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ABSTRACT
This paper focuses on user adaptation in Spoken Dialogue
Systems. It is considered that the system has already been
optimised with Reinforcement Learning methods for a set of
users. The goal is to use and transfer this prior knowledge to
adapt the system to a new user as quickly as possible without
impacting asymptotic performance. The first contribution
is a source selection method using a multi-armed stochastic
bandit algorithm in order to improve the jumpstart, i.e. the
average performance at the start of the learning curve. Con-
trarily to previous source selection methods, there is no need
to define a metric between users, and it is parameter free.
The second contribution is an innovative method for select-
ing the most informative transitions within the previously
selected source, to improve the target model, in such a way
that only transitions that were not observed with the target
user are transferred from the selected source. For our ex-
perimentation, Reinforcement Learning is performed with
the Fitted Q-Iteration algorithm. Both methods are vali-
dated on a negotiation game: an appointment scheduling
simulator that allows the definition of simulated user mod-
els adopting diversified behaviours. Compared to state-of-
the-art transfer algorithms, results show significant improve-
ments for both jumpstart and asymptotic performance.

General Terms
Algorithms

Keywords
Reinforcement Learning, Transfer Learning, Markov Deci-
sion Processes, Online Learning, User Profiling, Multi-Armed
Bandit, Jumpstart, Asymptotic Performance Spoken Dia-
logue Systems

1. INTRODUCTION
Spoken dialogue systems have the ability to interact di-

rectly with a human through speech. Reinforcement Learn-
ing [35] is a popular framework for dialogue management in
spoken dialogue systems [28, 34]. This allows the system
to learn its optimal behaviour by exploring different options
and getting a delayed reward denoting the performance of
Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

its actions. Such an approach is generally solved by casting
the system into a Markov Decision Process (MDP). While
previous work in spoken dialogue systems mostly focused on
learning a policy which is good for all users in average [27,
39], the goal here is to learn a personalised policy which is
adapted to the user’s characteristics.
The general goal in this paper is to transfer in an effi-

cient way relevant information from well-known1 users called
sources to a new user called target. This problem, known for
a decade as Transfer Learning [7, 31], and adapted to Rein-
forcement Learning more recently [38, 25] faces a trade-off
between a good jumpstart (an efficient initial policy for a
new user) and a good asymptotic performance (average re-
turn received after infinitely many iterations). Learning an
average policy for all users and reusing it for a new similar
user provides a good jumpstart but leads to a poor asymp-
totic performance, while learning from scratch for a new user
has the opposite effect. The difficult task is therefore to im-
print the virtuous bias from the sources into the learning on
the target, and at the same time erase the vicious bias.
In order to optimise this trade-off, two issues are tackled

in this article. The first one is choosing relevant sources
for transfer. More precisely, which users, trajectories or in-
ferred knowledge are similar or informative for the target
to improve the learning procedure. The second issue is how
to transfer knowledge to the target. Once relevant sources
have been identified, the goal is to use this supplementary
information, and merge it wisely with the new target infor-
mation. Although research on Transfer Learning has been
quite dynamic in recent years, these ideas have mostly been
ignored in dialogue literature until 2013.
In the dialogue literature, Gašić [16, 17] uses Gaussian

Processes Reinforcement Learning [11] for Transfer Learning
cast as Partially Observable Markov Decision Processes for
domain extension in spoken dialogue systems. The system
has been optimised on a source domain, and they want to use
this knowledge on a new target domain. As a consequence,
there is no source selection, contrarily to [5] which uses the
same framework for user adaptation of dialogue systems to
different classes of dysartric users. However, their approach
requires defining a metric between users for source selection.
It works well in a setting like theirs where the user profiles
are defined by a similarity based on the voice signature,
which can be easily defined and measured online. But on
a dialogue management level, with generic user behaviour

1By well-known, we mean that these users have inter-
acted sufficiently with the system so that we can consider
that it has converged to an optimal policy.
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Figure 1: The three objectives of Transfer Learning.

