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ABSTRACT
In the context of coordination and planning in collaborative
multi-robot/agent systems, we consider a general reference
problem that includes tasks that are spatially localized and
have an associated service time, and accounts for the use of
a heterogeneous team, in which different robots may have
a different performance on the same task. A mixed inte-
ger linear formulation is introduced and used to solve the
problem model in a centralized iterative manner: in closed-
loop, team-level plans are adaptively computed and sent out.
Unfortunately, a centralized scheme can suffer from compu-
tational and communication shortcomings. Therefore, we
introduce a top-down recipe for decentralization, aiming to
balance the tradeoff among implementation costs, compu-
tational requirements, and quality of coordination. The
decentralized architecture depends on various aspects that
we study through an empirical sensitivity analysis. Results
show that the impact and the relationships among the dif-
ferent aspects are far from being obvious or intuitive. A
number of practical lessons are learned, that could apply to
other similar problems and/or decentralized architectures
derived in the same top-down modality.
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1. INTRODUCTION
It is well understood that, in general, the support of a

coordinated planning scheme is necessary to optimize the
performance of a multi-agent team. Coordination is required
to avoid conflicts, unnecessary overlapping, and incoherent
executions, while, at the same time, to boost cooperation
and synergies when tackling a common mission. This is
even more true when the team is heterogeneous, due to the
fact that different agents might perform differently for the
various sub-tasks composing the overall mission.

In this work, we focus on mission scenarios that require
the use of embedded physical agents, a mobile multi-robot
team in particular, and that are defined through a set of spa-
tially distributed tasks, each with its own characteristics and
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demand levels. The class of problems that we consider gen-
eralizes the classical multi-robot task allocation problems.
It includes the notion of spatial locality [22, 10] and ser-
vice time, which enrich the mission model with a routing
and scheduling component. We refer to the problems in this
class as the spatial task allocation and scheduling problem in
heterogeneous multi-robot teams, or STASP-HMR in short.

In practice, our modeling approach is derived from com-
plex search and rescue scenarios, that require to coordinate
a heterogeneous team for searching over an area, transport-
ing items, mapping, detecting dangerous events, and so on.
In these cases, due to the inherent uncertainties of the envi-
ronment to act upon, agent planning cannot be usually done
in one shot, but instead needs to be performed iteratively,
in closed-loop with mission enrollment, to account for new
evidence, deviations, and unexpected issues.

In previous work [13], we tackled the heterogeneous team-
level planning through the use of a linear mixed integer
mathematical formulation, which was solved using the com-
bination of standard solvers and ad hoc heuristics that was
able to retain anytime properties and formal guarantees on
solution quality while speeding up computations. The plan-
ner operates in a centralized, closed-loop modality: a joint
plan is issued, then updates are continually sent from the
executing agents to the planner, and in turn this triggers
the computation of new plans, iteratively. This way of pro-
ceeding has obvious limitations, especially in the search and
rescue scenarios of reference, where communication infras-
tructures are hardly available, many unexpected events can
happen on the field requiring continual replanning, and the
criticality of the situation requires a very rapid adaptation
and response.

To overcome these well-known issues, in this paper we pro-
pose a decentralized approach for STASP-HMR, where each
agent runs a replica of the mathematical model, based on
local data and limited information sharing. Apart from the
characterization of the above class of problems, our contri-
bution here is two-fold. First, we introduce a decentralized
coordination and planning algorithm that meets computa-
tional and communication requirements, and at the same
time incurs in limited performance losses compared to the
centralized solution. Second, we propose a general top-down
recipe for deriving an effective decentralized scheme from a
centralized mathematical model. Moreover, a third contri-
bution consists in the identification of a set of interrelated
design aspects that have a critical impact on the perfor-
mance of a decentralized team, and in performing a sensi-
tivity analysis (in simulation) with respect to these aspects.
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In particular, we consider team heterogeneity, amount of
information sharing, planning look-ahead, and replanning
frequency. A number of not trivial results have been ob-
served and practical lessons have been learned. The claim is
that these same results could apply to other classes of decen-
tralized coordination systems obtained following a top-down
approach from a centralized mathematical model.

2. BACKGROUND
According to the level of coordination that they demand,

multi-robot missions can be categorized into tightly-coupled
and loosely-coupled missions [15, 5, 31, 18, 2, 25]. Tightly-
coupled missions are composed of tasks with strong coor-
dination requirements. These include coalition formation
scenarios in which robots must complement their skills and
coordinate their actions to act, as a team, upon certain
tasks [28, 30, 26], and scenarios that impose ordering con-
straints between tasks that require negotiation and coordi-
nation among the agents so as to prevent conflicts and dead-
locks [18, 7, 11, 21, 20, 14]. Other forms of tightly-coupled
missions are inter-schedule dependencies [19] that restrict
the set of actions of a single robot depending on the tasks
being carried out by other robots, e.g., for preserving net-
work connectivity [6, 23], or coalitions [31]. In general, these
tightly-coupled domains involve inter-task or inter-agent de-
pendencies that affect the feasibility of the mission, therefore
they require the use of strong coordination mechanisms.

