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ABSTRACT
Computational tutoring systems, such as educational software or
interactive robots, have the potential for great societal benefit. Such
systems track and assess students’ knowledge via inferential meth-
ods, such as the popular Bayesian Knowledge Tracing (BKT) algo-
rithm. However, these methods do not typically draw on the affec-
tive signals that human teachers use to assess knowledge, such as
indications of discomfort, engagement, or frustration.

In this paper we present a novel extension to the BKT model that
uses affective data, derived autonomously from video records of
children playing an interactive story-telling game with a robot, to
infer student knowledge of reading skills. We find that, compared
to a control group of children who played the game with only a
tablet, children who interacted with an embodied social robot gen-
erated stronger affective data signals of engagement and enjoyment
during the interaction. We then show that incorporating this affec-
tive data into model training improves the quality of the learned
knowledge inference models.

These results suggest that physically embodied, affect-aware robot
tutors can provide more effective and empathic educational ex-
periences for children, and advance both algorithmic and human-
centered motivations for further development of systems that tightly
integrate affect understanding and complex models of inference
with interactive, educational robots.
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1. INTRODUCTION
Intelligent tutoring systems (ITS) are software tutors that attempt

to combine the educational benefits of one-on-one tutoring with
the scale and ease-of-deployment of software [23]. While ITS re-
search has led to improved outcomes for students, they are often
designed as digital workbooks, with the tutoring system providing
a sequence of practice problems and offering the student a limited
action space (often just the choice of providing an answer or ask-
ing for a hint). Recent evidence indicates more interactive learning
styles may be better suited for school-age children; we believe the
design of computational tutors should reflect these principles.
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Previous research indicates that physically embodied social robots,
capable of perceiving and understanding affective signals can de-
liver more engaging and empathic educational experiences [13]. In
this paper, we add to this increasing body of evidence by establish-
ing social robots’ unique capability to engage children in affect-
aware tutoring experiences.

We conducted an analysis of children’s facial expressions from
video records of an experiment described in [9] and [10]. In this
experiment, children played an interactive story-telling game with a
robot. During the game, the robot would assess the child’s reading
ability by verbally asking them to identify a word written on the
screen. The experiment was recorded, including a close camera
shot of the child’s face, which, along with time-synced records of
the child’s game actions, forms our dataset.

This analysis was conducted using Affdex, a commercial affect-
analysis tool based on FACS and trained on data from over 2.7 mil-
lion faces in 75 countries [20, 17]. We developed a custom appli-
cation using the Affdex SDK to analyze 38 children’s interactions
with a robot, each approximately 12 minutes long.

We compared the affective response, derived via Affdex, of chil-
dren who interacted with a robot to the affective response of a con-
trol group of children who only interacted with a tablet, and show
that children who played the story game with a robot generated
stronger average emotional expressions over the course of the in-
teraction.

We then used this affective data, in combination with the stu-
dent’s performance data (right/wrong answers), to train a novel,
affective model for inferring student knowledge. We compare the
affective model to a standard Bayesian Knowledge Tracing (BKT)
model (trained only on the student performance data) and show that
the affective model is better able to generalize to test data from the
same population.

2. RELATED WORK
This paper describes work to combine the sophisticated model-

ing techniques of Intelligent Tutoring Systems with the engaging
and empathic abilities of physically embodied, socially interactive
robots. Here we give a short review of some relevant work from the
ITS and HRI communities.

Intelligent Tutoring Systems (ITSs) refer to a wide variety of
computer-based educational tools [23]. The subclass of “affect-
aware tutors" [26] are ITSs that explicitly sense, model, and reason
about students’ affective states. Inspired by psychological theories
of emotion and learning, affect-aware tutors seek to foster engage-
ment and learning from data-driven estimates of students’ affec-
tive states. Previous work has established the validity of affective
data captured during educational interactions [11], and efforts to
develop affect-aware tutoring systems have culminated in a num-
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ber of extensively studied systems, e.g., the Wayang Tutor [1] and
Affective Meta-Tutor [24] projects. Yet much of the computational
work on affect and modeling in the ITS literature focuses on models
to infer affect. Typically, once affective states are detected or iden-
tified, they trigger simple behavioral rules: a tutor might change
its facial expression or offer a supportive comment. These rules
are most commonly hardcoded by the developers and remain fixed
throughout the deployment, limiting the generality and flexibility
of the agent’s affective responses.