profiles, it is hard to design and to measure: the observed
features that are necessary to compute the similarity may
be biased by the policy followed during data collection.
The first contribution of this article is a novel source se-

lection method casting the source selection problem as a
multi-armed bandit problem. Instead of searching for the
most similar source, the paradigm is changed to looking for
a model learnt from a source user that performs well with
the target user. Since the objective is to minimise the regret
at the beginning of the learning curve, it should induce an
improvement in the jumpstart. Empirical results confirm
this but also shows that the source selection is improved.
The transfer process consists in an instance transfer: the

transitions from one Markov Decision Process state to an-
other, after performing an action. Transitions from the tra-
jectories of the chosen source are added to those already
collected from the target as suggested by Lazaric [26]. Re-
inforcement Learning is then performed with a batch rein-
forcement learning algorithm. The second contribution con-
sists in selecting transitions from the selected source with
an innovative method which only keeps the ones embedding
information missing from the target trajectories. Again, the
empirical results show an asymptotic performance improve-
ment against two state-of-the-art transfer algorithms.
Thus, this paper focuses on the individual adaptation of

a system to its specific users. Any kind of personal assis-
tant is a practical application, like in a connected home,
where each house has its own configuration, inside which
each house member might have different habits, implying
different exploitable prior knowledge, and different ways to
express themselves, which requires adapted behaviours from
the system. User adaptation is also useful in negotiation-
based dialogues [32, 19], which is the experimental setting
that has been chosen in this paper. Negotiation dialogue
has been lately solved by abandoning the single-agent rein-
forcement learning paradigm in favour of multi-agent rein-
forcement learning [18] and stochastic games [2]. However,
considering that most dialogue tasks, including negotiation
ones such as appointment scheduling, are cooperative, the
user adaptation approach makes sense to yield maximum
rewards.
The empirical studies in this article are led on a recently

published negotiation dialogue game abstraction [23]. The
dialogue negotiation literature2 has been abstracted as an
agreement problem over a shared set of options. The goal

2[12] considers sets of furniture, [8, 18] resource trading,
and [24, 10] appointment scheduling.

for the players is to reach an agreement and select an op-
tion. This negotiation dialogue game can be parametrised
to make it zero-sum, purely cooperative, or general sum. In
our experiments, it is set to a purely cooperative game and
it is exposed as an appointment scheduling problem.
The transfer framework, method and contributions are

detailed from end to end in the next section. Then, the
negotiation game designed for our experiments is thoroughly
introduced. Afterwards, the settings of the experiment and
the results are presented. Eventually, we conclude the paper
by proposing some areas of improvements.

2. FRAMEWORK AND ALGORITHMS
This section presents the framework and algorithms for

transfer between users in a Reinforcement Learning domain.
First, it presents the theoretical framework for Transfer in
Reinforcement Learning that is used in this article, which is
largely inspired from [25]. Figure 1 recalls the three objec-
tives of Transfer Learning [22]: jumpstart or the improve-
ment of the starting model, learning speed, and asymptotic
performance. The two contributions of this articles concern:
jumpstart thanks to a multi-armed stochastic bandit source
selection approach, and asymptotic performance3 improve-
ment thanks to a density-based transition selection within
the previously selected source.

2.1 Transfer in Reinforcement Learning
The dialogue system is formalised as a Markov Decision

Process (MDP) which is the classical framework for Re-
inforcement Learning. An MDP is a tuple 〈S,A, P,R, γ〉
where S is the state space, A is the action space, P :
S×A → S is the Markovian transition stochastic function,
R : S→ R is the immediate reward stochastic function, and
γ is the discount factor.
A trajectory 〈st, at, st+1, Rt〉t∈J0,T−1K is the projection into

the MDP of the task episode, called dialogue in our domain.
The goal is to generate trajectories with high discounted
cumulative reward, also called more succinctly return:

r(〈st, at, st+1, Rt〉t∈J0,T−1K) =
T−1∑
t=0

γtRt (1)

To do so, one needs to find a policy π : S → A which
yields optimal expected returns. Formally, this means find-

3against other transfer algorithms. Against learning
without transfer, learning speed is improved.
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ing the policy which maximises the following Q-function:

