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ABSTRACT
In distributed computational systems with no central au-
thority, social norms have shown great potential in regu-
lating the behaviour of self-interested agents, due to their
distributed cost. In this context, peer punishment has been
an important instrument in enabling social norms to emerge,
and such punishment is usually assigned a certain enforce-
ment cost that is paid by agents applying it. However, mod-
els that investigate the use of punishment as a mechanism
to allow social norms to emerge usually assume that un-
limited resources are available to agents to cope with the
resulting enforcement costs, yet this assumption may not
hold in real world computational systems, since resources
are typically limited and thus need to be used optimally.
In this paper, we use a modified version of the metanorm
model originally proposed by Axelrod [1] to investigate this,
and show that it allows norm emergence only in limited
cases under bounded resources. In response, we propose
a resource-aware adaptive punishment technique to address
this limitation, and give an experimental evaluation of the
new technique that shows it enables norm establishment un-
der limited resources.
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1. INTRODUCTION
In many application domains, engineers of distributed sys-

tems may choose, or be required, to adopt an architecture in
which there is no central authority, and the overall system
consists solely of self-interested autonomous agents. The
rationale for doing so can range from efficiency reasons to
privacy requirements. In order for such systems to achieve
their objectives, it may nevertheless be necessary for the
behaviour of the constituent agents to be cooperative. In
peer-to-peer file sharing networks, for example, it is required
that (at least a proportion of) peers provide files in response
to the requests of others, while in wireless sensor networks
nodes must share information with others for the system to
determine global properties of the environment. However,
there is typically a temptation in such settings for individu-
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als to deviate from the desired behaviour, which is known as
the problem of free riding behaviour. For example, to save
bandwidth, peers may choose not to provide files, and to
conserve energy, the nodes in a sensor network may choose
not to share information. Therefore, some form of mecha-
nism is needed to outweigh such temptations and to encour-
age cooperation among self interested agents.

Norms that are imposed and monitored by central author-
ities, have been proposed by many (e.g., [3, 4, 8, 15, 19])
as a valuable mechanism for regulating or constraining the
behaviour of self-interested agents. However, in virtual envi-
ronments, interactions can be of high magnitude and speed,
and thus their regulation is expensive, and may even be in-
feasible. Social norms offer a means to provide distributed
mechanisms for the self-regulation of virtual systems and
societies, by delegating to the population itself the respon-
sibility to impose appropriate behavioural standards [6, 28].

In this context, many have been concerned with the devel-
opment of mechanisms to ensure the emergence of such so-
cial norms (e.g., [9, 12, 30, 32, 34]). In particular, researchers
from many scientific areas have considered punishment as a
key motivating element for norms to be established [10, 14,
17, 31]. Here, punishment is a monetary incentive, typi-
cally incurring an enforcement cost for the punisher, but
bringing a potential benefit to the population as a whole
when correctly applied. Work that investigates the use of
punishment as a means for social norms to emerge has as-
sumed that agents applying such punishment have unlimited
resources, allowing them to bear the resulting enforcement
cost. This assumption is significant in real world settings
in which resources are limited and require more careful ex-
ploitation. For example, sensors in wireless networks have
limited energy and thus need to optimise their use of it.

In response, this paper1 seeks to address such limitations
by investigating the effect of scarce resources on norm emer-
gence, based on which a resource-aware adaptive punish-
ment mechanism is proposed and evaluated through experi-
mental simulations2. For this purpose, we first integrate the
constraint of limited resources within the metanorm model
originally proposed by Axelrod [1] and adapted by Mahmoud
et al. [23, 22]. The metanorm model has been shown to
be capable of regulating distributed computational systems
under various settings. Moreover, it is equipped with an

1A 2-page abstract on a small part of the work contained
here appears elsewhere [25].
2This material is based upon work supported by the Air
Force Office of Scientific Research, Air Force Materiel Com-
mand, USAF under Award No. FA9550-15-1-0092.
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adaptive punishment mechanism that we believe to be vital
when dealing with limited resources. We then investigate the
limitations of both static and adaptive punishment mecha-
nisms of this model under limited resources constraints, be-
fore proposing our resource-aware adaptive punishment.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces related work, and Section 3 discusses the
implications of limiting resources for both static and adap-
tive punishment mechanisms. Section 4 then builds on this
with the integration of an enhanced adaptive punishment
mechanism that takes limited resources into consideration
and, through experimental analysis, shows that it succeeds
in establishing a norm. Finally, the paper concludes in Sec-
tion 5.