In parallel, researchers have explored the use of robots as edu-
cational tutors. Social robots have been successfully deployed in
schools to teach topics as varied as vocabulary [22], chess [13],
mathematics [4], and abstract analytic skills [14]. Long-term stud-
ies of robots, while less common, have demonstrated that social
robots can be an effective tool for improving children’s literacy
skills [12]. These results suggest that social robots may be par-
ticularly well-suited to educational tutoring applications.

Some work has explored physical robots that respond to human
affect in education. As with ITSs, however, the robot’s responses
are typically the result of scripted rules. In work by Szafir and
Mutlu [21], students wore an EEG sensor while a robot told a story.
The robot responded to perceived student decreases in attention
by producing exaggerated gestures, which led to better participant
story recall.

Researchers in the LIREC project developed a robotic chess tu-
toring system that uses more sophisticated affective models to give
empathy-based support [13]. The robot models a child’s affective
state by tracking in-game events in combination with external phys-
ical sensors and offers support by mirroring the child’s (estimated)
affective state.

Unlike previous efforts to unite affect, tutoring, and robots, in
this paper, we incorporate affect directly into a robot’s learning
model. While other work has used affect as an input to behavioral
rules, this work is the first to evaluate a robotic tutoring system that
uses affective data to train models of student knowledge.

3. METHODS FOR COMPUTATIONALLY
ASSESSING KNOWLEDGE

One challenge for any tutor, human or computer, is the problem
of determining what a student does or does not know. If a student’s
skill level is too far above or below the level required by the curricu-
lum, they may feel bored or discouraged. The ability to modulate
the curriculum to keep students in a state of Flow – in which they
are highly engaged in a task at an optimal challenge level – is con-
sidered a crucial advantage of one-on-one tutoring [8]. To do so, a
tutor must have an accurate estimate of a student’s skill level. But
how does one assess another’s knowledge?

3.1 Bayesian Knowledge Tracing
For computational tutors, Bayesian inference on graphical mod-

els is the most popular approach. If the subject domain can be suit-
ably modeled, algorithms for inference can allow computational
systems to accurately estimate student skill levels. The most popu-
lar and widely used of these methods is known as Bayesian Knowl-
edge Tracing (BKT), a domain-general model used to infer skill
mastery from student data. BKT models are widely used in ITS
research and can be applied to any educational domain which can
be decomposed into different component “skills"[7, 2].

Under the BKT model, a student’s mastery of each skill is mod-
eled by a Dynamic Bayesian Network. These skill models are a
special case of Hidden Markov Models, which can be in one of

Figure 1: Traditional BKT Hidden Markov Model. Based on ob-
servations of a student’s correct and incorrect responses, the model
can infer the student’s hidden knowledge state. The state nodes rep-
resent the probability that skill i was learned after question t. The
observable nodes represent whether the student correctly demon-
strated skill i when answering question t

two hidden states, “skill mastered" or “skill not-mastered", where
the observations are the student’s answers to questions requiring
knowledge of a particular skill.

The BKT model, while popular for its straightforward analysis
and ease of implementation, suffers from some limitations. Most
significantly for this work, the BKT model relies solely on a stu-
dent’s pattern of correct/incorrect answers to drive inference, while
ignoring a wide range of relevant contextual information, such as
a student’s affective expressions. In spite of BKT’s limitations, it
is still one of the most popular methods for knowledge assessment
and forms the basis of a substantial body of research [2, 27].

3.2 Affective-BKT
In this paper we introduce an affective variant of the BKT model,

which we call the Affective-BKT (Aff-BKT) model – a BKT model
with additional observation nodes representing features of the stu-
dent’s facial expression measured during an educational interaction
with a robot. The Aff-BKT model is an attempt to improve the BKT
model, by augmenting it to draw inference from affective as well as
knowledge-based features. Whereas the standard BKT model has
only one observation per timestep (whether the student answered
a question correctly or not), the Aff-BKT model is an HMM that
incorporates multiple observations per time step. In addition to
the observable node corresponding to a correct/incorrect response,
our Aff-BKT model includes observable nodes that correspond to
whether a child was smiling and whether a child appeared engaged.
These affective observation nodes are structured identically to the
observation of correct/incorrect answers (see Fig. 1), therefore each
additional node requires just two additional parameters per skill
model.

While our Affective BKT model does not address all of the lim-
itations of BKT, it serves as a proof-of-concept that affective infor-
mation can be reliably detected and made useful to computational
tutoring systems, and that models that take advantage of affective
information can outperform existing techniques.

