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ABSTRACT
We consider on-demand car rental systems for public trans-
portation. In these systems, demands are often unbalanced
across different parking stations, necessitating costly manual
relocations of vehicles. To address this so-called “deadhead-
ing” effect and maximise the operator’s revenue, we propose
two novel pricing mechanisms. These adaptively adjust the
prices between origin and destination stations depending on
their current occupancy, probabilistic information about the
customers’ valuations and estimated relocation costs. In so
doing, the mechanisms incentivise drivers to help rebalance
the system and place a premium on trips that lead to costly
relocations. We evaluate the mechanisms in a series of exper-
iments using real historical data from an existing on-demand
mobility system in a French city. We show that our mech-
anisms achieve an up to 64% increase in revenue for the
operator and at the same time up to 36% fewer relocations.

Keywords
optimal mechanism design, electric vehicles, optimisation,
on-demand mobility, carsharing

1. INTRODUCTION
We consider the problem of optimal pricing in the emerg-
ing market of on-demand electric vehicle rentals for urban
settings. On-demand mobility is contributing to the improve-
ment of quality of municipal transportation by reducing car
ownership and, in effect, by decreasing road congestion and
offering convenient alternative commuting choices [14]. In
particular, we consider a one-way rental setting, where users
are free to return a rented vehicle to any available station
and this may be different from the departure station. While
providing flexibility for users, a major issue is the “deadhead-
ing effect”, which occurs when too many users drop their car
off in the same location and a shortage of vehicles occurs
in other locations [13]. This results in loss of bookings and
significant manual relocation costs. To address this issue
and improve revenue, we investigate novel adaptive pricing
mechanisms to incentivise users to choose different locations,
and help rebalance the system. This is a challenging problem
since different prices can be set for each origin-destination
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pair, and these prices need to be updated given the current
state of the system.

In the setting considered in this paper, a company operates
a network of vehicle stations. Each station may hold a limited
number of vehicles that are available for clients to be rented
for a certain period of time (usually limited to a few hours). A
client is free to return the vehicle to any station of her choice
(declared beforehand through a reservation system, typically
a mobile application). However, a payment is charged per
unit of use time. The operator’s revenue depends both on the
prices charged, as well as on the variable operational costs,
of which the main contributing factor is the “deadheading
effect”. This occurs when too many clients drop their cars at
the same station in a short period of time. Such vehicles need
to be consecutively relocated to different stations, especially
to the ones that have a high number of incoming clients and
low vehicle availability. Otherwise, the operator incurs losses
due to service unavailability. However, relocations require a
dedicated crew of employees, which utilises both manpower
and additional fuel (or electricity).

To address the significant costs of deadheading, we consider
adaptive pricing mechanisms, in which rental prices depend
on the origin and declared destination of the journey, as well
as on the state of the system. This approach allows the
operator to incentivise clients to choose destination stations
so that deadheading is reduced or avoided, and the numbers
of vehicles at all stations are kept balanced.

In more detail, our adaptive pricing mechanisms enable
both an improvement in revenue and a reduction in the num-
ber of necessary relocations. This is achieved by utilising
probabilistic information about the clients’ varying prefer-
ences for different destination stations when setting prices.
These different preferences may arise, for example, from flex-
ibility in the clients’ final destination or in their willingness
to walk further to their final destination given a price dis-
count. As different levels of information may be available
about individual clients in practice, we propose two pricing
mechanisms that vary in their requirements for information.

In the first approach, we assume that only general prob-
abilistic information about clients is available. Thus, the
preferred destination station of a given client is unknown
and prices are shown to the client before she chooses her
destination. In the second approach, we consider a two-stage
process where, first, the client chooses both the origin and
her preferred destination. This information is then used to
compute prices for alternative destination stations, which are
then presented to the client. For both settings, we present an
algorithm for optimising prices, and we evaluate the mecha-
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nisms using real data from an existing on-demand car rental
system in France.

To summarise, we advance the state of the art in the
following ways:

• We propose a new adaptive pricing mechanism for on-
demand mobility based on a principled probabilistic
mechanism design framework. Unlike existing work,
this considers both the income from vehicle rentals as
well as the costs from relocations, which vary dynami-
cally depending on the state of the system.

• We design a two-stage version of the mechanism, which
enables it to use more fine-grained information about
a client’s preferences and thereby achieve a higher rev-
enue.