Q∗(s, a) = Qπ
∗
(s, a) = argmax

π

Eπ

[∑
t≥0

γtRt|s, a

]
(2)

A Transfer Learning algorithm intends to make the learn-
ing for a new task easier, by using antecedent knowledge
from one or several similar tasks. Let U = {pku}k∈J1,nK

be the set of K different users defining as many tasks Mk
u ,

M = {Mk
u}pk

u∈U
be the space of tasks, K be the space of

knowledge transferred from one task to another, H be the
space of hypotheses for solving the tasks, and L : K →H

be the general learning algorithm.
In our setting, a taskMk

u is defined as an MDP. The differ-
ence between a task and another is solely dependent on the
users defining the task. As they are part of the environment,
the state space Sk

u , the action space Ak
u and the discount

factor γku are invariant and Mk
u = 〈S,A, P ku , Rku, γ〉.

Representation transfer [37] is an active research area: one
can find studies on option based transfers [20, 30], which are
dependant on hierarchical reinforcement learning [36], on
Proto-value functions [29, 15], or on representation transfer
for Gaussian Processes Reinforcement Learning [16, 17, 5].
This article does not deal with representation transfer, and
has chosen instead to focus on transfer selection: source
selection [14, 30] and instance selection [26].
As a consequence, in the remainder of the article, L can

be instantiated with any batch learning algorithm taking
as an input a set of transitions (or samples, or instances)
〈s, a, s′, r〉 ∈ S×A×S×R within a trajectory, s being the
current state, a the taken action, s′ the next reached state
and r the immediate reward. Therefore, K = (S×A×S×
R)N , where N is the number of transferred transitions.

2.2 Similarity-based source selection
The similarity-based source selection is widely spread in

the Transfer Learning literature [4, 38, 5]. In [5], four dysar-
tric speaker profiles are defined. Then, the goal is to trans-
fer the Gaussian Processes Reinforcement Learning [11] per-
formed on those profiles to the new target user. A similarity
between users is defined in order to identify the profile that
is the closest to the speaking profile of the target. This simi-
larity is based on statistics on the audio signal features from
their voices. When faced with a new user, the closest user
is defined as :

p
∗
u = argmin

pk
u∈U

||ν̂ku − ν̂newu || (3)

where ||.|| is a norm, ν̂ku and ν̂newu are the vectors of statistics
for user pku and the target user respectively. Unfortunately,
this approach has several shortcomings.
Firstly, it is difficult in a general setting to identify the

insightful statistics for selecting the best user. It is even
more complex to define the ||.|| norm. In [5], on a specific
user adaptation problem, three different metrics are tested
and yield heterogeneous results.
Secondly, for behavioural profiling, those insightful statis-

tics often require knowledge that cannot be obtained di-
rectly: for instance, in order to know the sentence error rate
of the speech recognition, the system needs to explicit its
understanding, this statistic collection is therefore depen-
dent on the followed policy, and it is a source of bias in the
statistics.

Thirdly, when no trajectory has been collected on the tar-
get, a generic, default policy learnt uniformly over all users
is used to gather the first nfirst dialogues. This policy ex-
periences to be more efficient than a random policy, but still
yields a large regret.

2.3 Performance-based source selection
The first contribution of this article is a statistics in-

dependent source selection: instead of selecting a similar
source user, the approach consists in selecting an efficient
source user in a spirit close to Policy Library through Policy
Reuse [14]. The source selection is modelled as a multi-
armed stochastic bandit problem, where each arm corre-
sponds to the optimal policy πks learnt with a source user
pku ; where pulling an arm ak means using this policy πks for
a whole dialogue, and thus generate a whole trajectory; and
where the bandit reward for the chosen arm corresponds to
the dialogue return defined by Equation 1. In practice, such
a bandit algorithm can learn to select an efficient policy to
use and to transfer from with only a few dialogue returns,
or equivalently arm pulls in the bandit setting. There is no
guarantee that the selected arm will be the best, but with
high probability, it corresponds an efficient policy, which is
sufficient.
In order to select the right bandit algorithm, it is im-