4. EXPERIMENTAL OVERVIEW
The data used to train and evaluate our models come from video

records of a previously published experiment [9, 10]. In this exper-
iment, children (aged 4-8) played a story game with a robot. The
interaction was designed around a child-robot-tablet interface, in
which the child and robot sit across from each other, with a tablet
placed between them as a shared, social context that can be sensed
by the robot (Figure 3).

The child and the robot played a custom-designed game called
“Storymaker." In the game, graphics of characters (such as animals
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Figure 2: The Affective BKT model, which incorporates affective
signals into knowledge state inference.

Figure 3: Picture of the interaction setup from which the dataset
was collected. Children played a storytelling game with a robot,
during which they were periodically prompted to read a word

or objects) float on a background of different scenes (such as a
beach or jungle) and can be moved by the child via touchscreen.
The robot was framed as a younger peer. It greeted the child by
saying “Let’s play word games together!" and was introduced by
the experimenter as “a young robot who has just learned to speak,
and wants to learn to read."

During the game, the child was prompted to move the characters
to different regions of the scene. After each ‘action’ taken by the
child, the app procedurally generates a sentence that characterizes
this action, which the robot would speak aloud. For example, if the
child moves the Dragon character graphic towards the rightmost
side of the forest scene (depicting a tree), the game might generate
the sentence “Dragon goes to the tree" as part of the story. The
spoken sentence would also appear in written form at the top of the
tablet.

50% of the time, after the robot had spoken a sentence, the robot
would follow by prompting the child to read one of the words in
the sentence by saying: “I don’t know how to read the word [X],
can you show it to me?" The game would then pause until the child
tapped on one of the words in the sentence (shown at the top of
the tablet). If the child tapped the correct word, the app (via TTS)
would read the tapped word, thereby letting the child know whether
their answer was correct. If the child tapped an incorrect word,
he/she would be prompted to try again by the robot (“I don’t think
that’s right. Can you try again?"). After two incorrect tries, the
game would highlight and read the correct word, then continue with
the next part of the story. On average, a child experienced 29 of
these demonstration opportunities during the interaction.

4.1 Tablet-only Interaction Participants
Section 4 describes the interaction for 25 of the participants.

However, there was also a smaller control group of 13 participants
that did not interact with the robot. In this condition, a white card-
board box was placed over the robot for the duration of the experi-
ment, The children were not told there was a robot underneath the
box, only that they would be playing word games on a tablet. Other
than the presence of the covering box and the removal of experi-
menter references to the robot, the experiment proceeded exactly
as described above. The robot’s story ‘speech’ still came from the

Figure 4: Sample frame of collected footage

same speakers and the children were still prompted to read words
as before; the underlying technology did not change. This condi-
tion therefore provides an ideal scenario to examine how children’s
emotional expressiveness varies with the presence of a social robot
during otherwise identical interactions, which we discuss in Sec-
tion 7.1.

4.2 Video QA-interval Dataset
Video of the entire interaction was recorded from a camera, lo-

cated behind and to the side of the robot, aimed at the child’s face
(Fig. 4). In addition to video data, the full state of the game, all
child actions on the tablet, all robot speech, and all tablet actions
(e.g., highlighting the correct word if the child answered incorrectly
twice) were recorded and synchronized via ROS to support search,
playback, and analysis.

Though complete footage of the interaction was recorded, in this
work we are primarily concerned with analyzing children’s emo-
tions while they are engaged in educational activity. In addition,
the HMM formalism for both Knowledge Tracing models (BKT
and Aff-BKT) requires discrete timesteps. We therefore only ana-
lyze video footage from specific, educationally relevant, intervals
during each interaction called QA-intervals.

As described above, after a child moved the story characters, the
robot would sometimes ask the child to read a word, denoted [X],
by asking the child “I don’t know the word [X]. Can you show
it to me?" The robot was asking the child to identify word [X] in
text on the screen, providing both an opportunity for the child to
demonstrate his/her reading ability and an opportunity to collect
spontaneous facial expression data during educational activity. We
identified the precise times at which the robot asked a question and
the times at which the child gave an answer to that question. We
then extracted video footage from 5 seconds before each asking
event to 5 seconds after each response event, which defined a “QA-
interval".

5. AFFECTIVE BKT: IMPLEMENTATION
AND EVALUATION

In this section, we describe the implementation and evaluation of
the two Knowledge Tracing models in the context of assessing the
students’ reading skills. We discuss the skills we chose to model,
followed by detailing the structural implementations of each model,
how the training data was obtained, and how the parameters for
each model were trained from the data.

