k
′
t, then the utility from tasks t to

t+kt−1 is same in both cases. If k
′
t > kt, at task t+kt there

would be one more auction with truthful bidding. As worker
i knows his true quality, his belief over quality about task

t+ kt would be
Si,t+qikt
Ni,t+kt

. In this case the belief of a worker

i about his utility for task (t+ kt + τ) ∀τ, 0 ≤ τ ≤ k
′
t − kt

is given as:

ui,t+kt+τ (ci, c−i;h
t; ci; qi)

= M

(
Si,t + qikt

Ni,t + kt
+

√
2ln(t+ kt + τ)

Ni,t + kt + τ

)
− ci −Mq̂+→τj,t+kt

− cj .

Whereas, with bid bi,t, the utility for task (t+kt+τ) ∀τ, 0 ≤
τ ≤ k

′
t − kt is given as:

ui,t+kt+τ (bi,t, c−i;h
t; ci; qi)

= M

(
Si,t

Ni,t
+

√
2ln(t+ kt + τ)

Ni,t + kt + τ

)
− ci −Mq̂+→kt+τj,t − cj

Thus, gain in utility is given by:

ui,t+kt+τ (bi,t, c−i;h
t; ci; qi)− ui,t+kt+τ (ci, c−i;h

t; ci; qi)

= M

(
Si,t

Ni,t
−
Si,t + qikt

Ni,t + kt

)
(From Observation 2)

= Mkt

(
Si,t − qiNi,t
Ni,t(Ni,t + kt)

)
From Hoeffding’s inequality, i.e., w.p. ≥ 1− t−4 we have,
Si,t
Ni,t
−

√
2 ln(t)
Ni,t

≤ qi ≤ Si,t
Ni,t

+
√

2 ln(t)
Ni,t

. Thus,

ui,t+kt+τ (bi,t, c−i;h
t; ci; qi)− ui,t+kt+τ (ci, c−i;h

t; ci; qi)

≤Mkt

Si,t −
(
Si,t
Ni,t

−
√

2 ln(t)
Ni,t

)
Ni,t

Ni,t(Ni,t + kt)

 (w.p. ≥ 1− t−4)

= Mkt

( √
2 ln(t)√

Ni,t(Ni,t + kt)

)
≤Mkt

√2 ln(T )

N
3
2
i,t


≤MB

√2 ln(T )

N
3
2
i,t

 . (As, kt ≤ B)

Overbidding(k
′
t ≤ kt)

Case 1: k
′
t = kt = 0: Nothing to prove.

Case 2: k
′
t < kt: If k′t = 0, then worker i loses initial

allocations but can increase his future utility by affecting
the learning of other workers. However, since the number of
tasks is unknown to the worker, he will not risk to lose the
immediate positive utility. When k′t > 0, utility of worker

i from t to t + k
′
t − 1 is same. At task t + k

′
t, there would

be one more auction in overbidding case. With known true
quality qi, worker i’s belief about his quality at the end of

t+k
′
t tasks will be,

Si,t+qik
′
t

Ni,t+k
′
t

. Thus, his belief over his utility

from tasks t+ k
′
t + τ ∀ τ s.t 0 < τ < kt − k

′
t by overbidding

is given by:

u
i,t+k

′
t+τ

(bi,t, c−i;h
t; ci; qi)

= M

(
Si,t + qik

′
t

Ni,t + k
′
t

+

√
2 ln(t+ k

′
t + τ)

Ni,t + k
′
t + τ

)
− ci −Mq̂+→τ

j,t+k′t
− cj

With truthful bidding his utility is given by:

u
i,t+k

′
t+τ

(ci, c−i;h
t; ci; qi)

= M

(
Si,t

Ni,t
+

√
2 ln(t+ k

′
t + τ)

Ni,t + k
′
t + τ

)
− ci −Mq̂

+→τ+k′t
j,t − cj

Thus, the gain in utility is given by:

u
i,t+k

′
t+τ

(bi,t, c−i;h
t; ci; qi)− ui,t+k′t+τ

(ci, c−i;h
t; ci; qi)

= M

(
Si,t + qik

′
t

Ni,t + k
′
t

−
Si,t

Ni,t

)
(From Observation 2)
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≤Mk
′
t