On the contrary, the degree of coordination in loosely-
coupled missions may have an impact on their performance
but does not compromise their feasibility. In practice, these
missions could rely on local decisions made by the agents
without any form of agreement among them. However, the
lack of coordination in these missions may result, for in-
stance, into a duplication of effort and a waste of resources [4],
therefore having a negative effect over team performance.
Thus, coordination is desirable but not strictly necessary.
Among these type of missions we find scenarios that are
modeled as foraging tasks, with the objective of minimizing
completion time or maximizing some notion of reward, e.g.,
search, surveillance, coverage, patrolling [1, 17].

Decentralized approaches surge as a response to the draw-
backs and limitations of their centralized counterparts. They
eliminate the need for a central entity by transferring the
control authority to the agents that execute the mission. As
a result, the agents become autonomous decision-making el-
ements in charge of planning their own actions. This transfer
of control provides fault tolerance, resiliency, and scalability.

Several decentralization strategies exist in the literature,
tailored to fit the different coordination requirements of the
missions that they tackle. Among them, implicit coordi-
nation is a common and flexible way to deal with loosely-
coupled missions [17]. It is achieved by having each agent,
independently, computing a (global) solution utilizing a cen-
tralized planner. From this solution, each single robot re-
trieves its own plan. The basis of this method is that, when
all robots possess a similar knowledge about the environ-
ment, they would compute similar solutions. As a result,
they implicitly coordinate and plan their own actions.

In this work, we analyze the tradeoff between the choice
of coordinated actions and the performance of a decentral-
ized scheme based on the implicit coordination principle, in
the context of a loosely-coupled scenario. This tradeoff is
not well understood in the literature, and it is also unclear

how to quantify the performance degradation of reduced co-
ordination in these domains [29, 3]. Interestingly, we can
empirically study these properties by comparing the per-
formance of a centralized planner, which computes optimal
mission plans using full knowledge, against the one of a de-
centralized solution. In this work we follow this approach
to investigate the effect of several design choices and their
different parameters in implicitly coordinated missions.

3. SPATIAL TASK ALLOCATION & SCHED-
ULING IN HETEROGENEOUS TEAMS

In this section, we define the class of problems that we
address in this work, namely the STASP-HMR. We first in-
troduce the concepts that underlie the model of the mission.
Then, we provide a concise statement of the STASP-HMR.

3.1 Mission representation
Let A be a team of heterogeneous mobile agents that are

available to perform a joint mission in an environment of a
specified dimension. We assume that the mission has been
decomposed into a set T of spatially distributed, location-
dependent tasks. These tasks can be non-atomic, incre-
mentally providing a reward proportional to the progress
achieved in their completion, and can be eventually brought
to an end.

The spatial layout of tasks is captured by a traversabil-
ity graph that defines how agents can move between tasks.
In this respect, we define a directed traversability graph
G = (T , E) where E contains an arc (i, j) if task j can
be scheduled right after task i. In the general case, graph
G is complete (i.e., E = T × T ), and, in this way, we are
assuming that all tasks are independent from each other.
However, G can be used to accommodate constraints over
the sequences of tasks that can be executed. For instance,
when some tasks cannot be designated immediately after
others, e.g., due to mobility constraints, or when specific
tasks must be serviced immediately before servicing others,
e.g., unblocking a road to reach other parts of the area.

From the point of view of the mission, the complete execu-
tion of any task τ ∈ T provides an overall utility, or reward,
indicated with Rτ . The values assigned to Rτ can be used
to indicate how important is the task for the mission, e.g., in
a search and rescue mission when some locations are more
important to search accurately than others based on some a
priori knowledge.

3.2 Task efficiency model and completion
For a given mission, we can look at tasks as requests to

be possibly serviced, and at the agents as the entities with
the capabilities to service these requests. When we deal
with heterogeneous teams, different agents may demonstrate
different levels of performance accomplishing the same task.

In order to accommodate team heterogeneity we propose
the use of task efficiency models that allow, as their name
suggest, to specify the efficiency with which an agent services
a specific task. The intuition behind these models is that any
progress on the completion of a task is proportional to the
overall time devoted to it. Agent a is more efficient than
agent b on the same task τ if in the same amount of time a
pushes τ closer to its completion.

The definition of the task efficiency models should be
based on the specific skills of the agents in relation to the
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specific local characteristics of each task. For instance, the
time effort required for pushing a box across a room is de-
pendent upon how much force a robot is able to apply to
the box and on well it can detect possible obstacles along
the way. We assume that the efficiency models, for each
single agent, are known and defined as ϕ : A × T 7→ R.
ϕk(τ), k ∈ A, τ ∈ T relates the time an agent spends do-
ing a task to the progress achieved towards its completion.
The value of ϕk(τ) is inversely proportional to the amount
of service time that k requires for the completion of τ .