• We conduct an experimental study of both mechanisms
using real data from an on-demand mobility system in
France, showing that our mechanisms achieve an up
to 64% increase in revenue while requiring up to 36%
fewer relocations at the same time.

The paper is organised as follows. In Section 2 we briefly
present related work. In Section 3 the problem formulation
is given. That section starts with a description of the system
and then formalises the optimisation problems we consider.
Next, in Section 4 we describe the implementation of our
two pricing mechanisms. Section 5 contains the experimental
results, and finally, Section 6 concludes the paper.

2. RELATED WORK
Due to the recent rise of popularity of on-demand mobility
services, a number of studies in the area have been pub-
lished. Solution approaches for dealing with “deadheading”
and the relocation problem have been considered for both
bike-sharing systems [22, 8, 19], as well as car-sharing sys-
tems [13, 18, 6]. Many of the existing approaches involve
mathematical programming for relocation planning, as well
as mechanisms for extracting private information about the
clients’ transportation preferences. However, there has been
no attempt to combine revenue maximising mechanisms with
the challenge of reducing variable relocation costs in the
on-demand mobility setting so far. Thus, our approach is
the first to address both revenue maximisation and reloca-
tion minimisation in one principled and concise framework.
Moreover, the presented approach seamlessly integrates with
existing booking systems and relocation policies.

The mechanisms considered in this paper are based on
an underlying optimal mechanism design problem called
the monopolist pricing problem, which considers how to set
revenue-maximising prices for stochastic client types. The
problem dates back to the work of Mussa and Rosen [17],
and it has been considered by mathematical economists for
a long time [20, 15, 2]. In the past few years, it has also
attracted the attention of the computer science community
[5, 11, 4]. Many algorithmic and complexity-theoretic results
concerning different variants of this problem were developed.
Although for the discrete set of valuations and discrete set of
possible prices it is easy to formulate linear programs, these
are exponential in size, and in general the multidimensional
pricing problem is NP-hard [9]. This makes existing work
unsuitable for the on-demand mobility settings we consider
here, as they are potentially large in scale (with dozens of

stations, large numbers of feasible prices and hundreds or
more of clients per day). Moreover, the settings are dynamic,
with clients arriving over time, and there are variable costs
associated with relocations, which also change with the state
of the system. In extending the monopolist pricing problem
to on-demand mobility systems and in proposing scalable
algorithms, we are the first to simultaneously address all of
these challenges.

3. THE OPTIMAL PRICING PROBLEM
In this section we introduce the notation, definitions and
basic assumptions of our model. We start with a high-level
description of the on-demand mobility system before detailing
the agents and the pricing problem. Our model consists of
an operator and a sequence of clients. The system consists
of M stations. A client approaches station i (called origin
station), and wishes to rent a vehicle, in order to travel to
station j (called destination station). The operator receives
payment p for the service, but also needs to cover the costs
of providing it. Costs depend on the state of the system
(which we assume is fully known to the operator) and on the
client’s choice of origin and destination pair. In our model
we consider only the variable costs caused by the need for
relocating vehicles after the client terminates the journey (all
other costs are considered fixed, and are omitted from the
model). We assume that the cost for each origin-destination
pair and for each time instant is given. In general, these
costs would depend on the way that the operator schedules
the relocations (we discuss this problem later in Section 4.3).

3.1 Model of Agents
In order to book a journey from the origin station, the client
declares her choice of destination station. We assume that
the client can be fully described by an index of her origin
station and by a vector x ∈ Ω ⊂ RM+ , called her type. The
set Ω is a fixed space of all allowed types. For a type vector
x = [x1, . . . , xM ], element xj represents the valuation per
unit time of rental associated with jth destination choice.
Moreover, it is assumed that the client’s type is drawn from
a probability distribution with density fi, for each origin
station i, which is known to the operator.1

The operator posts a set of prices for all possible destina-
tions that the client can choose to declare for returning the
car. The client’s utility is given as follows:

u(x,q, p) = x · q− p. (1)

Scalar p ∈ R is the payment per time unit that the client
makes to the system, and vector q indicates the choice of
station. Note that, since both the valuation x and the
payment p are normalised per unit of time, we can ignore
travel duration in the utility function. We denote by Q =
{q ∈ {0, 1}M :

∑M
i=1 qi ≤ 1} the set of feasible choices (that

is, we assume that each client books at most one destination).
It is assumed that clients are individually rational, and thus

would refuse any offer that results in a utility of less than zero.
Furthermore, we assume that they seek to maximise their
utility (1). Finally, from the operator’s point of view, types
of clients are i.i.d. random variables, distributed according to
the density fi, and clients approach the system sequentially

1Note we assume that each client has one fixed origin station,
i, which is were the booking is initiated, but is flexible about
the destination station, as expressed through the type x.
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(there is no competition between them). Each client entering
the system results in a transaction and we denote by τ(t) ∈
{1, . . . ,M} a random variable indicating the origin station
of the client in the t-th transaction.