portant to define exactly what is the main objective of the
algorithm. Is it to select the best arm with the highest
probability as in action elimination algorithms [13]? Is it to
minimise the regret as in Upper Confidence Bound (UCB)
algorithms [1]? The answer is that there is no need to se-
lect the best arm, only a good enough arm is required to
be used as a source, but it is important to guarantee a good
jumpstart for the Transfer Learning algorithm while the first
trajectories are collected from the target, and this is exactly
what UCB does by minimising the regret.
More specifically, as the time scale for the jumpstart im-

provement is very short, a variance estimation is impossible.
As a consequence, the simplest UCB algorithm: the UCB1
algorithm [1] has been implemented. First, it pulls each arm
once, then it pulls the arm ak that maximises the following
equation:

µ̂k + ρ

√
lnn
nk

(4)

where µ̂k is the empirical average return after pulling arm
ak, where ρ is a constant parameter controlling the magni-
tude of exploration, where n is the total number of times
UCB pulled arms, and where nk is the number of times arm
ak has been pulled.
The problem becomes non-stationary when the arms change,

i.e. if the user policies evolve. Fortunately, the source selec-
tion intervenes during the jumpstart. As a consequence, the
UCB algorithm is only used during this first stationary step
of length nfirst. After that, we are able to select a user with
an efficient policy to get source from and to learn a target
policy that is better than any of the source ones.

2.4 Transition selection: baseline
The transfer algorithm uses trajectories from the chosen

source to initialise the batch Reinforcement Learning algo-
rithm, and trajectories collected with the new user are added
gradually to the batch. The previous subsection explained
the way the first step is handled, when no target trajectory
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has been collected. This subsection describes how the tran-
sitions issued from source and target trajectories are merged.
The classical way to do it consists in initialising K ∈

K with ntransfer transitions transferred with the selected
source, and to add the target transitions as the trajectories
are collected [38, 25]. The target transitions will eventually
overwhelm the source ones. One might be tempted to even-
tually remove the source transitions from K. It is reported
that it is often more efficient to keep them in. The reason is
that the source is used to provide a prior on the similarity
between the tasks. Removing the source transitions leaves
ignorance on the performance of some state-action couples,
ignorance that has to be made up for. Both baselines with
and without replacement will be considered.

2.5 Density-based transition selection
When a source is selected, it is crucial to add the right

amount of information to the initial batch: too little will
result in a bad jumpstart, while too much will lead to over-
fitting the source. It is also crucial to add the right type
of information. It is pointless to transfer source transitions
that are frequent in the target trajectories: this leads to
keeping a bias from the source. On the contrary, the transi-
tions that are absent from the target trajectories are mostly
state-actions couples that yielded poor performance in the
source and that the target would be better off not explor-
ing. These absent transitions should be chosen so that the
state-action space is well covered.
To solve this issue, a novel algorithm is introduced to se-

lect relevant transitions within the trajectories of the pre-
viously selected source. Given a transition from the source
〈s, a, s′, r〉, all the transitions already in the batch which
contain action a are considered. If there is a transition
〈si, a, s′i, ri〉 such that ||s − si||2 ≤ η then the transition
is not added to the batch. This means that only transitions
which are far enough from existing transitions are added to
have just the amount of information needed. The choice of
η depends on the problem and should be tuned carefully. A
large value for this parameter will lead to adding too few
transitions to the batch, while a small value will have the
opposite effect.
The use of a similarity and a threshold is obviously a

shortcoming. Although, it does not apply to the same prob-
lem as the similarity measure between reinforcement learn-
ing tasks. In practice, it is easier to define a similarity be-
tween MDP states S, which can be computed with a simple
Euclidean distance, than between user behaviours, which
are determined by stochastic functions P ku and Rku and are
therefore not directly observable (since the internal user’s
states are unknown). A wide range of algorithms for learn-
ing a state representation exists [3, 9].

2.6 End-to-end algorithm
Algorithm 1 details the pseudo-code for the transfer learn-

ing procedure. It lays out more clearly the articulation of
the various parts of the procedure described above.
The algorithm is initialised with a list of known users as

well as the new user for which learning has to be performed.
To each user corresponds a previously learnt policy πks and
a transition database Dk recording previously collected dia-
logues. These variables are respectively initialised to default
policy and ∅ for the new target user.