In the following, for the sake of simplifying the formula-
tion, we assume that time is discretized into mission inter-
vals of equal length ∆T . In addition, with the purpose of
avoiding the challenges posed by the solution of non-linear
models, we assume that task efficiency models follow a lin-
ear law. More precisely, when an agent k ∈ A performs
a task τ ∈ T for t mission intervals, it contributes with
100× ϕk(τ) · t percent to the task completion.

To express the residual service needed by each task, we
use the completion map Cm : T 7→ [0, 1]. The values in
the completion map identify the current completion level of
tasks whose workload has been partially addressed in pre-
vious planning stages. For instance, a value of 0 for Cm(τ)
indicates that task τ has been already completed in the past,
and therefore no further efforts from the agents are required.
If an agent attempts to further deal with that task it will
receive no additional reward, which will amount a waste of
time and resources. Servicing a fraction p of the workload
of task τ decreases its required completion Cm(τ) by p and
provides a partial utility of pRτ .

3.3 Definition of STASP-HMR
Based on the concepts introduced above, the STASP-HMR

can be stated as follows. Given a set of heterogeneous agents,
each characterized by its task efficiency model, and a lim-
ited time budget T , the STASP-HMR consists in determining
joint plans for the activities of the agents in the environment
which enable the timely selection of the tasks to perform,
and aiming to maximize the overall mission utility (i.e., the
sum of all gathered rewards).

A solution to the STASP-HMR (i.e., a mission plan) con-
sists of time-constrained sequences of tasks, one for each
agent, that can be represented as paths in G. In addition,
plans also define how much effort (i.e., devoted time) each
one of the selected tasks will receive. Due to the limited
time budget, not all tasks may be performed: a plan implic-
itly defines a selection among all tasks in T . The goal is
to assign the right agent to deal with the right task, at the
right time. Here “right” means the agent who is the most
efficient for the task among the agents in the vicinity.

In real-world scenarios, the available information concern-
ing the environment is usually incomplete or imperfect, and
the environment itself is often dynamic. Moreover, devia-
tions in the agents’ response to plans may occur as a conse-
quence of unexpected sensing/actuation problems. For these
reasons, a solution approach to the STASP-HMR in real-
world scenarios should adapt the issued plans to these dy-
namic aspects. This calls for a closed-loop approach: while
plans are executed, mission information is gathered from the
agents, based on this information new plans are adaptively
issued, and the process is iterated until mission completion.
This is precisely the approach we follow, as described in
Section 4.1.

4. CENTRALIZED SOLUTION APPROACH
We formulate the STASP-HMR as stated above by means

of a mixed-integer linear program (MIP). An optimal solu-
tion to the MIP defines plans for each one of the agents
with the goal of maximizing the total mission reward. For
the sake of completeness, we present the MIP, and refer the
interested reader to [13] for a detailed description.

maximize
∑
τ∈T

RτΦτ (1)

subject to∑
(0,j)∈E

xk0j = 1 k ∈ A (2)

∑
(i,0)∈E

xki0 = 1 k ∈ A (3)

∑
(i,j)∈E

xkij =
∑

(j,i)∈E
xkji = ykj k ∈ A, j ∈ T (4)

tki + wki − tkj ≤ (1− xkij)T k ∈ A, (i, j) ∈ E, i, j 6= 0 (5)

yki ≤ tki , wki ≤ Tyki k ∈ A, i ∈ T (6)

Φτ ≤
∑
k∈A

ϕk(τ)wki τ ∈ T (7)

0 ≤ Φτ ≤ Cm(τ) τ ∈ T (8)

Φτ ∈ R τ ∈ T (9)

tki , w
k
i ∈ N k ∈ A, i ∈ T (10)

xkij , y
k
j ∈ {0, 1} k ∈ A, i, j ∈ T (11)

We use the following decision variables to build the MIP
model for the STASP-HMR presented in (1)-(11):
xkij : binary, equals 1 if agent k traverses arc (i, j) ∈ E;

yki : binary, equals 1 if agent k is assigned to task i ∈ T ;

Φτ : service provided to task τ ∈ T by all agents;

tki : starting time of execution of task i ∈ T by agent k;

wki : time assigned to task i ∈ T for agent k.
The objective function (1) defines the quality of a mission

plan in terms of its utility, quantifying the expected effect
of agents’ activities over the current state of the completion
map Cm. A dummy vertex (denoted by 0) represents the
starting point and ending point of the agents’ paths. Graph
G is extended with arcs from 0 to each one of the tasks
that are initially accessible. Constraints (2-4) ensure path
continuity. Constraints (5) eliminate sub-tours [27] and, to-
gether with (6), they define the bounds on the variables t
and w. The completion levels of each task are bounded by
constraints (7-8). These bounds ensure that each task τ pro-
vides a maximum reward equal to RτCm(τ), and that the
utility of a plan is contributed with Rτ scaled by the comple-
tion of τ (i.e., Φτ ). Finally, constraints (9-11) set the real,
integer, and binary requirements on the model variables.