3.2 Pricing Problem Formulation
It is assumed that the operator is a monopolist, and so we
neglect the potential effects of competition with providers
of similar services. The problem faced by the operator is
to determine a price schedule p(t) = [p1(t), . . . , pM (t)] that
maximises the expected revenue from a sequence of T trans-
actions, t = 1, . . . , T . By C(j, t) we denote the cost of
relocating a car that would be generated if the client selects
destination j from origin τ(t) in transaction t.

Under the above assumptions, given probability distribu-
tion densities fi supported on Ω, the distribution of origin
station τ , and cost function C(j, t), we can determine the
prices that maximise the expected revenue by solving the
following optimisation problem:

maximise:

R(p) =

T∑
t=1

∫
Ω

[
q(x) · p(t)−

M∑
j=1

C(j, t)qj(x)

]
fτ(t)(x)dx

(2)
subject to:

∀t ∀x∈Ω Ut(x) = max
q∈Q
{q · (x− p(t))} , (3)

∀t ∀x∈Ω Ut(x) ≥ 0, (4)

where q(x) ∈ Q is referred to as an allocation function and
denotes the (unique) function that maximises q · (x− p(t))
for a given type x. This vector can be seen as a function of
type x which, along with price schedule p(t), is an unknown
variable in the optimisation problem. The objective function
in (2) is the expected value of the difference between the
payment and the cost of the most preferred allocation q(x),
being sold to client of type x.

Equation (3) is called the incentive compatibility (IC)
constraint. This both defines the utility and, at the same
time, ensures that the allocation always maximises the user’s
utility. The constraint can be written as:

∀x∈Ω ∀q∈Q x · q(x)− p · q(x) ≥ x · q− p · q.

Equation (4) ensures individual rationality (IR):

∀x∈Ω x · q(x)− p · q(x) ≥ 0.

There is also a constraint on the choice of allocation function
q(x) ∈ Q embedded in the constraint (3), which, by our
definition of Q, guarantees that up to one destination is
selected.

Note that this problem can be seen as a bi-level optimisa-
tion, where an optimisation sub-problem appears in the con-
straint (3) (it can be also seen as a two-player game between
the client choosing strategy q(x) and the seller choosing
strategy p). In the next section we show how to reformulate
this problem into a single-level optimisation problem.

3.3 Solving the Pricing Problem
The problem (2)–(4) is difficult to solve in its general form.
Specifically, the cost function C(j, t) is usually not known in
advance, but its values for any transaction t can be accessed
only at the time of that transaction. Prediction of these

costs is a challenging problem, as it involves predicting future
demand and station occupancy levels. Instead, here we use
a heuristic cost function (see Section 4.3) and decompose
the problem into separate optimisation problems for each
transaction t = 1, . . . , T . This results in a myopic approach
to the revenue-maximisation problem, but, in return, allows
us to work with optimisation problem instances of realistic
sizes.

Furthermore, the IC constraint (3) involves quantification
over the entire set of types Ω. However, it is known that this
constraint is equivalent to the requirement that U(x) is a
convex continuous function on Ω [15]. Considering this, the
formulation of the pricing problem for a single transaction
can be written as an optimisation problem over unknown
utility functions U :

maximise:

R(U) =

∫
Ω

[x · ∇U(x)− U(x)− C(x)] fτ(t0)(x)dx (5)

subject to:

U is convex continuous on Ω, (6)

C(x) =

M∑
j=1

C(j, t0)∇Uj(x), (7)

∀x∈Ω U(x) ≥ 0, (8)

∀x∈Ω ∇U(x) ∈ Q. (9)

Here, the value t0 is an index of the considered transaction.
Given an optimal U∗, the optimal prices can be computed
using the definition of utility:

p∗(q) = x · q− U∗(x). (10)

This “dual” formulation constitutes a problem of calcu-
lus of variations with the “non-standard” constraint that
the unknown function must be convex. Since even for stan-
dard probability distributions fi analytical solutions are not
known, in practice, problems of this kind are solved by means
of discretisation and approximation [7, 16]. However, the
efficiency of general solution methods (such as the finite dif-
ference method or the finite element method) suffer from the
high dimensionality of the solution space. The dimensionality
can sometimes be reduced by disregarding stations of low
valuations in the clients’ type, but can still be considerably
high in practice.