5.1 Modeling alphabetic principle skills
Learning to read is an acquired skill that requires mastery of

many foundational sub-skills before fluent “reading" occurs [25].
In this paper, we focus on modeling a subset of these skills known
as “alphabetic principle" skills. The alphabetic principle is the
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recognition that written letters and their combinations correspond
to spoken sounds in specific and predictable ways. In other words,
these skills are the rules and mappings that connect written letters
with spoken sounds [6, 16].

In this paper, we model children’s literacy progress via four
BKT skill models and four Aff-BKT skill models. Three models
of each type correspond to one of three alphabetic principle skills.
In addition, we include one model of each type that tracks the com-
plete ability to read a word exactly. The three alphabetic principle
skills tracked were: recognizing the first grapheme of a word, iden-
tifying a word of approximately the same length as a spoken word,
and recognizing the final grapheme of a word.

The first skill, denoted FIRST-LETTER, requires the child to hear
a requested word, decompose its sounds into phonemes, map the
phonemes into graphemes, and then select a word that features
those graphemes at the beginning of the word. Roughly, it corre-
sponds to the first step of the oft-repeated advice to a young reader
- “Sound it out!" We considered a student to have correctly demon-
strated this skill if they selected a word that starts with the same
grapheme as the requested word.

The second skill, denoted LENGTH, requires the child to under-
stand that the length of a written word corresponds to the number
of syllables in its spoken instantiation. For this skill, we considered
a student to have correctly demonstrated this skill if they selected a
word with a length within 1 letter of the requested word’s length.

The third skill, denoted LAST-LETTER, requires the child to go
through the same process as FIRST-LETTER, applied to the end of
the word. This skill poses slightly more of a challenge, as children
naturally attempt to read a word from its start. We considered a
student to have correctly demonstrated this skill if they selected a
word that ends with the same grapheme as the requested word.

Lastly, we model the complete, correct reading of a word. This
skill, denoted EXACT-CORRECT, requires the child to fully and
correctly identify the requested word, representing the complete
ability to read the requested word. Because the requested word was
spoken aloud by the tablet, homophones were considered equiva-
lent (e.g. if the robot asked for the word ‘to’, and both ‘to’ and
‘too’ were among the possible answers, either would be considered
‘exactly correct’).

We chose to analyze this set of skills because they are well-suited
to the task from which the dataset was derived (see Sec 4), rela-
tively easy to detect computationally (compared to, e.g., analysis
of a child’s pronunciation), and because they are developmentally
appropriate for the age group of the population [19]. Though the
alphabetic principle skills are clearly interrelated, BKT skills are
most commonly treated independently. In line with our stated re-
search focus (examining whether affective features improve Knowl-
edge Tracing models), we assume that each skill is mastered inde-
pendently of the others.

5.2 Building BKT and Aff-BKT Skill Models
We constructed BKT models for each tracked skill using Kevin

Murphy’s Bayes Net Toolkit [18], a freely available, open-source
library for implementing a wide variety of graphical models. Each
BKT model has one hidden node – with two possible states, (Skill
Learned or Skill Not-Learned) – and one observation node – with
two possible values (Question Correct or Question Incorrect) – per
time step. Each BKT model has the structure depicted in Figure 1
and is fully specified by 5 parameters, which set the rate of learn-
ing, the probability of forgetting a previously mastered skill, the
probability of guessing correctly (if the skill is not mastered), the
probability of making a mistake (i.e., answering wrong if the skill
is mastered), and the prior probability that the skill is mastered.

As with the BKT models, we constructed an Aff-BKT model
for each skill using the Bayes Net Toolkit. Each Aff-BKT model
includes two additional observable nodes per time step – Smilet and
Engagedt , depicted in Figure 2. These additional nodes require
just two additional parameters each: the probability that a child
appears engaged if they have/have not mastered the skill and the
probability that a child smiles if they have/have not mastered the
skill. Thus, each Aff-BKT model is fully specified by 9 parameters.
In the following sections, we describe how we derived the training
data from video footage of the interactions, how the parameters for
each model were learned from the data, and how we evaluated each
model.