In general, the above MIP can be computationally hard
to solve and therefore finding an optimal mission plan may
take a significant amount of time. However and conveniently,
standard MIP solvers have anytime properties: solutions are
progressively and monotonically improved over time, and
can be retrieved with formal error bounds on optimality. In
our case, to exert a proper control of the time spent com-
puting a plan, the planner sets a maximum time tplan to the
MIP solver, after which the solver stops the optimization
and returns the best solution found.
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4.1 Online iterative replanning
For a given mission, the MIP formulation proposed above

could be used to perform a one-shot planning. Yet, as men-
tioned in Section 3.3, the offline computation of mission
plans is not practical since it cannot accommodate the dy-
namic aspects of real-world environments.

To this end, we consider an online, iterative replanning
approach based on the continual acquisition of new infor-
mation about the environment and the current status of
the agents. The iterative replanning is implemented as a
multi-stage, periodic, re-optimization procedure [16, 8] that
consists in solving, over time, a sequence of static problem
instances with varying horizon length. During the entire
mission, the planner continuously gathers new information
about the state of the environment, as well as the current
status of the agents and of the tasks they are executing.
This information is taken into account in the next replan-
ning iteration, so as to make the new plans adapting to the
changing situation.

More in detail, the iterative replanning works as follows.
At any single planning stage, the planner sets a horizon TH
that defines how far to look ahead during planning. Longer
horizons should enable a better allocation of resources, but
also increase the computational complexity as the size of the
associated problems increases [14, 22]. In contrast, shorter
horizons tend to be computationally affordable, but also
to make agents to reason myopically, resulting into lower-
quality decisions. This tradeoff is discussed in Section 6.
After the value TH has been chosen, it is used as T in the
MIP model associated to the current stage.

The selected scheme for online replanning must guarantee
that, at any time, an agent has a plan to follow. Recall that
a given mission plan has a limited time span that depends
on the value of the last horizon TH used. Beyond this time
span, the agents do not have any planned actions. Therefore,
at the planner, the computation of the next plan needs to
be triggered before the current plan expires, so as to extend
the plan and let the agents to continue with the mission.

Without losing generality, we assume that replanning can
be triggered within an interval [ta, tb] with 1 ≤ ta ≤ tb ≤
TH − tplan measured from the time when the last plan was
issued. When ta = 1, replanning can occur just after the
agents execute the first action of the last plan computed.
When tb = TH − tplan, the next replanning stage can occur,
at the latest, just before the current mission plan expires
(i.e., while agents execute their last task assigned). In Sec-
tion 6 we extend the discussion about the choice of [ta, tb]
and the impact this parameter has on the performance of
iterative replanning.

5. TOP-DOWN DECENTRALIZATION
The centralized iterative replanning scheme presented above

provides several advantages: allows to place much of the
computational load to the central controller, therefore re-
ducing the cost and the complexity of the team [9], makes
the whole operation relatively easier to implement, and, if
the controller has an accurate, global view of the mission,
then it is possible to compute optimal mission plans, that
take into account global constraints. On the other side, this
scheme suffers from scalability issues, meaning that, for large
team sizes, the computational complexity and communica-
tion requirements prohibit its use [24]. These issues are even
more evident when the replanning rate becomes higher.

In the following of this section we describe the top-down
approach for solving the STASP-HMR in a decentralized
manner. It addresses the drawbacks and limitations of its
centralized counterpart, by providing fault tolerance, re-
siliency, and scalability. However, these appealing charac-
teristics may often lead to sub-optimal, lower quality solu-
tions The approach is based upon implicit coordination and
replicates the centralized scheme on each agent. As a result
a decentralized decision making is achieved by letting each
agent planning its own actions.

In order to achieve decentralized coordination, agents must
make their decisions on the basis of a common ground. There-
fore, we first enumerate what and how data should be ex-
changed among the agents in order to maximize their local
perception of the mission. Lastly, we discuss how the local
data are exploited for the efficient computation of plans and
for the implicit coordination the mission.

5.1 Shared knowledge representation
Apart from the static information about the problem,

which can be initially distributed among the agents, there
are two main types of information that need to be revised,
and updated, in order to replicate the iterative replanning
scheme at each agent: the completion map Cm and the
planned actions of the other agents.

During the execution of a plan, the executed tasks receive
certain amount of service that decrease the initial workload
required for them. In a centralized setting, this information
would be gathered at the central controller and used to keep
an up-to-date global completion map Cm. However, this is
not the case in a decentralized scheme, and agents should
keep a local estimation of the Cm. The more accurate these
estimates are, the better plans an agent can compute.