Fortunately, the dual formulation (5)–(9) allows for ap-
plying a very efficient solution method that is based on
discretisation and sampling. Instead of solving the problem
for an unknown continuous function U , we construct a discre-
tised problem by sampling N points xi ∈ Ω from the client’s
type distribution, and restricting the solution only to the
values U(xi), i = 1, . . . , N . The sampling is carried out using
Markov Chain Monte Carlo (e.g., Metropolis-Hastings algo-
rithm). Given the samples, we construct a linear program,
which can be solved efficiently by standard methods. In the
discretised problem, the constraint (6) becomes (13), and is
easy to handle [10, 3].

Thus, the discretised problem is the following:

maximise:

1

N

N∑
i=1

[(xi − ci) · ∇U(xi)− U(xi)] (11)
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subject to:

∀i=1,...,N U(xi) ≥ 0, ∇U(xi) ≥ 0, (12)

∀i,j=1,...,N ∇U(xj)(xi − xj) ≤ U(xi)− U(xj), (13)

∀i=1,...,N ∇U(xi) ∈ Q, (14)

where ci = [C(1, t0), . . . , C(M, t0)]. In this problem, the
unknown (scalar) variables are U(xi) and ∇U(xi), for i =
1, . . . , N .

The above formulation is useful if we can sample from
distribution fi. We will also consider a simple special case
of the problem (2)–(4) in which the distribution of clients’
types is discrete, and for each of a finite number of possible
valuation vectors x(1), . . . ,x(K), we have ρk = Pr[x = x(k)],
k = 1, . . . ,K. In this case, we may discretise the original
formulation directly. Let φ̂j be the price associated with the
jth destination. Let q̂kj be the variable denoting allocation
of jth station to the client of type xk (i.e., q̂k = q(xk) as a
vector), for k = 1, . . . ,K. We obtain:

maximise:
K∑
k=1

ρk

M∑
j=1

q̂kj
(
φ̂j − C(j, t0)

)
(15)

subject to:

∀k
M∑
j=1

q̂kj
(
x

(k)
j − φ̂j

)
≥ 0, (16)

∀k ∀l
M∑
j=1

q̂kj
(
x

(k)
j − φ̂j

)
≥ x(k)

l − φ̂l, (17)

∀k
M∑
j=1

q̂kj ≤ 1. (18)

In order to solve this mixed-integer problem (MIP) using
standard methods we apply appropriate linearisation [1] of

the mixed terms ẑkj = q̂kj φ̂j . We obtain:

maximise:
K∑
k=1

ρk

M∑
j=1

(zkj − C(j, t0)q̂kj) (19)

subject to:

∀k∀j zkj −Bq̂kj ≤ 0, (20)

∀k∀j φj +Bq̂kj − zkj ≤ B, (21)

∀k∀j zkj − φj ≤ 0, (22)

∀k
M∑
j=1

q̂kjxkj −
M∑
j=1

zkj ≥ 0, (23)

∀k∀l
M∑
j=1

q̂kjxkj −
M∑
j=1

zkj ≥ xkl − φl, (24)

∀k
M∑
j=1

q̂kj ≤ 1. (25)

Here B is the maximum price allowed to be posted. Unknown
variables zij , as well as φj , are nonnegative continuous, while
q̂kj are a binary variables.

Alternatively, we may reformulate (5)–(9) for discrete dis-
tribution of types. By substituting the formula for utility
uk = q̂ · (x− φ̂) into (15)–(18) we derive:

maximise:

K∑
k=1

ρk

M∑
j=1

(q̂kjxkj − q̂kjC(j, t0)− uk) (26)

subject to:

∀i∀j uj − ui ≥
M∑
l=1

q̂il(xjl − xil), (27)

∀k
M∑
j=1

q̂kj ≤ 1. (28)

This formulation, with new nonnegative continuous vari-
ables uk, is very concise and allows for computing solution
very fast, which is suitable for real-time applications. In
the realistic settings considered in Section 5, the solution is
typically found in less than 3 seconds on a standard laptop.