Algorithm 1 Transfer for Reinforcement Learning with
UCB source selection and density-based transition selection

1: TransferLearning()

2: Initialisation()
3: p∗u = UCBSourceSelection()
4: for (i = 1; i < nbBatch; i++) do
5: Dtr = DensityBasedSelection(p∗u,Dnew)
6: πnews = updatePolicy(Dnew ∪Dtr)
7: while nnew 6= 0 (mod batchSize) do
8: dial = playDialogue(pnewu , πnews )
9: Dnew ← Dnew∪ dial.getTransitions()
10: nnew++
11: end while
12: end for
13: πnews = updatePolicy(Dnew ∪Dtr)

14: Initialisation()

15: U =
[
p1
u,p

2
u, . . . ,p

K
u

]
16: ∀k ∈ J1,KK, pku = {πks ,Dk}
17: pnewu = {πnews ,Dnew = ∅}
18: nnew = 0
19: nbBatch
20: batchSize

21: UCBSourceSelection()

22: while nnew < nfirst do
23: idx = UCB.Choice()
24: dial = playDialogue(pnewu , πidxs )
25: Dnew ← Dnew∪ dial.getTransitions()
26: UCB.setReturn(dial)
27: nnew++
28: end while
29: p∗u = UCB.bestArm()
30: return p∗u

31: DensityBasedSelection(pku,Dnew)

32: Dtr = ∅
33: for 〈ski , aki , s′

k
i , r

k
i 〉 ∈ Dk do

34: addTransition = true
35: for 〈snewj , aki , s

′new
j , rnewj 〉 ∈ Dnew do

36: if ||ski − snewj ||2 ≤ η then
37: addTransition = false
38: break
39: end if
40: end for
41: if addTransition then
42: Dtr ← Dtr ∪ {〈ski , aki , s′

k
i , r

k
i 〉}

43: end if
44: end for
45: return Dtr

First, UCB-based source selection is performed withUCB-
SourceSelection() which returns the best source user p∗u.
Then, DensityBasedSelection(p∗u,Dnew) takes this user
as an input and selects interesting transitions from D∗ to re-
turn them in a new matrixDtr. This matrix which is further
added to Dnew in order to start the learning procedure.
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The current policy is updated with updatePolicy() which
implements a batch Reinforcement Learning algorithm tak-
ing a transitions matrix as an input. New dialogues are col-
lected with this policy until the chosen batch size is reached
after which the policy is updated again to collect new dia-
logues and so on. This update/collection process is repeated
nbBatch times before proceeding to the final policy update.

3. A NEGOTIATION GAME

3.1 Appointment scheduling simulator
Our experiments are run on a negotiation game designed

specifically to have different user strategies [23]. It can be
interpreted as an appointment scheduling problem between
two players. One of the players is a user piu, and the other
one is the system pis to be optimised against/with piu. n =
30 time-slots are considered, and for each time-slot τ , each
player pi has a utility ωiτ ∈ [0, 5] for booking it. Cooperation
between players is introduced, which results in the following
definition of player pi’s immediate reward at the end of the
dialogue:

Ri(sT ) = ωiτ + α ωjτ (5)
where sT is the last state reached at the end of the dialogue,
where τ is the chosen time-slot and where α ∈ R is the coop-
eration parameter. If both players cannot agree after n turns
(which would correspond to a strategy in which each player
enumerates his time-slots in descending order of preference
one after the other) the final immediate rewards Ri(sT ) and
Rj(sT ) are equal to 0 for both players. As well, if the sys-
tem misunderstands and agrees on a time-slot which isn’t
the one proposed by the user, Ri(sT ) = Rj(sT ) = 0.
A system ps and a user pu act each one in turn, start-

ing randomly by one or the other. They have four possible
parametric actions:

• Accept(τ) means that the user accepts the time-slot
τ4. This act ends the dialogue.

• RefProp(τ) means that the user refuses the proposed
time-slot and proposes instead time-slot τ .