In addition, it is also useful to know the scheduled future
actions of other agents. For instance, let us assume that an
agent a is about to compute a local plan and, according to its
local perception of Cm, there is a nearby task τ that requires
full service. Even if such estimate is accurate and indeed τ
has not been attended yet by any other agent, the inclusion
of this task in a’s current plan could be a bad decision if
there exists another agent b that has already included τ in
its plan. These situations can become frequent and, unless
some explicit fallback strategy is executed (e.g., detecting
ad preventing the overlapping of actions), they degrade the
performance of the mission.

Both types of data, the completion map and the plans, are
described in terms of incremental updates that, once added
up all together, allow to reconstruct a global shared repre-
sentation of the mission. In the case of the completion map,
an incremental update is a tuple Cum = < k, τ ,tstart, tend
> that indicates that agent k has provided service to task
τ from time tstart to tend. These updates are issued by the
same agent that performs the service. Each agent uses the
Cum’s that are issued by other agents to update its own local
Cm. This is done by computing the amount of service pro-
vided to each task using the efficiency models ϕk. Note that
it is sufficient to aggregate the updates, independently of the
time at which they were generated, in order to approximate
Cm to its true value. An important remark is that agents
should not apply twice the same update. To this end, each
Cum is uniquely identified by a sequence number, assigned by
the agent that generates the update.
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Regarding the mission plans, a similar approach is fol-
lowed. A plan update is a tuple < k, tgen, τ , tstart, tend,
> that indicates the intention of agent k to perform task
τ from tstart to tend. Note that in this case we also use
an additional time stamp tgen to specify the time at which
k expressed such intention. At any time instant t, we can
(partially) reconstruct the mission plan of an agent k by con-
sidering all the plan updates with t ≤ tstart. The values of
tgen allow us to resolve conflicts when two or more updates
overlap. As for the completion map updates, each plan up-
date is uniquely identified by a sequence number and stored
in a table.

5.2 Information exchange
In a decentralized operation, communication among the

agents enables the acquisition of relevant information re-
garding the past, current, and planned activities. In real-
world deployments, communication is usually supported by
a wireless network. However, when networked teams oper-
ate in large-scale environments, data exchange can become
sparse, because it is restricted by the transmission range of
the network.

Based on the shared representation, the final goal is to
exploit at most the communication interactions among the
agents. To this end, a gossip-based mechanism[12] helps to
spread the information about the mission among the team.
This mechanism is implemented as follows.

During the mission, all agents broadcast periodic network
discovery messages that serve to announce their presence
to other agents. Using these messages, each single agent
keeps a list of all other agents from which it has received a
message recently. From this list, and with certain frequency,
the agent chooses another agent to initiate a synchronization
procedure. This procedure enables the agents to merge and
synchronize their local knowledge and possibly improve their
local perception of the mission.

5.3 Adaptive replanning using the MIP
To perform the iterative replanning, each agent uses its

local estimate of the the completion map, and of the current
(partial) plans of other agents to set up the MIP.

The completion map Cm is used to define constraints (8).
The plans of other agents are used to fix some of the routing
and scheduling variables tki , xkij , and wki . Since the agents
can spread out over the area, data exchange can be sparse.
As a result, agents may become unaware of the activities of
some members of the team. Therefore, when building the
MIP, each agent only considers the teammates from which
it has recently gotten some information update. The gen-
eral idea is to rely only on fresh information, that can be
considered as reliable.

Each agent uses the MIP to primarily compute its own
plan. However, the MIP is intended to optimize the global
joint mission plan. This means that, when an agent a only
has partial information about the plans of the other agents,
a must either infer the missing parts of the plans or let the
solver compute them. In this work, we adopt the former
approach. Partial plans are completed by an agent a using
a heuristic procedure, which works as follows. First, the
tasks in the vicinity of a that still need to be completed are
listed. Then, in sequence, for each other agent from which
a has reliable information and an incomplete plan, a greedy
task assignment is performed: the next task from the list

that maximizes the agent reward is assigned to it in the
MIP formulation. As a result, the set of decision variables
of the MIP is drastically reduced to the variables that only
define the actions of the agent a. The decision variables
regarding the other agents are fixed and treated as constants.
In our tests, we note that this way of proceeding leads to
substantial computational savings and better performance
compared to solving the entire MIP. In fact, the gain that
would potentially be obtained by solving the entire problem
is diminished by the relative poor quality of the solutions
that can be effectively computed in the limited time budget
allocated for planning.