2. RELATED WORK
Achieving a particular desired behaviour among a popu-

lation of autonomous individuals has received much atten-
tion. Many have been concerned with the evolution of al-
truistic punishment and its effect on the emergence and sta-
bility of cooperative strategies within human populations.
Indeed, in the last decade, an important body of work con-
cerned with multi-agent systems and punishment has de-
veloped, analysing all aspects related to the regulation of
normative behaviour [16]. For example, Fehr et al. [11,
10] study the effect of distributed punishment in improv-
ing cooperation among self-interested agents. Their results
show that heavy punishment succeeds in deterring free rid-
ing and promoting cooperation. However, Nikiforakis et
al. [28] show that this does not hold when free riders are
given the chance of counter-punishment. The threat of such
counter-punishment weakens the desire to punish free rid-
ers, thus leading to less cooperation. To study these ef-
fects, Helbing et al. [17] show that the addition of punishing
strategies to a classical public goods game, to allow reward-
ing cooperators or punishing defectors, increases cooperation
among the entire population in the case of well-mixed inter-
actions. Similarly, Savarimuthu et al. [30] show that peer-
to-peer punishment is effective in achieving norm emergence
in virtual on-line societies when the cost of punishing is low.

These previous models employ static punishment mech-
anisms in which punishment is a fixed value set at design
time. In contrast, a mechanism for dynamically determin-
ing punishment values was proposed by Mahmoud et al. [21],
using the prior experience of agents with their interaction
partners in order to specify the appropriate level of pun-
ishment. However, this approach is dependent on repeated
interactions between agents, which is not common in certain
domains such as peer-to-peer file sharing. Miller et al. [26,
27] and Jurca et al. [18] suggest the use of explicit pay-
ment schemes as incentives to encourage honest reporting
of information (such as reputation [18] and product feed-
back [27]) among an agent community. Specifically, the rat-
ing provided by an agent is assessed for trustworthiness by
comparing it against those of other agents, and a financial
reward is estimated (applying specific rules) and issued cor-
respondingly if the agent is reporting the truth.

The above approaches rely on some form of punishment to
deter malicious behaviour. However, they all assume that
resources are unlimited in applying such punishment, yet
this is an unrealistic assumption in many real world domains.
In what follows, we investigate the effect of introducing the
constraint of limited resources on the process of regulating

self-interested agent behaviour using a version of perhaps the
best known model in which punishment is a crucial aspect,
Axelrod’s metanorm model.

3. PEER PUNISHMENT AND LIMITED
RESOURCES

Peer punishment has been widely used as a method to reg-
ulate the behaviour of participants in a distributed system.
Such punishment usually carries a cost for the agent apply-
ing the punishment, known as an enforcement cost. Most
existing models that study this phenomenon make use of
static punishment, where there is an enforcement cost paid
by the enforcer that is fixed at design time. Considering the
free riding phenomenon in a peer-to-peer (P2P) file sharing
system, de Pinninck et al. [7] suggest that the punishment
for such behaviour should be blocking, by which all other
agents cease interacting with an agent that is observed not
to share files after downloading them. The blocking period
can be for a specific length of time, which needs to be set at
design time. In this case, the enforcement cost paid is the
loss of access to files from the blocked agents, considering
that prior to blocking them, free riders can still be sharing a
small set of the file they downloaded, while withholding the
majority of these files.

Determining an appropriate blocking period can be cru-
cial to the performance of the overall system, especially those
that rely on the participation of members for their function-
ality and effectiveness (as with P2P networks). Because of
the dynamism of these systems and the cost incurred by
both the agent that is applying the punishment and the
agent that is being punished, choosing a single punishment
value that is effective to be used against all agents may not
be feasible. Therefore, mechanisms that support punish-
ments whose value can be adapted at run-time are much
better suited. This is adaptive punishment. Returning to
our example, a blocking time of 30 minutes may be enough
to deter the behaviour of agent i, but not agent j. The next
time that agent j defects, a blocking time that is longer than
30 minutes can be used to try to force agent j to comply and
start sharing files.

In real world distributed systems, resources can be crucial
and optimising their use can be vital if these systems are
to function effectively. The period duration for which peers
in P2P systems can block other peers in the example above
is limited, since they need to maintain a certain level of
availability and interactions in the system.