5.3 Deriving QA-interval skill data
In Section 4.2, we defined the concept of a QA-interval: the ed-

ucationally relevant portions of the interactions from just before
the robot asked for a word to be read to just after the child gave
an answer. We implemented string-matching functions to com-
pute whether the word the child provided during each QA-interval
represented a correct application of a skill, given the requested
word. For example, if a child selected the word ‘prince’ when
the requested word was ‘princess’, that is a correct application of
FIRST-LETTER, but not of EXACT-CORRECT, LENGTH, or LAST-
LETTER. For each QA-interval, we applied these functions to the
requested and answered words. The end result was, for each QA-
interval, four boolean results (Correct or Incorrect) representing
whether or not the child’s answer represented a correct demon-
stration of each skill (FIRST-LETTER, LENGTH, LAST-LETTER,
EXACT-CORRECT).

5.4 Deriving QA-interval affective data

5.4.1 Affdex: a tool for autonomous affect detection
Often, researchers studying human affect use human coders to

manually review video footage of interactions and provide labels
from a set of pre-determined affective states. Sometimes coders
will have training in facial expression coding, but in many cases,
the video coders are either the experimenters themselves, under-
graduate research assistants, or online workers (e.g., workers on
Amazon Mechanical Turk). Inter-coder reliability ratings can help
verify the accuracy of labeling, but all of these methods are ulti-
mately subject to human judgement.

Our research goals are to develop social robot tutors that are ro-
bust enough to be widely deployed for long-term interactions and
intelligent enough to act autonomously. To achieve these goals,
robots cannot rely solely on human annotation to understand user
affect. Methods for unobtrusively and autonomously sensing affect
are rapidly improving; in line with our vision, we rely solely on
autonomous affect detection and labeling in this work.

To analyze children’s emotional expressions without relying on
human coders, we used the Affdex SDK, a commercial tool mar-
keted by Affectiva, Inc. to enable development of affect-aware mo-
bile applications. Affdex uses state-of-the-art face detection and
analysis algorithms to extract estimates of four physical facial ex-
pression features (Smile, BrowFurrow, BrowRaise, and LipDe-
press) and two hidden affective features (Valence and Engage-
ment) from video or images of faces. For each of these six metrics,
Affdex produces an estimate of the strength of that affective indica-
tor, normalized to [0, 100], excepting Valence, which is normalized
to [-100, 100].

Affdex uses data collected from over 2.7 million faces in authen-
tic scenarios, labeled by FACS-trained coders and rigorously val-
idated by leading specialists in affective computing [20, 17]. We
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used the Affdex SDK to analyze sequences of time-stamped im-
ages extracted from video. Affdex analyzes each frame (providing
data at a much finer level of granularity than is typically afforded by
human coders) and each frame result can be precisely linked back
to the rest of the data through its timestamp.

5.4.2 Analyzing affective data
We sampled still frames from video footage of each QA-interval

(each interaction contained 29 QA-intervals, on average) at approx-
imately 20fps. We wrote a simple app using the Affdex SDK that
analyzed all frames from each QA-interval. The output of the anal-
ysis was, for each frame, either a single measured value for each of
the 6 metrics, or a null measurement (indicating that no data could
be extracted from the frame). Each frame result was then written to
file, and manually transferred to a secure data storage location for
subsequent analysis.

Autonomously sensed affective data is difficult to capture and in-
terpret. Unsurprisingly, the initial measurements from Affdex were
highly variable, even on a frame-by-frame basis. Frame results
would alternate rapidly between consistent, modest values (indica-
tive of correct processing and analysis) and null or extreme results
(e.g., minimum or maximum values for all metrics). To smooth
these discontinuities, we applied a median filter to the data, operat-
ing over a sliding window of 20 frames, (see Fig. 5). The end result
of this median smoothing process is a set of data points with sig-
nificantly fewer spikes or rapid increases and decreases. However,
when such increases or decreases are present, they are more likely
due to a bona fide affective signal, rather than noise.

To derive data for the Smile/Engagement features of the Affective-
BKT model, for each QA-interval we calculated the mean value
of the Engagement and Smile metrics, both of which have been
used as input to behavioral rules in prior affective-aware tutoring
work [5]. We assigned each QA-interval a discrete, boolean label of
Smile/No Smile and Enaged/Not Engaged via a mean value thresh-
old of 30. The end result of this process was, for each QA-interval,
two sets of boolean results (Smile/No Smile and Engaged/Not En-
gaged). Note that, unlike the skill correctness data, the affective
data does not change with the skill being modeled.