6. SENSITIVITY ANALYSIS
In this section we present a sensitivity analysis of the pro-

posed decentralized scheme. The analysis is based on sim-
ulations. In order to obtain solutions to the mathematical
programs we use CPLEX R© as MIP solver, combined with a
simple greedy heuristic that provides an initial feasible solu-
tion. In the following, first, we describe the instances of the
STASP-HMR that constitute the benchmark of the analy-
sis. Next, we use these instances to study the computational
performance of the centralized implementation and to derive
bounds on mission performance. These bounds are used as
a performance baseline for the analysis of the decentralized
system. In the remaining part of this section we focus the
sensitivity analysis on the following aspects: team hetero-
geneity and spatial correlation among the tasks, amount of
information sharing, and length of the planning horizon and
frequency of replanning.

6.1 Experimental setup
We consider problem instances where the locations of the

tasks composing the mission are obtained through a grid
decomposition of the area with a one to one correspondence
between tasks and grid cells. The grid size is 20 × 20, for a
total of four hundred tasks. We adopt a dimensionless space,
yet we consider that robots must move through adjacent cells
in the Moore neighborhood (i.e., if they share at least one
vertex on the grid). This condition is translated into the
traversability graph and imposes routing constraints on the
set of feasible sequences of tasks.

We let the task locality to impose limits on the commu-
nication. In some instances, data exchange between two
robots occur only within a limited communication range ψr.
To simulate the communication constraints we embed the
grid into a Cartesian plane, and define the distance between
two tasks as the euclidean norm between the center of the
associated cells. Whenever two robots are within a distance
less or equal to ψr they are able to exchange data and to
synchronize their current knowledge using the mechanisms
described in Section 5.2.

We consider four types of agents, each characterized by
the efficiency in accomplishing the tasks. As introduced in
Section 3, the value of ϕ precisely relates each robot to the
efficiency in doing each task. Numerically, ϕ defines the
fraction of workload of a task that a robot can tackle during
a single time step. For each single task, we consider that
any robot type exhibits one out of five different efficiency
levels, ranging from completely inefficient (ϕ , 3%) up to

highly efficient (ϕ , 100%). These models are assumed
to be known by all agents, and to remain constant during
the mission. We setup a mission by defining the number
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Figure 1: Computational results of the centralized
planning over 120 STASP-HMR instances with 12
agents.

of agents of each type (which could be zero), together with
their initial deployment. The total number of agents in a
mission is 12 unless otherwise specified.

All simulated missions have a duration of 48 steps. At
the start, the robots are deployed at random positions in-
side the grid. They all compute an initial plan, and then
execute the online replanning in an asynchronous way, as
described in Section 5. At each replanning stage, each agent
allows a maximum of tplan = 150 seconds to compute a next
plan using the MIP solver. This time limit has been cho-
sen to emulate a real-world scenario where plans meant to
be computed in near real-time on embedded systems with
potentially low computing power (e.g., small flying robots).

6.2 The complexity of centralized planning
As an initial step in our analysis we use the solver to

compute global solutions under a centralized setting and
with full knowledge of the environment. The goal of the
experiments reported here is twofold. First, to observe the
complexity of the centralized planning. Second, to use the
computed solutions to derive a bound on the best achiev-
able performance of a decentralized execution in any single
problem instance.

We compute the baseline solutions using the mathemati-
cal solver, imposing a time limit of two hours and a memory
limit of 8 GB, and using up to 8 parallel threads, each one al-
located to an individual core in a computing cluster. Upon
reaching the limits of computational resources, the solver
returns the best solution found Bestcent. It also provides a
measure of the solution quality in terms of a relative optimal-
ity gap (Gcentopt ), also called MIP gap. This gap is related to
a lower bound (LBcent) that is derived from the linear pro-
gramming relaxation. The value of LBcent is computed and
improved by the solver during the solution process by relax-
ing the integrality constraints through the branch and bound
search and by automatically generating cutting planes. We
let the solver stop the computation when Gcentopt becomes less
than 5%, meaning that we obtained a satisfactory solution.

Figure 1 shows the distribution of the computation time
(top) and MIP gaps (bottom) for a set of 120 problem in-
stances using a centralized planner. Results show that most
of the instances satisfied the relative optimality gap of 5%.
In addition, besides a small subset of instances, the compu-

tation time taken by the solver was in general above 5,000
seconds, which multiplied by 8 threads/cores, it is equivalent
to over 11 hours of computation. From these results we can
appreciate the complexity of centralized planning. It is pre-
cisely this computational complexity one of the aspects that
we expect to overcome by using a decentralized approach.

To evaluate the relative performance of the decentralized
implementations with respect to the centralized one, we use
the solutions obtained above to define a baseline metric.
More precisely, for each problem instance, we compute the
relative gap Gdecopt between the decentralized solution and the
centralized bound LBcent. We consider this metric instead
of using directly Bestcent because, as noted in Figure 1, in
many cases it is computationally unfeasible to reduce Gcentopt

to zero given the limited computational resources available.