4. MECHANISM IMPLEMENTATIONS
The total expected revenue of the operator is the sum of
expected revenues (2) from transactions within the considered
planning horizon. However, as we have stated in the previous
section, costs of transactions are usually not known to the
operator before the previous transactions are completed. This
is because these costs, being caused by the need for relocating
vehicles between stations, depend on both the instantaneous
vehicle supply at all stations, and on the origin station of
the current client, as well as on the types of the next clients
to come. The supply, in turn, is influenced by the outcomes
of previous transactions, that depend on prices that were
previously posted. The actual costs of relocation clearly
depend also on the relocation schedule used by the system’s
operator. Since the exact costs are hard to determine in
advance, we assume in our model that they are provided in
an online fashion for incoming transactions.

In the following, we propose two specific mechanisms for
adaptively computing prices. They vary in the information
they use about individual clients, and both are parameterised
by the costs of the current transaction. This is followed by a
discussion of how we estimate relocation costs in practice.

4.1 One-stage mechanism
Our first adaptive pricing mechanism uses only general prob-
abilistic knowledge about the next client, as given by fi. In
this mechanism, the client receives a set of posted prices,
one for each destination. Prices are computed using the
solution of the monopolist pricing problem from the previous
section, based on the current cost estimates. The mechanism
is myopic, in the sense that it computes prices based on a
relocation cost heuristic which depends on the state of the
system. This assumption is justified by the difficulty of reli-
ably estimating costs far into the future, but it also allows for
applying an arbitrary relocation policy in the system (which
is likely to have a major influence on the costs). The way
that prices are computed does not depend on the relocation
scheme. Instead, the prices simply adapt to the current state
of the system, which is partially influenced by the underlying
relocation scheme. It is assumed that we have access to the
estimated probability distributions of clients’ types, based
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on the payments made so far for each origin–destination pair
of stations. These parameters can be updated in an on-line
fashion as well, as new clients participate in the system.

We call this mechanism one-stage, since the client makes
only a single choice of their return destination. A solution
of the monopolist pricing problem contains the information
of revenue-maximising prices, given the distribution of the
client’s willingness to pay and the projected costs of delivering
the services. Depending on the type of probability distribu-
tion we have available, we would choose a different solution
method. If the distribution is discrete over selected valuation
vectors x, we are able to use either the MIP (19)–(25) or
(26)–(28). If the distribution is continuous, and we are able
to sample from it (using, e.g., a Monte Carlo method), then
we assume that we have pre-sampled points {xi}Ni=1, and we
would use LP (11)–(14). All of these scale to problems of
realistic sizes.

4.2 Two-stage Mechanism
The revenue generated by a pricing mechanism can be signif-
icantly improved if more information about a client’s type
is available. In on-demand mobility systems, we are deal-
ing with many different classes of clients (e.g., commuters,
shoppers, leisure users), whose respective distributions of
valuations could be substantially different. However, in the
one-stage mechanism, the general distribution fi is used to
compute prices, and so they are adjusted to an “expected”
client, where any potential class-related information is lost.
A potential improvement can be achieved if we are allowed
to extract the “class” information of a client. A reasonable
option to model this (and one that can potentially be learnt
from historical data) is to use type distributions fi,k, which
define probabilities of valuations of a client departing from
station i and with a most preferred destination k (in the
absence of prices).

This can be realised in several ways. A simple approach is
to ask the client to declare her destination before showing
the prices. Such a mechanism, however, will be susceptible
to strategic manipulations. A client may choose to misreport
the true highest-valued destination, when the cost associated
with that station is higher than the cost associated with
another station. The mechanism may then post a lower
price for the latter station, that is far below the true client’s
willingness to pay for it. However, in order for the client to
act strategically, she would need to know the actual costs
associated with each station, which is private information of
the mechanism. A slightly better approach is to offer price
discounts for switching after a client has already chosen a
return destination. An initial client’s choice is made given
the prices computed by the one-stage mechanism, described
in the previous subsection. Such commitment reveals the
client’s class k, as the client does not know if she will be
offered different prices. However, at some later point in time,
if the distribution of vehicles has changed, a client would be
presented with a new set of prices. They may then choose a
lower price, on the condition that they agree to switch to a
different destination.