5.5 Training BKT and Aff-BKT models from
QA-interval data

5.5.1 Expectation Maximization: learning model pa-
rameters from observed data

We trained the parameter values for each skill model via Ex-
pectation Maximization (EM). Expectation Maximization (EM) is
a general technique for estimating a set of parameters from data.
Under the assumption that some set of parameters, θ , generated
a set of data, D, Expectation Maximization tries to find the Maxi-
mum Likelihood Estimate (MLE) of the parameters, given the data:
maxθ Pr(θ |D). For the BKT models, the data used to train each
skill model is the set of skill-correctness data for the correspond-
ing skill (described in Sec. 5.3). For the Aff-BKT skill models, the
training data is the skill-correctness data and the affective data. EM
converges when the difference in likelihood between iterations falls
below some threshold parameter, ε . In this work, we let ε = 10−5.
All models converged in <15 iterations. Each BKT model took
approximately 20 minutes to train; each Aff-BKT model took ap-
proximately 40 minutes to train.

5.5.2 Initial Conditions
EM is a deterministic algorithm, and therefore the final learned

model is somewhat sensitive to initial conditions. We initially set

the prior mastery parameter at .5, the learning rate parameter at .2,
the slip and guess parameters at .25 (the actual chance of guessing
correctly ranges from 11− 33% depending on the skill and QA-
interval), and, as is common in short-term BKT models, the forget-
ting rate parameter at 0. During EM, these parameters are tuned to
maximize the likelihood of the parameter set, given the data. The
end result of training is a set of learned parameters (i.e., the learned
model), which we denote θa f f for an Aff-BKT model and θbkt for
a traditional BKT model.

6. BAYESIAN MODEL SELECTION
The main research question of this paper is whether incorporat-

ing affective information into the training process improves BKT
models. Knowledge Tracing is difficult precisely because a stu-
dent’s knowledge state is not directly observable. Because we have
no ground-truth data, it is infeasible to use traditional supervised
learning benchmarks (e.g., precision and recall or F-score), to eval-
uate the Aff-BKT and BKT models.

To overcome this limitation, we evaluate our models from the
perspective of Bayesian Model Selection. Bayesian Model Selec-
tion is the general problem of determining which of several possible
models should be preferred, given some data. Approaches to model
selection vary based on the space of possible models and datasets,
but typically rely on comparing the likelihoods of different models.

Many standard model selection metrics (e.g., Bayesian or Akaike
Information Criterion) are used to compare models with different
structures, trained on the same data. The BKT and Affective-BKT
models differ not only in their structure but also in the data they
model and are trained from; therefore, these techniques are not ap-
propriate for this case.

To properly address our stated research focus, we construct a
new Aff-BKT model, denoted θ̂a f f , which has the same structure
as θbkt , but is trained from the Aff-BKT data. This model is the
subset of the parameters that the BKT and Aff-BKT models share.
Specifically, we derive the θ̂a f f model by taking the subset of pa-
rameters from θa f f that are also present in θbkt (described in Sec-
tion 5.2) after training.

By doing so, we reduce the difficulty of model comparison to a
more tractable situation. θ̂a f f and θbkt share the same structure,
but only θ̂a f f was trained with affective data. This enables us to
conduct a more straightforward analysis of the models’ respective
likelihoods: leave-one-out cross-validation (LOOCV), in which all
but one participants’ data is used to train the model, then the like-
lihood of each trained model is evaluated, with respect to the held-
out participant’s data.

LOOCV occurs in two phases: during the “training" phase, a
single participant’s data is held-out and the two models are trained
on the remaining data via EM. Then, during the “testing phase",
the probability of the held-out data, under the trained model is cal-
culated (separately, for each model) as an estimate of the model’s
overall performance. The probability of the held-out data is the
likelihood of the model, and is used to measure model ‘fit’ – that
is, how well the model explains the observed data. Models with
higher likelihood and, hence, better fit are preferred.

During a full LOOCV evaluation, this process is repeated for
each of the participants, such that for a complete analysis of n par-
ticipants, n different training sessions occur (each differing slightly,
due to variation in training data), and n different test data points (the
probabilities of all n participant’s held-out data or, equivalently, n
different model likelihoods) are collected per model.

Data from 38 participants was used. Thus, we repeated the pro-
cess 38 times, holding out one participant each fold, and computed
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Table 1: T-test results by metric, comparing differences in mean
interaction value across Robot and Tablet conditions

Metric T-test statistic p-value
Smile 2.23 *0.037*
BrowFurrow 0.898 0.378
BrowRaise 2.68 *0.011*
LipDepress 0.328 0.746
Valence 0.844 0.405
Engagement 2.59 *0.014*

38 model likelihoods per skill model. Figure 6 shows the complete
evaluation pipeline - from training data, to model construction, to
model evaluation. Full results by skill and model type are presented
in Figures 8 and 9. Aggregate statistics for each skill and model
type are presented in Table 2.