As mentioned above, Axelrod’s metanorm model is a strong
candidate for use in analysing the effects of limited resources,
since it has been shown to establish norms under various
distributed systems settings. Moreover, in Mahmoud’s vari-
ant, it employs both static and adaptive punishment mech-
anisms. In what follows, we first introduce the metanorm
model, and then modify the model to consider the situation
of limited resources. Finally, we provide an experimental
evaluation to show the effect of these limited resources on
norm establishment.

3.1 Metanorm Model
In Axelrod’s metanorm model [1], a population of agents

play a game in which each agent has to decide between coop-
eration and defection. The agent population evolves through
a number of iterations, with a mechanism whereby successful
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behaviour (as measured by the scoring system) tends to be
replicated and unsuccessful behaviour tends to be discarded.
A major problem with Axelrod’s model is due to the evo-
lutionary approach adopted (as identified in [20, 13]). In
consequence, this original approach has been replaced with a
reinforcement learning algorithm that limits accessibility to
global information, and instead allows agents to learn from
their own experience [23]. Moreover, in order to capture a
key feature of computational systems such as on-line virtual
communities, Axelrod’s classic model has been adapted by
introducing a topological structure [22] that determines ob-
servability among agents, so that an agent’s neighbours are
the only witnesses of its interactions. This indicates that an
agent only imposes punishment on its defecting neighbours,
and metapunishment on its non-punishing neighbours.

This is the model we introduce next, which can be divided
into four different parts: the interaction model, the agent
model, the policy learning capability and the punishment
mechanism.

3.1.1 Interaction Model
In the metanorm model, agents play a game iteratively. In

each iteration, each agent must decide between cooperation
and defection. Defection brings a reward for the defecting
agent called a temptation value, and a penalty to all other
agents called a hurt value. However, each defector risks be-
ing observed by the other agents in the population, and pun-
ished as a result. These other agents thus decide whether
to punish agents that were observed defecting, with a low
penalty for the punisher known as the enforcement cost and
a high penalty for the punished agent known as the pun-
ishment cost. Agents that do not punish those observed de-
fecting risk being observed themselves, and potentially incur
metapunishment. Thus, finally, each agent decides whether
to metapunish agents observed to spare defecting agents.
Again, metapunishment comes at a high penalty for the pun-
ished agent and a low penalty for the punisher, through the
punishment cost and enforcement cost, respectively.

3.1.2 Agent Model
With regard to agent decision making, the decisions of

agents are driven by two private variables: boldness, and
vengefulness. Boldness determines the probability that an
agent defects, and vengefulness is the probability that an
agent punishes or metapunishes another agent. These values
are initialised randomly following a uniform distribution.

In each round, agents are given a fixed number of oppor-
tunities to defect, in which boldness determines the proba-
bility that an agent defects, and vengefulness is the proba-
bility that an agent punishes or metapunishes another agent.
Thus, the boldness and vengefulness of an agent are said to
comprise that agent’s policies. After several rounds of the
game, each agent’s rewards and penalties are tallied, and
successful and unsuccessful strategies are identified.

3.1.3 Policy Learning Capability
Having performed a set of actions in a particular round,

agents are able to adapt their policies according to the pos-
itive or negative outcomes of these policies using a policy
learning algorithm. In this algorithm, agents adapt their
policies (boldness and vengefulness) at the end of each round
of the simulation through a form of q-learning [33], a rein-
forcement learning technique embedded in each agent. Here,

agents track the utility gained or lost from choosing the dif-
ferent actions available, and modify the relevant action pol-
icy in the direction that either increases or decreases the
chances of performing these actions in the future, which
should improve their utility.

However, agents do not adapt their policies in the same
manner: a policy that results in a low utility is altered dif-
ferently to a policy that is not as bad. Therefore, agents
change their policies proportionally to their success, follow-
ing the WoLF philosophy [5], so that if the utility lost from
taking a certain action is high, then the change to the policy
is greater, and if the utility lost is low then the change to
the policy is less.

3.1.4 Punishment Mechanism
There are two different punishment mechanisms that have

been employed by the metanorm model: Axelrod’s origi-
nal static punishment mechanism [1], and Mahmoud et al.’s
adaptive punishment mechanism [21]. Using static punish-
ment, agents apply the same amount of punishment or meta-
punishment in every instance. This amount is fixed at de-
sign time. However, agents adapt their policies in a utility-
maximising way, where the adaptation is proportional to
the positive or negative utility associated with each action.
Agents therefore are provided with an adaptive punishment
mechanism whose task is twofold: (1) calculate the appro-
priate punishment to deter a defector from future violations;
and (2) lower the cost for the punisher, because of the pro-
portionality relationship between the cost of punishment and
its damage (by allowing the punisher to adapt the inten-
sity of punishment to be applied, the cost associated with it
adapts consequently).