6.3 Team diversity and tasks’ correlation
A core feature of our solution approach to STASP-HMR is

that we optimize the match between tasks and agents allo-
cated to them. In this respect, heterogeneity could become
an advantage when different tasks can benefit from different
skills. However, in order to exploit heterogeneity, the plans
for the individual agents need to be well coordinated among
each other. This, in turn, depends on the spatial correlation
among the tasks with respect to the task efficiency models
of the agents.

When the task efficiency models are not spatially corre-
lated, we can expect that the efficiency of an agent changes
abruptly over neighbor tasks. On the contrary, when the
models exhibit certain degree of spatial structure, changes
are smooth, which also means that once an agent is perform-
ing a task for which is good for, we expect that it would be
also well suited for the surrounding tasks.

The spatial correlation aspects also affect the way con-
flicts among the agents arise and are solved by local coor-
dination. In the uncorrelated case, conflicts are sparse, and
more difficult to solve due to the lack of smoothness of the
models. For instance, when an agent finds itself competing
with others for some task of high value for it (e.g., it is well
suited for the task), it becomes more difficult to coordinate
and maybe sacrifice its individual objective (for the sake of
the mission) and select other tasks in the vicinity that have
a similar value. However, when the efficiency models are
spatially correlated, there is a good chance of solving the
conflict with slight local changes in the plans.

With respect to team diversity, it remains to understand
how it affects the performance of the decentralized scheme,
and what is the role of coordination in this context. Per-
haps more interestingly is to study the interplay between
the choice of a heterogeneous team and the degree of spatial
structure of the task efficiency models.

In this section, we consider two classes of missions. In the
first class, tasks efficiency models follow a discrete uniform
random distribution. In the second class, we use random
fractals to obtain spatially structured surfaces from which
we generate models that exhibit some degree of spatial cor-
relation. Figure 2 depicts one instance of each class to illus-
trate the difference between them.

Discussion: Figure 3 shows the performance of the de-
centralized scheme for both classes of missions. The plot
shows the median value and 25% and 75% error bars of
the performance of the decentralized schemes, measured in
terms of Gdecopt . The performance for each class is analyzed
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Figure 2: Visual representation of two efficiency
models with (left) and without (right) spatial cor-
relation. Each color represents an efficiency level.
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Figure 3: Effect of team diversity on instances with
spatially correlated models (left) and with random
uniform task models (right).

with respect to the level of heterogeneity (i.e., increasing the
number of agent classes). From the results, we immediately
observe that, in both cases, the performance with respect
to the centralized model degrades when the heterogeneity
level is increased. Surprisingly, these effects are stronger for
uncorrelated models

The lesson learned from this discussion is the following.
If we employ an heterogeneous team with efficiency mod-
els that exhibit low spatial correlation, we should be aware
that the decentralized solution can show a performance (rel-
ative to the centralized solution) significantly lower than the
one obtained with a homogeneous team. At last we point
out that, at the global system level, heterogeneity is benefi-
cial. For instance, the following table shows the percentage
of performance improvement, with respect to homogeneous
teams, for the centralized model.

# agent classes 2 3 4
uniform random 20 34 32
spatially correlated 24 31 34

These numbers indicate that well-coordinated heteroge-
neous teams perform better than homogeneous teams.

6.4 Local vs. global information sharing
In Section 5 we propose a shared representation of the

mission on top of which the decentralized scheme is im-
plemented. In this section we analyze the value that each
piece of information (i.e., completion map, and partial plans)
brings to the performance of the decentralized approach. In
the presence of communication constraints, we also analyze
the effect of inconsistent knowledge among the agents.

We consider two different classes of scenarios. In the
first, robots are allowed to exchange data without restric-
tions (ψr = ∞). In the second class, robots can only ex-
change data with other robots located within a communi-
cation range ψr = 3. In this way we analyze the impact of
incomplete information.
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Figure 4: Effect of information sharing with full
(top) and constrained communication (bottom).

We simulated 40 missions with spatially correlated mod-
els and using a team of 12 robots with two classes of agents.
We distinguish 4 types of scenarios that add, incrementally,
the following data to the list of data that are shared among
the agents: (1) positional information; (2) completion map
Cm updates; (3) partial mission plans; (4) plans computed
for other agents. In the latter case, agents also share, with
a subset of their neighbors, the plans that they complete
for them. We believe that this strategy can help save com-
putational resources since the agents utilize plans that have
already been computed by another agents to extend their
current plans, without resorting to the MIP. However, it is
unclear if this provides some gain in performance.