• Repeat means that the player asks the other player
to repeat his proposition.

• EndDial denotes the fact that the player does not
want to negotiate anymore.

Understanding through speech recognition of system ps is
assumed to be noisy with a sentence error rate SERks after
listening to a user pku : with probability SERks , an error
is made, and the system understands a random time-slot
instead of the one that was actually pronounced. In order
to reflect human-machine dialogue reality, a simulated user
always understands what the system says: SERsu = 0. We
adopt the way [21] generates speech recognition confidence
scores:

scorereco =
1

1 + e−X
where X ∼N(c, 0.2) (6)

Given a user pku , two parameters (ck⊥, ck>) with ck⊥ < ck> are
defined such that if the player understood the right time-
slot, c = ck> otherwise c = ck⊥. The further apart the normal

4Independently from the fact that τ has been proposed
by the other player. If it has not, this induces a null reward.

distribution centres are, the easier it will be for the system
to know if it understood the right time-slot, given the score.

3.2 User profiles
A user interacts symmetrically with the system. The first

proposal is made randomly by the user or the system, and
then they alternately make proposals until an agreement is
found, or the maximal number of turns is reached.
A characteristic of a user is its intelligibility by the system,

parametrised by its average sentence error rate pSER. An-
other understanding characteristic consists in varying cen-
tres (ci⊥, ci>) for the speech recognition score. For distant
(ci⊥, ci>) values, the system will easily know if it understood
well.
In order to add more variability in our simulated users,

two handcrafted classes of users have been implemented:

• The Deterministic User (parameter x) Accept(τ) if
and only if τ ∈ Tx, whereTx is the set of its x preferred
time-slots. If τ /∈ Tx, he RefProp(τ ′), τ ′ ∈ Tx being
his preferred time-slot that was not proposed before.
If all τ ∈ Tx have been refused, or if the system insists
by proposing the same time-slot twice, he EndDial.

• The Random User (parameter p) Accept(τ) any time-
slot τ asked by the system, with probability p. With
probability 1− p, he RefProp(τ ′) a time-slot τ ′ ran-
domly. If he’s asked to repeat, he’ll make a new ran-
dom proposition.

3.3 Reinforcement learning implementation
Least-squares Fitted Q-Iteration is used to learn the pol-

icy with a linear parametrisation of the Q-function. The
following recalls the basics. The optimal Q-function Q∗ is
known to verify Bellman’s equation:

Q∗(s, a) = E
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(7)

⇔ Q∗ = T ∗Q∗ (8)

The optimal Q-function is thus the fixed point of Bell-
man’s operator T ∗ and since it is a contraction Banach’s the-
orem ensures its uniqueness. Hence, the optimal Q-function
can be obtained by iteratively applying Bellman’s operator.
This procedure is called Value Iteration.
When the state space is continuous (or very large) it is im-

possible to use Value-Iteration as such. TheQ-function must
be parametrised. A popular choice is the linear parametri-
sation of the Q-function [6]:

Q̂a(s) = θ̂>a Φa(s) (9)

where Φ = {Φa}a∈A is the feature vector for linear state
representation and θ = {θa}a∈A is the parameter that has
to be learnt. Each dimension of θa represents the influence
of the corresponding feature in the Q-function.
The inference problem can be solved by alternately apply-

ing Bellman’s operator and projecting the result back onto
the space of linear functions, and iterating these two steps
until convergence.

θ(i+1)
a = (X>a Xa)−1X>a y

(i)
a (10)

where Xa is the observation matrix, where each line is the sj
feature vector: (Xa)σa(j) = Φa(sj), y(i)

a is a vector such that
(y(i)
a )σa(j) = rj + γmaxa′ θ(i)

a′ Φa′(s′j), and σa(j) is the index
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user characteristics avg return w. policy pis learnt against piu
role name type parameter centres p1