7. RESULTS AND DISCUSSION
7.1 Children are more emotionally expressive

when interacting with a social robot
To determine a participant’s overall level of emotional expres-

siveness, we combined the affective data (for each metric) from a
participant’s QA-intervals and calculated the mean value for that
metric. In other words, we calculated the average value, over the
participant’s interaction, of the median-filtered Affdex measure-
ments. Because we are interested in overall levels of emotional
expression and because valence, unlike other metrics, ranges from
[-100, 100] rather than [0,100], we used the mean of the abso-
lute value of the valence data. This captures the idea that highly
positive and highly negative measurements both represent ‘strong’
emotional expressions and are evaluated as such in our analysis.
Figure 5 depicts the complete data analysis workflow, from video
footage to mean interaction metric value.

For each metric, we obtained mean interaction values from 25
participants that interacted with a robot, and 13 control group par-
ticipants that did not interact with a robot. The means and standard
error of the mean for each metric and population (Robot vs. Tablet)
are shown in Figure 7.

For each metric, we first established the normality of the mean
interaction values via a Shapiro-Wilk test. Then, for each metric,
we conducted a Student’s T-test to determine whether participants
who played the game with a physical robot present were, on aver-
age, more emotionally expressive.

The test results (Table 1) show that Affdex recorded higher av-
erage emotional metric values from children in the robot condition,
compared to the children in the tablet-only condition. These dif-
ferences were statistically significant for 3 of the 6 metrics: Smile,
BrowRaise, and Engagement. While the other metric differences
did not reach significance, in all metrics the average measured value
was higher in the robot condition.

These results agree with previous qualitative research, suggest-
ing that children tend to smile and are highly engaged by social
robots [3] and extends that research by confirming quantitatively
and autonomously (i.e., without human judgement) that children
who interacted with a robot during an educational task generated
higher average emotional expression readings than children who
did not see the robot. Previous research that has shown that the
mere physical presence of robots can lead to increased learning
gains in tutoring interactions [15]. Our work suggests that a phys-
ical robot’s capacity to modulate student affective response may
be one mechanism by which physical presence improves learning
gains.

Skill Model Mean LL ±SD
EXACT-CORRECT A-BKT −14.923±9.01
EXACT-CORRECT BKT −19.79±10.386
FIRST-LETTER A-BKT −13.652±10.091
FIRST-LETTER BKT −17.090±10.386
LENGTH A-BKT −13.6160±9.596
LENGTH BKT −14.5992±9.513
LAST-LETTER A-BKT −14.644±9.493
LAST-LETTER BKT −18.222±9.98

Table 2: Leave-one-out cross-fold validation log-likelihood metrics
of Aff-BKT and BKT models

7.2 Affective-BKT models fit test data better
than standard BKT models

Figure 8 shows the the log-likelihood of each BKT and Aff-BKT
skill model, evaluated on every participant. For three of the four
skills (EXACT-CORRECT, FIRST-LETTER, and LAST-LETTER) the
Aff-BKT model error is lower for nearly all participant test data.
For LENGTH, the Aff-BKT model error is generally lower, but there
were some cases in which the BKT model had better fit. We suspect
our approach to modeling the LENGTH skill may have been too
coarse to accurately model skill mastery.

Overall, however, it is clear that the model trained with affective
data fits the held-out skill data much better than the BKT model.
Table 2 reinforces these results: every Aff-BKT skill model has
higher mean likelihood than the traditional BKT model for the same
skill. Figure 9 shows the statistical significance of these results,
presented as a decrease in model error, rather than an increase in
‘fit’. Following [27], we use the negative log-likelihood as an error
function for model evaluation (for ease of presentation). This def-
inition of error follows naturally from the interpretation of model
likelihood as a measure of ‘fit’ (see Sec. 6). Figure 9 shows the
mean error (that is, average negative log-likelihood) of each skill
model.