In order to calculate the appropriate punishment, an agent
needs to consider the past behaviour of the specific violator,
which constitutes the image of this agent in terms of fre-
quency of defection and cooperation. To achieve this, the
identity and actions of the various other interacting agents
in the environment must be recorded. Now, an agent’s mem-
ory is limited to a particular window size so that only the
most recent interactions are recorded, and an agent whose
behaviour changes is not punished severely just because of
defection in the distant past. Thus, if an agent continues
to defect regularly, any new punishment should be stronger
than the previous one. Similarly, a generally compliant
agent that only recently defected should be punished less
that an agent that regularly defects, to avoid using unnec-
essary power, and waste resources.

3.2 Limiting Enforcement Resources
As mentioned previously, agents usually have limited re-

sources that can be used for enforcement. Thus, once an
agent is in a position to apply punishment to a violator, the
punishment can only take place if sufficient resources exist
to supplement the enforcement cost that can result from the
punishment. The decision making mechanisms of agents in
the metanorm model above therefore needs to be updated
to take available resources into account before applying any
form of punishment or metapunishment. We model this for-
mally as follows.

First, an agent agi needs to be able to identify the amount
of resources available as follows:

Res : AGENT → R (1)
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where ∀agi ∈ AGENT,Res(agi) is the amount of resource
units available for agent agi, and AGENT is the set of all
agents.

In addition, agi needs to estimate the resources (enforce-
ment cost) required to apply punishment p to agj :

EC : AGENT ×AGENT × R→ R (2)

where ∀agi, agj ∈ AGENT, p ∈ R : EC(agi, agj , p) is the
enforcement cost related to the current punishment’s in-
stance.

Based on this, an agent’s decision to apply a punishment
can be achieved using the CanPunish function:.

CanPunish : AGENT → {TRUE,FALSE} (3)

such that:

∀agi ∈ AGENT :

CanPunish(agi) =

{
TRUE if Res(agi) ≥ EC(agi)

FALSE if Res(agi) < EC(agi)

The above function can be used for the purpose of both
punishment and metapunishment since they both require
enforcement costs. Here TRUE means that the agent can
punish, while FALSE means punishment is not possible.

Having verified that a punishment is possible, agent agi
can punish the defecting agent agj , which results in the re-
sources of agent agi decreasing by the relevant enforcement
cost. This affects future decisions that agi can make with
regard to punishment and metapunishment.

In addition, it is worth mentioning that resources consid-
ered here are those that are limited over a particular period
of time. This means that once a particular agent spends all
of its resources, it cannot apply any form of punishment or
metapunishment until the restriction period has passed, af-
ter which resources are renewed. The model is round based,
and in every round each agent is given multiple opportuni-
ties to defect. Each defection generates many punishment
and metapunishment decisions, each of which consume re-
sources. Therefore, we assume that resources are renewed
every round for each agent, which needs to optimise the use
of such resources within each round.

In what follows, using experiments, we show the effect of
this new limited resources restriction on norm establishment
using the metanorm model.

3.3 Experimental Evaluation
Before discussing experimental results, it is important to

clarify the different possible results and what they show.
The most desirable results are those with high vengefulness
and low boldness, which are referred to as norm establish-
ment. This is because low boldness means that agents defect
rarely, and high vengefulness means that agents are gener-
ally willing to punish another agent that defects. Results
where both low vengefulness and low boldness are observed
are also good, because they indicate rare defections. How-
ever, with the absence of punishment, boldness tends to in-
crease, causing a high defection rate, which is referred to
as norm collapse. Other results involving midrange or high
level of boldness are also referred to as norm collapse, since
they involve a high number of defections. The evaluation of
the different variations of the metanorm model introduced
in this paper is based on how successful they are in bringing

about norm establishment and avoiding norm collapse. It is
also important to point out the effect of different decisions
that an agent can make on norm establishment and collapse.
Metapunishment is required for high vengefulness, without
which the cost of punishment leads to low vengefulness due
to the enforcement costs paid by the punishing agent. Low
vengefulness leads to less punishment, which in turns leads
to high boldness and norm collapse.