√2 ln(T )

N
3
2
i,t

 (w.p. ≥ 1− t−4)

≤MB

(√
2 ln(T )

N
3
2
i,t

)
(As, k

′
t ≤ B)

Here, second last inequality follows from similar arguments
presented in case 2 of underbidding and using other side of
Hoeffding’s inequality. Note that maximum gain in utility

for any task t by a worker i is given by Mq̂+
∼→τ

i,t − ci −
(Mq̂+→τj,t − cj) ≤M + cmax. As qualities are bounded above
by 1 and cj by cmax. We now bound the expected gain in
utilities over time horizon T i.e.

E

[
T∑
t=1

(
ui,t(ci, c−i;h

t; ci; qi)− ui,t(bi, c−i;ht; ci; qi)
)]

≤MB
√

2 ln(T )

 T∑
t=1

1

N
3
2
i,t

(1− t−4)

+

T∑
t=1

t−4(M + cmax)

≤MB
(√

2 ln(T ) ln(Ni,t)
)

+ (
1

3
+

1

3T 3
)(M + cmax)

≤
√

2MB ln(T )
3
2 + (

1

3
+

1

3T 3
)(M + cmax) (Ni,t ≤ T, ∀ t )

Since ε is sub-linear in T , we get the following Corollary:

Corollary 1 CrowdUCB is asymptotically EPIC under known
quality setting.

Note that CrowdUCB remains to be EPIR in this setting
since the proof of Theorem 1 for worker i uses his true cost
and not the bid that may change based on the knowledge of
true quality.

7. SIMULATIONS
In this section, we show via simulations that CrowdUCB
achieves logarithmic regret with constants matching the re-
gret of the UCB1 algorithm [2]. Further, randomized mech-
anisms such as in [4] lead to very high variance in payments.

For the simulations, we fix the number of workers K to
be 10. For each worker i, a fixed quality qi and a fixed cost
ci are drawn independently and uniformly from the interval
[0, 1]. For each successfully completed task, the requester
receives a reward of M = 2. Figure 2 shows the regret of
CrowdUCB and UCB1 with the number of tasks taken on a
logarithmic scale along the X-axis. As can be seen from the
figure, regrets of CrowdUCB and UCB1 match exactly and
show logarithmic behavior.

As an example of a randomized mechanism, we have im-
plemented the mechanism in [4] by modifying the mecha-
nism for a crowdsourcing setting with the value of resam-
pling parameter µ as 0.1. For a fixed cost vector and fixed
quality vector, we first generate an instance (that is, suc-
cess realization) by fixing a K × T table, where each entry
(i, t) represents the reward by the worker i if the worker
had been allocated task t. The entries of success realiza-
tion are filled by obtaining Bernoulli rewards, that is, the
entry (i, t) is 1 with probability qi and 0 with probability
(1− qi). Figure 3 shows that, for a fixed success realization,
the randomized mechanism incurs high variance in the pay-
ments whereas CrowdUCB being a deterministic mechanism

yields the same payment when the mechanism is invoked
several times for a fixed instance. The total payment given
to the workers is plotted over 1000 calls to the mechanisms
for a fixed instance and the shaded area represents the pay-
ment between maximum and minimum payments given by
the randomized mechanism.

Figure 2: Regret of UCB1 and CrowdUCB on log scale of number
of tasks.

Figure 3: High variance in payments by a randomized mechanism
for a fixed instance.

8. SUMMARY AND FUTURE DIRECTIONS
In this paper, we proposed a deterministic, ex-post individ-
ually rational and ex-post incentive compatible MAB mech-
anism that allows block allocations, and permits the work-
ers to change their bids as the time progresses. This work
is an important step towards designing a regret minimiz-
ing, deterministic MAB mechanisms for crowdsourcing and
other general procurement settings. The work can be ex-
tended to a setting where workers’ valuations also change
over time. In this case, the optimal worker will change and
hence one has to invoke contextual bandits. The other ex-
tension could be to design a deterministic mechanism with
low regret that satisfies a stronger notion of truthfulness like
dominant strategy incentive compatibility.
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