These results answer our research question – “Can we build mod-
els that use affective data to improve the performance of tradi-
tional Knowledge Assessment models?" – affirmatively. Interest-
ingly, this conclusion is reached by evaluating a BKT model and
an Aff-BKT model that is structurally identical to the traditional
BKT model and hence does not explicitly model affect. Rather,
the influence of the affective data manifests itself in the trained
values of the traditional BKT parameters. In other words, by in-
cluding the additional parameters, structure, and data to support
affect-awareness, we find that the Aff-BKT model learns better fit-
ting parameters even for parts of the model that have nothing to
do with affect! Without further study, the underlying reasons for
this cannot be conclusively determined. However, we hypothesize
that the affective data helps “explain away" some of the observed
variance in Correct/Incorrect answers. That is, the BKT model
tries to fit all five of its parameters to explain the full variance in
the skill-correctness data. However, modern theories of affect and
learning suggest that the two are deeply related, hence variance in
the skill-correctness data can likely be explained in part by affec-
tive factors. The additional affective parameters of the Aff-BKT
model can adjust to the variance due to affective variables (e.g.,
distraction, confusion), leaving the remaining parameters (common
to the traditional BKT model) free to better fit the variance due to
knowledge-based factors (e.g., genuine skill mastery).
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... ... ... ...} {
Avg Smile: 18
Avg BrowFurrow: 7
Avg BrowRaise: 62
Avg LipDepress: 4
Avg Valence: -24
Avg Engage: 67

} {Median 
Filter } {Mean

Metric 
Value

Session Footage
Raw Affdex Measurements
Median-smoothed Affdex Data

Subject Bag

Average Metric Value 
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Figure 5: Data pipeline for assessing children’s average level of emotional expression. Frames are sampled from video footage at 20fps,
then passed to Affdex. The Affdex measurements are then passed through a median filter for smoothing. For each metric, the smoothed data
points for each participant are averaged to produce a mean metric value across the entire interaction.
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Figure 6: A single fold of the full training and evaluation pipeline for Aff-BKT skill models. The models are trained from the right/wrong and
the affective QA-interval data via EM, with a single participant’s data “held-out" for testing, resulting in a set of learned model parameters.
We use a subset of the learned parameters, θ̂a f f , structured identically to the BKT parameter set, and evaluate both in the same way:
comparing the likelihood of the two parameter sets, under the held-out participant’s skill-correctness data. This process is repeated once for
each participant, thus the final result is a set of 38 ‘likelihood estimate’ data points for each (Aff-BKT and BKT) skill model.

*

*
*

* p < .05

Figure 7: Average emotional expression value, by condition. Error
bars represent standard error of the mean.

8. CONTRIBUTIONS AND CONCLUSIONS
In this work, we have shown that children are more emotionally

expressive when engaged in an interactive educational task with

a social robot than when engaged in an identical task with a tablet
alone. Previous research has shown that the mere physical presence
of social robots can alter important interaction dynamics: our work
adds to that body of research by identifying an important aspect of
that phenomenon (children’s increased emotional expressivity) and
demonstrating one way in which the next generation of computa-
tional tutors can leverage interactive learning styles for algorithmic
improvements.

We have introduced a novel affective approach to Knowledge
Tracing and demonstrated that children’s emotional expression data
can be successfully integrated into inferential models for assess-
ing knowledge. These affective models outperform traditional ap-
proaches to Knowledge Tracing, demonstrating the utility of sens-
ing affective data and constructing tutoring models to make use that
data, suggesting that embodied social robots may be a more bene-
ficial medium for developing affect-aware computational tutors.

Researchers in psychology and cognitive science are coming to
understand that affect, far from being an ‘irrational’ influence, is
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Figure 8: Probability of Test Data under BKT and Aff-BKT mod-
els, color-coded by skill. Within each skill, data points to the left
represent the log-likelihood (model fit) of the BKT model evalu-
ated on one test participant’s data. Each point is connected to the
log-likelihood of the Aff-BKT model evaluated on the same partic-
ipant’s data.
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Figure 9: Mean error estimates of BKT and Aff-BKT models by
skill. Significance was calculated via a one-sample T-test on the
difference between model error estimates, evaluated on the same
test participant data.

crucial to everyday decision-making. This understanding is begin-
ning to influence the design of agents and algorithms that model
or simulate intelligent behavior. While a relatively recent effort,
many researchers are now pursuing efforts to integrate affect un-
derstanding into intelligent systems. Our work shows that physical
robots may have advantages over software-only systems in sensing
and using affective data, by demonstrating social robots’ ability to
induce higher degrees of emotional expressivity and showing that
integrating emotionally expressive data into inference can improve
the performance of student Knowledge Tracing models. Encour-
aged by our results, we believe this research will ultimately lead
to more effective, intelligent, and natural interactions with technol-
ogy.
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