s p2
s p3

s p4
s p5

s

source p1
u deterministic 1/10 (0,0) 4.72 1.90 2.77 1.63 1.74

source p2
u deterministic 1/10 (-5,5) 5.22 6.13 4.73 2.50 2.61

source p3
u deterministic 1/5 (-5,5) 5.28 6.14 6.14 3.05 3.25

source p4
u random 0.3 (-5,5) 3.96 4.58 4.72 5.09 4.96

source p5
u random 0.5 (-5,5) 4.15 4.83 5.08 5.42 5.51

target pau deterministic 1/5 (-1,1) 5.12 4.75 5.38 2.72 2.70
target pbu deterministic 1/5 (0,0) 4.57 2.29 3.22 2.34 2.28
target pcu deterministic 1/10 (-1,1) 4.64 4.48 3.87 2.08 2.02
target pdu deterministic 1/3 (-5,5) 4.84 6.31 6.41 3.60 3.73
target peu random 0.3 (-1,1) 3.80 4.76 4.32 5.10 5.07

Table 1: On the left part of the table, description of the source and target users. On the right, the average
return γTRi(siT ) yielded when opposing users with the policies optimised for other users. The best policy is
displayed in bold.

of the jth observation, in matrix Xa. The transposition of
these notations into the Transfer Learning problem gives:

LΦ : (S×A ×S× R)N FQI−−−→ R|Φ| (11)

In the experiment, the feature vector Φa is a 6-dimensional
vector composed of the following features for each action:

• The constant feature 1.

• The utility loss between the last proposed time-slot
and the next one.

• The square of the previous feature.

• The number of time-slots which can still be proposed.

• The length of the dialogue.

• The speech recognition score.

A is defined according to notations in Subsection 3.1 as
follows:

• Accept(τ) ⇔ the same as in Subsection 3.1.

• RefInsist(τk) ⇔ RefProp(τk), with τk equal to the
last proposed time-slot by the system.

• RefNewProp(τk+1) ⇔ RefProp(τk+1), with τk+1
the preferred one after τk.

• Repeat ⇔ the same as in Subsection 3.1.

4. EXPERIMENT AND RESULTS

4.1 Experiment specifications
In the experiment, there are 5 source users and 5 target

users whose characteristics are described in Table 1. The en-
vironment is fully cooperative (α = 1) with discount factor
γ = 0.9 and sentence error rate pSER = 0.3.
At first, learning is performed individually on the sources,

and the optimal policy at the end of the learning phase is
saved to be used for UCB-based source selection, as well as
the transitions for later transfer. With Fitted Q-Iteration,
the policy is updated every 500 dialogues for a total of 5000
dialogues to ensure convergence. An ε-greedy policy is used

with ε = 1
2j where j is the iteration index. In Table 1, all

the policies learnt on source users are tested on all the users
– both source and target – to highlight the importance of
user adaptation in our appointment scheduling game. In-
deed, using a policy learnt on a source user on another user
can lead to a very low return if the users are too differ-
ent. In particular, using a policy learnt from a random user
on a deterministic user is highly inefficient, since every Re-
fInsist(τk) act would yield a task failure. From the second
part of the table, it appears that some source users are more
efficient than others when their policy is applied to a target.
The features used for statistics-based source selection are

the following: average speech recognition score, acceptance
rate, acceptance rate after insisting, a proxy for the correct
recognition rate as a function of the score. The only time
when the system knows if it understood the right slot is when
it accepts a request. Hence, the correct recognition rate is
only updated when this situation happens. In order to have
different statistics for different score values, three different
statistics are collected depending on the associated speech
recognition score : under 0.6, between 0.6 and 0.8, above
0.8. The correct recognition rate is biased by the policy: if
the system learns to accept only proposals with recognition
scores higher than 0.9, then, the “above 0.8” statistics is
biased in fact towards “above 0.9” statistics.
For each new user, five algorithms are tested:

• No Transfer: without any transfer, learning is per-
formed from scratch.

• Statistics-based (TS): with statistics-based source se-
lection and density-based transition selection (η = 0.3).

• UCB-Based (TS): with UCB-based source selection
and density-based source transition selection (η = 0.3).

• UCB-Based (noTS): with UCB-based source selection
but constant source transition transfer from ntransfer =
200 dialgoues and no transition selection.