We call this mechanism two-stage, as it involves two deci-
sions on the client side to be passed to the mechanism: first,
the declaration of a preferred destination station, either de-
clared directly (which is what we assume in our experiments
in Section 5) or based on an initial set of prices, with the
opportunity to switch to another destination, once the final

prices are shown. As previously noted this mechanism is
not always incentive compatible. However, instead of asking
directly, such data could be derived from the history of use.

4.3 Modelling Relocation Costs
In this section, we now explore how to model relocation costs
given the current state of the system. The problem of deter-
mining an optimal relocation policy can, in its simplest form,
be modelled as a classic transportation problem [21]. How-
ever, this does not consider the impact of slight imbalances
in the system, before any relocations are required. Hence, in
order to estimate the costs used in our mechanisms, we use
the following approach. Let ni,t be the current occupancy at
station i, i.e., the current number of cars at the station. For
each station i, there is a target occupancy interval, defined
by an upper bound n∗i and a lower bound n∗i .

For example, it may be desirable to have about 50% of each
station capacity used most of the time (in order to keep room
for incoming cars, as well as to provide high availability).
We would then set n∗i = n∗i = 1

2
ni,max, where ni,max is the

ith station’s capacity (number of installed charging slots).
The operator might want also to set higher n∗i for popular
departure stations, and lower n∗i for popular destination
stations.

Let us denote by C̃(i, j, t) the cost2 of relocating one vehicle
from station i to station j. We define this cost as follows:

C̃(i, j, t) = Csource(i, t) + Cdest(j, t),

where:

Csource(i, t) =

 −γ ifni,t > n∗i ,
δ ifni,t < n∗i ,
0 otherwise,

Cdest(j, t) =

 −γ ifnj,t < n∗j ,
δ ifnj,t > n∗j ,
0 otherwise,

Parameters γ and δ need to be selected appropriately. We
address this problem in Section 5.

It should be noted that, in practice, a good relocation
policy requires considering many factors, which are not ad-
dressed in this paper. These factors include scheduling re-
locations for appropriate time periods and assigning staff
members to selected locations [23], [12]. However, our pricing
mechanism is not specific to a particular relocation policy
and so can co-exist with arbitrary policies.

5. EXPERIMENTAL EVALUATION
We have validated our model in a series of simulations, using
data from an on-demand mobility system operating in the
French city Grenoble. The data covers five months (Octo-
ber 2015 – February 2016) of service provided at 28 rental
stations, as shown in Figure 1, and it consists of 4,139 trans-
actions. More specifically, we used this data to estimate
the parameters of a probabilistic model of the clients’ types.
The goal of the experiments was to compare the generated
income (i.e., the money collected from clients for the rental
service) and number of performed relocations, using different
pricing mechanisms, including a flat pricing mechanism that
is current in use in Grenoble.

2We then have C(j, t) = C̃(τ(t), j, t).
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Figure 1: Map of Grenoble with stations of the existing car
sharing system marked by numbers from 1 to 28. The radius
of each circle indicates the demand level for the service, as
estimated from past data.

5.1 Distribution of Client Types
We used a mixture of multivariate normal distributions for
modelling the clients’ types generated in our simulations.
Each of the mixture’s component distributions corresponds
to a “class” of clients. Each class is associated with a certain
destination, which is valued the most by the members of that
class. We index classes by origin-destination pair (i, k). For
each class (i, k) we define a multivariate normal distribution

with means µ(i,k) = (µ
(i,k)
1 , . . . , µ

(i,k)
n ), where each µ

(i,k)
j is

the mean valuation of a service that departs from the ith
station and terminates at the jth station. For each class,

we set a maximum mean valuation µ
(i,k)
k := µ̂ik (estimated

from the “flat price” scheme, see below), as the kth station
is valued the most by the members of that class of clients,

on average. The remaining mean valuations µ
(i,k)
j , for j 6= k,

diminish according to the distance djk between stations j
and k:

µ
(i,k)
j = µ̂ik exp

(
−d2

jk/α
)
, (29)

where α is the parameter controlling how the valuation di-
minishes over distance. The greater the value of α, the less
the valuation is diminished, i.e., clients are more willing to
switch their destinations. Figure 2 shows some examples
for how the mean valuation diminishes for various stations
that are at increasing distances from a preferred destination
station (10 in this example) and for different values of α.