Topologies are an important component of this type of
simulation, and they have different effects on norm estab-
lishment [22]. For the purposes of this paper, we use a lat-
tice and a scale free topology for which norm establishment
has been achieved previously. In a (one-dimensional) lat-
tice with neighbourhood size n, agents are situated on a
ring, with each agent connected to its neighbours n or fewer
hops (lattice spacings) away, so that each agent is connected
to exactly 2n other agents. Thus, in a lattice topology with
n = 1, each agent has two neighbours and the network forms
a ring. In a lattice topology with n = 3, each agent is con-
nected to 6 neighbours. Such a topology has a regularity in
the number of connections shared among all agents, which
helps in studying the effects of the new setting in isolation
of other network factors that can influence the results of
the model [24]. In contrast, in a scale free topology, con-
nections between nodes follow the power law distribution.
Thus, few nodes (hubs) have a vast number of connections,
but the majority have very few connections. These proper-
ties of scale-free networks suggest an imbalance in connec-
tions, which have been shown to affect norm establishment
using the metanorm model [24]. In this section, we evaluate
the ability of the metanorm model to establish a norm under
limited resources. This is achieved using two sets of experi-
ments: a first set where agents have static punishments with
fixed enforcement costs, and a second set, in which agents
can apply adaptive punishments with proportionate enforce-
ment costs. The results of these experiments are described
next, but first the parameter set-up is introduced.

Moreover, in many simulations that investigate the use of
punishment, including the version of the metanorm model
described above, agent selection is sequential. So the order
in which the agents have opportunities to defect is the same
every time. This is acceptable when resources are unlim-
ited, since the order by which agents interact has no impact.
However, with limited resources, a fixed selection mechanism
means that agents spend all their resources after enforcing
the same subset of agents (those earlier in the order) ev-
ery time, and the remaining agents can escape punishment
most of the time. Therefore, the simulation is updated to
allow a random selection order of agents to take a decision
about defecting, and a random selection order of agents that
can apply punishment and metapunishment to those who
defect. However, this random selection mechanism ensures
that each neighbour observes the defection of every other
neighbour, and observes the same neighbour sparing a de-
fector from punishment.

3.3.1 Experimental Setup
The general parameter set-up used in the experiments con-

ducted is presented in Table 1. The punishment cost and en-
forcement cost are those of the static punishment technique.
In addition, we make sure to run the model on a relatively
large population of agents, a large number of runs, and for a
lengthy period per run to avoid obtaining misleading results.
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Figure 1: impact of limited resources with static punishment on final B and V

Table 1: Parameters Set-up
Term Value
Boldness Uniform distri-

bution from 0 to
1

Vengefulness Uniform distri-
bution from 0 to
1

Number of opportunities to
defect per round

4

Temptation to defect +3
Hurt suffered by others −1
Cost of being punished −9
Cost of punishing −2
Cost of being metapunished −9
Cost of metapunishing −2
Number of Agents 1, 000
Number of Rounds 1, 000, 000
Number of Runs 1, 000

3.3.2 Static Punishment Experimental Results
We first evaluate the effects of limiting resources on the

outcome of the metanorm model with static punishment.
Axelrod originally suggested the proportion of (-9,-2) be-
tween punishment cost and enforcement cost, and our work
is consistent with this. Moreover, Galan et al. [13] have ex-
perimentally determined the most effective proportions with
static punishment, confirming that this is optimal. The in-
teraction model of agents involves the following sequence of
actions. For every defection opportunity that an agent i
has, all of i’s neighbours have a chance to punish i. If a
neighbour j decides to spare i from punishment, then all of
j’s neighbours have the chance of metapunishing j. Assum-
ing that every agent has 4 distinct neighbours, this means
that for every single defection, 4 punishment decisions need
to be taken, and if all these punishment decisions result in
sparing the defector, 4× 4 = 16 metapunishments can arise.
Based on this, it is clear that agents will invest most of their
resources on punishment and metapunishment as a result of
the outcome of the first few defections, with scarce resources
left to regulate the behaviour of the remaining agents.