Discussion: Figure 4 summarizes the value of each piece
of information in both full and constrained communication
scenarios. The data labeled as “no-comm” correspond to the
case where agents do not exchange any information. An im-
portant observation is that sharing the completion map is
sufficient to guarantee a performance within 20% from the
centralized solution. This suggest that this piece of informa-
tion is the most valuable one for the implicit coordination
scheme. The rest of the information only makes a differ-
ence, albeit relatively small, if it can be spread out among
the agents. Lastly, we remark that the strategy of sharing
computed plans with the neighbors does not improve the
performance in a significant way. However, it can be used
to reduce the amount of planning iterations that agents must
execute and, in overall, to reduce the cost of planning, while
at the same time providing similar performance with respect
to the case where this information is not shared.

6.5 Planning horizon and replanning frequency
Two of the most important parameters of the online re-

planning are the length of the lookahead planning horizon
(TH) and the replanning frequency (specified by an interval
[ta, tb]). Here we examine the single and correlated effects of
these parameters. We consider different replanning intervals
and horizon lengths. First, we fix a relatively short interval
for replanning and evaluate the effect of the increasing hori-
zon. The short interval is chosen to ensure that the results
primarily depend on the length of the horizon.
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Figure 5: Effect of the lookahead planning hori-
zon (top) and the replanning frequency (bottom) on
the decentralized scheme with full (left), and con-
strained communication (right).

Figure 5 (top) shows the effect of increasing the horizon
from 6 up to 24 steps. We indicate the median value and
25% and 75% error bars among the benchmark instances, for
both the communication-constrained (top right) and uncon-
strained scenarios (top left). Intuitively, one would expect
that the longer is the horizon, the better are the plans that
robots compute, which also results into better global mis-
sion plans. Indeed, we observe that the increasing horizon
tends to improve the performance of the team. However, for
longer horizons, the improvement stops and the performance
stagnates. A similar observation is made by [10], although
they do not provide any explanation of it.

Regarding the relationship between these parameters and
the amount of information exchanged we note that informa-
tion is better exploited with longer horizons. In the commu-
nication limited scenarios, the use of longer horizons only
provide a marginally better performance.

Discussion: One possible cause for the behavior de-
scribed above is the fact that, for longer horizons, the cor-
responding MIPs become harder to solve. However, after
an examination of the distribution of the MIP gap values
over the increasing horizon length for all the MIPs solved
during the simulations (∼ 70, 000), we noticed that the in-
crease of complexity was not significant. In fact, most of the
MIP solutions remain within 2 % from the optimal solution.
We conjecture that this behavior may be due to the asyn-
chronicity of the online schemes and the effect of incomplete
information regarding the planned actions of other agents.

Next, we evaluate the impact of the replanning frequency.
We consider three replanning intervals, [3, 6], [6, 9], and [9, 12].
The interval is set at the beginning of the missions and the
agents decide, randomly, when to trigger the next replan-
ning stage based on the interval. The goal is to analyze the
case when agents perform planning in an asynchronous way,
and have the freedom to replan in an adaptive way.

Figures 5 (bottom) compares the performance that is ob-
tained using the different replanning intervals. When the
replanning occurs less frequently, the performance tends to
deteriorate sharply when communication is limited. When
communication is not an issue, the frequency of replanning
is not central, but nevertheless compensates the small de-
crease in performance due to the inconsistent information.

7. CONCLUSIONS AND FUTURE WORK
Building on previous research, we present a decentralized

solution to the spatial task allocation and scheduling prob-
lem with heterogeneous mobile teams. The work was mo-
tivated by the computation and communication constraints
that the real-world imposes on a centralized approach. In
the process of developing a decision support system for search
and rescue missions using multiple heterogeneous robots, we
directly faced the challenges that limit the use of a central-
ized system. These are mainly due to the lack of a network
infrastructure ( which is not usually present in these scenar-
ios) and the need for rapid recomputation of plans to adapt
to the dynamic aspects of the mission.

We have presented a recipe for the top-down decentral-
ization of a mathematical programming model for the coor-
dinated planning of multi-robot systems. The recipe aims
at minimizing the computational and communication costs
for the single agents while, at the same time, minimizing
the loss of coordination due to the decentralization. The
experimental results from extensive simulations have shown
that we could balance the trade off between computation
vs. coordination with the decentralized system in general
performing within 10-30% with respect to a centralized im-
plementation.

We also performed an empirical sensitivity analysis of the
decentralized system since in general its performance de-
pends on the interplay of a number of aspects such as team
diversity, amount of information exchanged, and parameters
regulating the computation of plans. Unfortunately, these
aspects have correlated effects in presence of multiple agent
interactions which are difficult to predict. Our study reveals
some counter-intuitive effects and suggests that care should
be adopted when designing a distributed/decentralized sys-
tem. A number of practical lessons have been learned and
that could be applied to similar problems and/or to other
decentralized architectures derived using the same top-down
recipe. In the future we will integrate the empirical results
with formal tools so as to perform a sensitivity analysis in a
more systematic and general way. We will also soon test our
results with real robots in the context of search and rescue
scenarios. Preliminary results in this context confirm that
the system works but more systematic and comprehensive
experiments are needed.
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