This way we obtain a multivariate normal distribution with
mean µ(i,k) for each class. We denote by fi,k the density
function of each such distribution. The multivariate normal
model has distribution given by fi =

∑M
k=1 bi,kfi,k, where

bi,k is the probability that a random client belongs to class
(i, k) (estimated from the data of departures). The journey
durations were modelled by random variables following an
exponential distribution, with expected duration parameters
estimated from data.

Figure 2: Assumed change in valuations of alternative desti-
nations for random client who wants to reach station with
index 10, assuming different values of parameter α in (29)
(see Figure 1 for locations of the stations).

In order to estimate an average price that clients are willing
to pay for the services, we used records of real transactions
in the Grenoble car sharing system. These datasets contain
transactions conducted with a “flat price” scheme where of
e 1 per unit of rental time (15 minutes), except the first unit
of rental time, which was charged e 2. For each pair of origin
and destination stations, we calculated the average rental
time, in order to obtain the mean price for a unit of rental
time of each service. In our study we denote this price by µ̂ik,
for each service with origin-destination pair (i, k). Note that
this could be seen as a pessimistic estimate of valuations,
since real valuations might be higher than the fixed price. As
a result, the potential income and reduction in relocations
when using our adaptive pricing mechanisms may be higher
in practice.

For solving the optimal pricing problems, we used MIP
(26)–(28). For the input data we used a discrete probability
distribution ρ(i,j) = Pr[client books journey from i to j]. In
the one-stage mechanism we used the overall distribution of
client types from a given station i, while in the two-stage
mechanism we used the conditional distribution, given that
we know the client’s preferred destination.

5.2 Experimental Setup
In the simulations we keep track of the number of vehicles
available at every station between each journey. We start
each run from the fully balanced state, where every station
has 50% of capacity filled. The simulation then consists of
the following steps:

1. Sample a random client’s origin station i, type x, and
journey duration.

2. Determine the estimated relocation costs associated
with each destination choice j.

3. Compute prices φ∗j for each destination j, based on the
relocation costs.

4. Given the prices, compute client’s utilities uj = xj−φ∗j
of using each destination j.

5. Select destination j with maximum utility uj , or cancel
the journey if all utilities are less than zero.

6. Perform the necessary relocations, whenever the ca-
pacity of station j is exceeded, or the capacity of the
station i reaches zero.
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Table 1: Experiment with no relocations.

“flat” prices 1-stage 2-stage
cancelled income cancelled income cancelled income

52 % 530.4 39 % 988.46 37 % 864.59

The above scheme is repeated for a selected number of
sampled clients. Note that at a given time there may be many
concurrent journeys taking place. The relocation procedure
is triggered whenever the capacity of any station is violated.
The pricing mechanism, described in the Section 4, is applied
as a part of step 3 in the above scheme.

For all settings we consider, we test three different pricing
mechanisms: the “flat” pricing mechanism (originally used
in the existing car sharing system), and our one-stage and
two-stage mechanisms, which use the solutions of the opti-
mal pricing problem, as described in Section 4. Solutions
of generated MIPs were obtained using CPLEX 12.6 soft-
ware, all results are averaged over 30 runs of 100 consecutive
transactions and they are shown with 95% confidence inter-
vals (similar results are obtained for experiments with more
consecutive transactions).

5.3 Experimental Results
First, we consider a setting with no relocations at all (and we
fix α = 0.0001, n∗i = 0.6, n∗i = 0.4, γ = δ = 1.0). Here, vehi-
cles are only moved by the clients, and any transactions from
an empty origin station are cancelled,3 while full destination
stations are not available. Table 1 shows the results in this
setting, demonstrating that our adaptive pricing mechanisms
result in significantly fewer cancelled journeys, i.e., more
balanced vehicle availability, and in a higher income. This is
because they incentivise clients to balance the system. Note
that the one and two-stage mechanisms provide different
results since they are using different valuation distributions
resulting in different prices and user choices. Interestingly,
the two-stage mechanism sometimes results in lower revenue.
This is because the system is myopic and sets prices to max-
imise the revenue for each transaction, without considering
how this might affect future transactions.