• UCB-Based (TR): with UCB-based source selection
but linearly replaced source transition transfer from
ntransfer = 200 dialgoues and no transition selection.
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Figure 2: Learning curves comparison of algorithms
for source selection.

All those algorithms use Fitted Q-Iteration to optimise
their policies. They are updated every batchSize = 200 dia-
logues with a total of nbBatch = 6 batches, and an ε-greedy
policy is used with ε = 1

2j . In both transfer methods, there
is a first phase of source selection over nfirst = 50 dialogues.
The policy is then updated with Fitted Q-Iteration and used
for 150 dialogues before making a second update. Then an
update is made every 200 dialogues like with standard Fitted
Q-Iteration.

4.2 Results and discussions
Numerical results are reported in Table 2. The values in

the table represent the average returns over the first 1000
dialogues and over 100 runs for the five target users. The
results show a robust significant improvement of the scores
for the algorithm including both the contributions from this
article: UCB source selection and transition selection. Fig-
ures 2 and 3 enable a more precise analysis of relative per-
formances on jumpstart, learning speed and asymptote.
Figure 2 shows the difference between learning from scratch

and using both kinds of source selection for target users.
The first point in the figure represents the average reward of
nfirst = 50 random dialogues used to select the source and
200− nfirst = 150 dialogues learnt with the batch from the
chosen user mixed with the first dialogues of the new user.
These two phases are averaged together in the graph to keep
the same number of dialogues per point. Both transfer algo-
rithms perform dramatically better than without transfer at
the beginning of the learning procedure. Indeed, the policies
used during the source selection phase are far more efficient
than a random policy, which is used when no transfer is be-

Algorithm (a) (b) (c) (d) (e) avg

No Transfer 5.35 4.47 4.65 5.75 4.68 4.98
Statistics-based (TS) 5.55 4.58 5.00 5.99 4.61 5.15
UCB-based (TS) 5.64 4.63 5.16 5.99 4.78 5.24

UCB-based (noTS) 5.36 4.44 4.86 6.00 4.71 5.07
UCB-based (TR) 5.56 4.59 5.04 5.95 4.78 5.18

Table 2: Average returns for the first 1000 dialogues
over 100 trials. For each target user, the signifi-
cantly best results are displayed in bold.
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Figure 3: Learning curves comparison of algorithms
for transition selection and transfer.

ing used; and, transferring transitions allows to make the
first update earlier. UCB was considered first because it
was parameter free, and by its ability to improve immediate
jumpstart, but the gain from using UCB for source selection
over the statistics-based method remains clear even after two
or three iterations, indicating that it is also better than the
statistics-based method at selecting the source.
Figure 3 compares the three variants of the transition

transfer. It appears that using transition selection, and
keeping dialogues from the source in the batch are the best
options. Indeed, adding an constant number of dialogues in
the batch impairs both the learning speed since the start
and the asymptotic performance until the end, as unwanted
information is added and kept, which causes a bigger inertia
from the source. Not keeping source dialogues in the batch
has no effect on asymptotic performance but it impairs the
learning speed (as defined in Figure 1) as the system has to
re-explore the transitions that were dismissed.

5. CONCLUSION AND FUTURE WORK
This article coped with user adaptation in Spoken Dia-

logue Systems. The system is cast as a Markov Decision
Process and Transfer Learning is applied in order to boost
reinforcement learning returns, both in terms of jumpstart
and learning speed. Empirical results on a simulated ne-
gotiation dialogue game show strong and significant perfor-
mance gains on both sides.
Two novel contributions were presented in this article.

Firstly, a UCB-based method to select a source showed three
main advantages in comparison with the state of the art:
it is model-free, it has a better performance during jump-
start, and it improves speed convergence thanks to a bet-
ter source selection. Secondly, the source transitions were
selected in order to cover the whole space of state-action
couples. This method proved to learn fast without compro-
mising the asymptotic convergence.
As future work, we plan to gather dialogues with real

users on this game and analyse the user strategy profiles.
We are also interested in studying the co-learning impact
on this game and adapt the framework to non stationary
behaviours (probably with Stochastic Games [33, 2]).
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