The above explains the results obtained from using the
metanorm model with constrained enforcement resources
and static punishment, shown in Figure 1(a), where the dia-
monds represent the value of the mean average boldness and

vengefulness of the final round of a particular run. In this
experiment, each agent is provided with 12 resource units
that are renewed every round. These results show that the
model fails to establish the norm with the average boldness
of agents remaining very high, and reflecting a very high rate
of defection. The surprise here is that the average vengeful-
ness is also high. Previous reported results of the metanorm
model have shown that high vengefulness and high boldness
is not a stable state for the population and usually leads to
a norm establishment state with high vengefulness and low
boldness. The case here is different because of the introduc-
tion of the limited resources. High vengefulness is due to two
factors. First, for the first few occurrences of defection, suf-
ficient resources remain available for metapunishment. Sec-
ond, resources run out quickly, so no more enforcement costs
are being paid by agents to cause vengefulness to drop. This
last factor can also be used to explain the high boldness,
with insufficient punishment taking place to deter defecting
agents by outweighing the temptation gained.

This suggests that neighbourhood size plays a major role
in the obtained results. Therefore, further experiments were
conducted with varied neighbourhood size. The results re-
ported in Figure 1(b) are for lattice topologies with neigh-
bourhood sizes between 2 and 9, and limited resources of
12 units. Each point in the graph represents an average of
1, 000 runs with a particular neighbourhood size. It is clear
from this that the effectiveness of the amount of resource
available is limited by the number of neighbours. A static
punishment mechanism with 12 units manages to establish
the norm up to a neighbourhood size of 6, and fails after
that. A similar outcome is found using other amounts of
limited resources. For example, with limited resources of 6
units, norm establishment is observed up to a neighbour-
hood size of 3, and up to a neighbourhood size of 4 with
limited resources of 8 units.

Previous analysis of the effect of scale free networks on the
metanorm model [24] with unlimited resources has shown
that hubs are instrumental to norm establishment. This is
because of the vast number of connections that hubs have,
which means they punish many other agents for defecting,
and consequently pay a very high cumulative enforcement
cost. To investigate the effect of limiting resources, we ran
1000 experiments on a scale-free network with 1000 agents,
five of which were hubs (having a large number of connec-
tions) and the others (which we call outliers) having at least
two connections to other agents in the population, and typi-
cally no more than four connections (according to Barabasi’s
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Figure 2: impact of limited resources with adaptive punishment on final B and V

algorithm [2]). We repeated these experiments with various
amounts of limited resources between 2 and 20, and the
results are shown in Figure 1(c), where each point in the
graph represents an average of 1, 000 runs with a particu-
lar amount of limited resources. The results indicate norm
collapse, as all runs end with high boldness and midrange
vengefulness. This is because hubs, which are the deriving
agents of the population, run out of resources quickly, and
do not allow boldness to drop. However, there are enough
resources for outliers, which keep vengefulness at a midrange
level. We can also see that at a level of resources of 13 up-
wards, boldness starts to drop to a midrange level. In fact,
some experiments which are not shown here for clarity sug-
gest that at least 50 units of resources are needed for the
norm to be established with static punishment.

3.3.3 Adaptive Punishment Experimental Results
While static punishment does not always establish the

norm under limited resources settings, it seems that adap-
tive punishment should do better, since the punishment is
adapted according to the image of the agent under punish-
ment or metapunishment. Thus resources should be used
efficiently. The results shown in Figure 2(a) confirm this.
In this experiment the punishment was factorised based on
a basic punishment unit of −1, and the cost of punishment
(enforcement cost) is set to 1 unit for punishers, reducing
the utility of violators by 4 units (1:4 proportion is used
because it has been shown [29] to be more effective in pro-
moting cooperation). The results are better since the level
of boldness drops to a midrange level. However, this does
not reflect norm establishment, since a considerable number
of defections still take place in every round. This is because
adaptive punishment allows better use of available resources
to regulate the behaviour of other agents, but resources are
still not being made best use of, since the adaptive punish-
ment mechanism in its current form depends only on the
image of the current defector. Similar to the static punish-
ment case, some experiments with different neighbourhood
sizes were conducted, with the results of those with limited
resources of 12 units shown in Figure 2(b). These results in-
dicate that norm establishment is achieved with a relatively
small number of neighbours, with this being weakened as
the neighbourhood size is increased. Similar observations
are obtained with other amounts of limited resources, too.

Norm establishment is also observed in scale free networks
with limited resources of 10 upwards (Figure 2(c)). Below
that, boldness starts to drop gradually, but not to a level at

which the norm can be considered to be established. The
results have clearly improved, which is due to more efficient
use of resources to deal with defectors. However, this is
not enough especially with hubs that are connected to too
many agents with a high probability of frequent defection.
So even when using the basic adaptive punishment, resources
are still not optimally distributed. However, if we consider
the available resources, or the remaining potential defectors
that still need to be responded to, we may be able to help
solve the problem, as we investigate next.