Next, we consider more settings with relocations. Here,
we explore different parameter values for α (controlling the
willingness to switch), n∗i , n

∗
i (target occupancy levels), γ and

δ (modelling the relocation costs). Specifically, Figures 3–
5 show settings with n∗i = 0.6, n∗i = 0.4, i.e., the target
occupancy level is between 40%–60% full, and we vary the
parameters of our cost estimation function from γ = δ = 0.7
to γ = δ = 2.0. In Figure 6, we show a setting with a
wider target occupancy level, n∗i = 0.75, n∗i = 0.25 and
γ = δ = 1.0.

Overall, it is apparent that all settings related to the cost
function estimation lead to similar performance characteris-
tics, indicating that the mechanisms are robust to choosing
different parameter values. Otherwise, several general trends
emerge from the figures.

First, in almost all cases, relocations are reduced signifi-
cantly by using our adaptive pricing mechanisms. This is
because our pricing mechanisms take into account the es-
timated costs of relocations and, as a result, increase the

3Note that the system never cancels any bookings already
made. Cancellations refer to journeys where a client ap-
proaches the system, but does not book due to either un-
availability or negative utility.

prices of stations that are outside their target occupancy lev-
els. However, when clients are almost indifferent regarding
their destination (the highest setting of α in our simulations),
they would not necessarily be redirected properly to alterna-
tive stations in cases of deadheading, which is noticeable in
a slight increase of the number of relocations.

Second, average income from our mechanisms rises signifi-
cantly as clients are more flexible in their final destination.
This is due to several reasons: clients are more likely to be
re-directed to stations that are beneficial to the system, but
the system is also generally able to post higher prices, as it
is likely that clients will still be able to find a destination
station that results in non-negative utility. For very high
values of α, our adaptive mechanisms offer an over 200%
improvement in income over the flat pricing scheme (albeit
at a slight increase in relocations). In more realistic settings,
e.g., with α = 0.0005, our adaptive schemes can result in an
increase in average income of about 64%, while simultane-
ously reducing relocations by up to 36%. Note, however, that
when clients are very inflexible (α ≤ 0.00005), our adaptive
mechanisms perform worse than flat pricing. This is likely
due to the estimated (rather than accurate) cost function and
the myopic decisions of our pricing mechanisms, which here
result in sub-optimal prices. However, these inaccuracies are
compensated by the benefits of our mechanism as the clients’
flexibility increases.

Third, the two-stage mechanism generally results in signif-
icantly higher income than the one-stage mechanism. This
is not surprising, given that it uses more information about
the clients, and is therefore able to post higher prices for the
clients’ preferred stations, thus extracting more revenue.

In conclusion, our mechanisms work well in a variety of
settings and for problems of realistic sizes. However, they
are sensitive to the clients’ willingness to switch, i.e., on the
distribution of valuations of alternative destination stations.
Yet, as soon as clients display some flexibility in their des-
tination stations, there is a clear benefit to using adaptive
pricing mechanisms.

6. CONCLUSIONS
In this paper, we proposed two revenue-maximising adaptive
pricing mechanisms for on-demand mobility systems, with
different assumptions regarding our probabilistic knowledge
of the clients’ valuations. These are the first mechanisms
that combine both the problem of setting prices to maximise
revenue with the problem of dealing with costly relocations.
We validated the mechanisms in a series of simulations based
on real data, and we showed that revenue can be increased
significantly as compared to the simple “flat” pricing scheme.
The mechanism at the same time helps to diminish the
deadheading effect, reducing the number of relocations by
up to 36%.

Future work will focus on methods for more accurately
and non-myopically predicting relocation costs and future
demands. We will also consider how to learn the distribu-
tion of clients’ types from historical bookings. Moreover, we
intend to perform user studies to elicit a client’s willingness
to switch to a nearby station to improve the user model. Fi-
nally, we will extend our mechanisms to providing incentives
not only for switching to different destinations, but also to
different origin stations or to postpone a journey to a later
time.
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Figure 3: Performance of mechanisms for different values of parameter α, with n∗i = 0.6ni,max, n∗i = 0.4ni,max, γ = δ = 0.7.

Figure 4: Performance of mechanisms for different values of parameter α, with n∗i = 0.6ni,max, n∗i = 0.4ni,max, γ = δ = 1.0.

Figure 5: Performance of mechanisms for different values of parameter α, with n∗i = 0.6ni,max, n∗i = 0.4ni,max, γ = δ = 2.0.

Figure 6: Performance of mechanisms for different values of parameter α, with n∗i = 0.75ni,max, n∗i = 0.25ni,max, γ = δ = 1.0.
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