4. PUNISHMENT WITH CONSIDERATION
OF LIMITED RESOURCES

The above approach does not take into account further de-
fections that are yet to happen until resources are renewed,
which explains the poor results. In this section, we introduce
a new version of the adaptive punishment technique that is
capable of allocating an appropriate amount of resources for
the current enforcement action, taking into account the pos-
sibilities of future violations and the resources needed to deal
with such violations.

In what follows, we first introduce a modified version of
the adaptive punishment mechanism that takes into account
resource limitations, followed by the results of an experimen-
tal evaluation of this new mechanism.

4.1 Resource-Aware Punishment Model
The basic idea of adaptive punishment is that each agent

is supplied with a memory of limited size, in which they
store information about their observations of actions taken
by their direct neighbours. So, in the case of observing a
defection, an agent stores the identity of the defecting agent
together with the fact that this agent has defected, and the
same in the case of cooperation. With regard to second level
violation, an agent that spares a defector from punishment is
also a defector, while one that punishes a defector is a coop-
erator. These facts are also stored in the memory, together
with the identity of agents.

In order to allow agents to apply punishment with the ap-
propriate intensity, punishment needs to change according
to the defector’s previous history. Based on this, and in re-
lation to a particular defecting agent j, two main factors can
be calculated: the number of previous instances of defection
of agent j (dentoted by ndj), and the number of previous
instances of compliance of agent j (dentoted by ncj), both in
the context of the window size. From these values we obtain
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the defection proportion (dentoted by dpj), representing the
percentage of defections compared to the total number of
decisions, by dividing ndj by the total of ndj and ncj . This
can be obtained as follows.

dpj =
ndj

ndj + ncj
(4)

This is represented in what we call the local image of agent
j from agent i prespective, and is specified as follows:

LocalDefImage : AGENT ×AGENT → R (5)

with ∀agi, agj ∈ AGENT : LocalDefImage(agi, agj) =
dpj where:

• agi is the punishing agent;

• agj is the defecting agent; and

• dpj is the defection proportion of agent j in agent i’s
memory.

However, as shown in Section 3.3.3, considering only the
past experience of the agent under punishment is not suffi-
cient when resources are limited. Therefore, agents need to
take into account other agents that they need to deal with in
the future, which are those that are observable and, accord-
ing to the metanorm model, these are the direct neighbours
specified by the interaction topology. This can be achieved
by taking into account the average image with regard to
defection of all agents in the neighbourhood, which can be
calculated as follows.

First, the agent needs to obtain a set of neighbours by
applying function NB:

NB : AGENT → 2AGENT (6)

where

∀agi ∈ AGENT : NB(agi) = {agj |agj is connected to agi}

Having obtained the set of neighbours, an agent is capable
of calculating the average image of those agents using the
following function:

AvgDefImage : AGENT × 2AGENT → R (7)

where

∀agi ∈ AGENT and NB(agi) ∈ 2AGENT :

AvgDefImage(agi) =

∑
agj∈NB(agi)

LocalDefImage(agi, agj)

|NB(agi)|

The comparison of the local image and the average image
provides useful information on which to base the punish-
ment decision. If the local image is greater than the average
image, then the current defector has worse behaviour than
most other agents in the neighbourhood, and needs more
resources devoted to enforcing its behaviour. If the local
image is less than average, then the current agent is not as
bad as others in the neighbourhood and less resource can be
used for its punishment. Based on this, we can estimate the
deviation of the defecting agent’s past behaviour from the
behaviour pattern in the neighbourhood as follows:

Deviation : AGENT ×AGENT → R (8)

where

∀agi, agj ∈ AGENT :

Deviation(agi, agj) =
LocalDefImage(agi, agj)

AvgDefImage(agi)

Thus, an agent can calculate a suitable amount of pun-
ishment that should be applied in this particular instance.
But first an agent calculates a uniform amount of resources
available for punishment based on equal distribution of re-
sources. This is achieved by dividing the available resources
by the number of neighbours, as follows:

UniformRes : AGENT → R (9)

where

∀agi ∈ AGENT : UniformRes(agi) =
Res(agj)

|NB(agi)|

It is worth emphasising that the resources that are avail-
able to an agent are used as an enforcement cost, which is
a particular enforcement cost percentage (ECP ) of the ap-
plied punishment. The above function calculates the average
resources available to be used for enforcement costs and not
as a punishment value. Therefore, such a value needs to be
converted into an equivalent punishment value as follows:

EquivPunish : AGENT × R→ R (10)

where

∀agi ∈ AGENT and ECP ∈ R :

EquivPunish(agi, ECP ) = UniformRes(agi)× ECP

Having calculated the average punishment value, it needs
to be adapted according to the deviation of the current de-
fecting agent from the average defecting behaviour in the
neighbourhood of the punishing agent. Also, an initial pun-
ishment value is needed as a base to be adapted depending
on the type of defection. This punishment unit (pu) is used
to determine the punishment value. Punishment is thus a
function that takes two agents and returns the punishment
value applied by the first agent to the second, as follows:

AdaptPunish : AGENT ×AGENT → R (11)

where

∀agi, agj ∈ AGENT,AdaptPunish(agi, agj) =

Deviation(agi, agj)× EquivPunish(agi, ECP )× pu

In summary, the value of the adaptive punishment in
this case is a factor of the behaviour of the defecting agent
with regard to defection, in comparison to the rest in the
neighbourhood, the uniform resources available to deal with
agents on an equal basis and an initial punishment unit.
This means that if the agent at hand has a defection rate
that is larger than average, then the uniform resources are
scaled up to deal with this agent, and in the case that the
agent defection rate is less than average, then the uniform
resources are scaled down. The value of metapunishment
is calculated similarly, with the number of defections repre-
senting the number of instances of sparing defectors, and the
number of instances of compliance representing the number
of instances of punishing defectors.
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Figure 3: impact of limited resources with resource aware adaptive punishment on final B and V

4.2 Evaluation
With a similar parameter set-up to the experiments re-

ported in Section 3.3, we ran experiments that involve the
resource-aware adaptive punishment mechanism introduced
in the previous section. The results of these experiments are
shown in Figure 3(a), which indicate considerable improve-
ments from the previous results, as norm establishment has
been observed in all runs.

Even when the neighbourhood size is increased, norm es-
tablishment is achieved. This is due to the capability of the
new approach to consider the number of neighbours that an
agent may have to deal with, so punishment may be less
even with more neighbours. However, the increased number
of neighbours compensates for this. To simplify, assuming
that 5 resource units available for enforcement, in the case
of neighbourhood size of 5, an agent i will have 10 neigh-
bours. If all of these neighbours are regular defectors, then
the punishment that i applies to a defecting neighbour j is
approximately 5

10
= 0.5, which is less than the gain that the

j obtains from defecting (3). However, there are another 9
neighbours that can still punish j, and the combined pun-
ishment of these agents is enough to overcome the utility
gained by j from defecting. This is illustrated by the results
shown in Figure 3(b), where norm establishment is achieved
with renewable resources of 12 units regardless of the neigh-
bourhood size of the connection topology. In fact, larger
neighbourhood sizes lead to better norm establishment due
to the higher number of potential metapunishment oppor-
tunities that can be triggered by sparing a defector.

Much better results, reported in Figure 3(c), are also
achieved over scale free networks. Even with limited re-
sources (as low as 4), hubs are able to divide equally re-
sources among the large number of agents they are connected
to. Such resources, combined with the resources resulting
from other outliers’ punishment, are enough to cause norm
establishment. Clearly, resources of 2 and 3 are not enough
for the norm establishment to happen.

5. CONCLUSION AND FUTURE WORK
There have been many models proposed for norm emer-

gence among groups of self interested agents. Punishment
has been used as the core mechanism in most of these mod-
els. Such punishment is usually assigned a particular en-
forcement cost, and the general assumption is that unlim-
ited resources are available for agents to cope with this cost.
This paper has studied the effect of integrating a limited

resource constraint within the well established metanorm
model. Experimental results show that both the static and
adaptive punishment mechanisms of the metanorm model
fail to establish the norm with the absence of significant
amount of resources. This is mainly because resources are
not being used optimally.

In response, an enhanced adaptive punishment technique
was proposed, which takes into account the amount of re-
sources available to the agent and the number of punish-
ment decisions that this agent may need to apply using such
resources. The experimental evaluation showed that the
new technique succeeds in establishing the norm with larger
neighbourhood sizes than the static and original adaptive
punishment mechanisms. Moreover, this new adaptation of
the metanorm model allows designers of distributed compu-
tational systems to determine the amount of resources that
is needed in order for the system to be appropriately regu-
lated. As future work, we want to investigate the effect of
the limited resources constraint on other norm emergence
mechanisms in the literature.
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