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ABSTRACT
Online team games need matchmaking systems which can
handle a high throughput of players and form fair teams
to play matches together. We study this problem from a
theoretical perspective, by defining and analyzing a broad
model which captures many applications. In the most ba-
sic formulation, we desire a data structure which supports
adding and removing players, and extracting the best pos-
sible games. We design an efficient solution, where with
n players in the structure, operations can be performed in
O(logn) time. We then consider a natural extension one
might want in a team game setting, where each team has
different roles, and each player is only willing to play in
some of these roles. We show that this extension is com-
putationally intractable, conditioned on the popular 3SUM
conjecture; nevertheless, we are able to design an efficient
constant-factor approximate solution. Our results help ex-
plain recent practical issues with the matchmaking systems
in some of the most popular online games. We also prove
similar results in an offline setting, which has many applica-
tions to matching and partitioning beyond online games.

Keywords
Cooperative games: theory & analysis; Game theory for 
practical applications

1. INTRODUCTION
Matchmaking is one of the most important aspects of on-

line games. No matter how well-designed a game is, being
matched against an opponent with significantly more or less
skill and familiarity with the game can ruin the experience.
Meanwhile, the experience may never even begin if match-
making takes too long and players get bored waiting in queue
to play. Hence, matchmaking systems need to be computa-
tionally efficient, and rapidly create balanced matches.

The matchmaking problem for two-player games like Chess,
Hearthstone, or Street Fighter, has been studied recently
[14, 5]. However, many of today’s most popular games
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are multiplayer games in which two teams face each other.
League of Legends has over 100 million players who play for
over one billion hours each month, Dota 2 has over 10 mil-
lion players per month, and Counter Strike: Global Offensive
has 3 million players who play for over 250 million hours per
month. These are three of the five most played online games
today, and a match in one of these games is played between
two teams which typically consist of five players each [25].

In this paper, we undertake the first theoretical study of
team matchmaking, to the best of our knowledge. While we
focus on applications to online games, our model and results
are very general and apply to other natural settings where
individual agents are divided into teams, such as designing
clinical trials and other experiments, dorm room assignment,
and recreational sports.

1.1 Role-restricted queues
We were inspired to study team matchmaking from a theo-

retical perspective by recent practical issues with the match-
making systems in some of the most popular online games.
In most games, players enter a ‘queue’ to be put into a
match, and the matchmaking system creates pairs of teams
to play against each other. However, many of these games
have different ‘roles’ that players might play on their team.
For instance, one may be a tank character, while another is
a healer, and another is a sniper. It can be problematic if a
team is formed where everyone wants to play the same role.

To solve this issue, many games recently moved to a ‘role-
restricted queue’, in which players pick some desired roles
when they enter the queue, and teams are formed where
each player can play in a desired role. However, these role-
restricted queues have been widely unsuccessful in practice.
In late 2015, League of Legends made such a switch, which
widely angered players, as queue times went up, and game
balance went down [22, 23]. Another popular game, Heroes
of the Storm, also had much longer queue times when they
restricted which characters could be together in a team [2].

Our results help explain this issue. Our main results show
that the basic formulation of team matchmaking has a sim-
ple and efficient solution, but that the role-restricted queue-
ing problem is computationally intractable (given a popular
assumption from complexity theory). Hence, it is impossible
to implement a role-restricted queue with short queue times
which makes fair matches.

1.2 Model
An important ingredient of a matchmaking system is a

well-defined measure to determine the best matches to form.
Most online games only release vague information about
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what measures they optimize. We therefore consider a broad
class of imbalance functions, which capture the known pri-
orities of the three most popular games mentioned above by
an appropriate choice of parameters. In these games [4, 28,
29], a game is informally said to be balanced if the following
two properties are satisfied:

• Fairness: the two teams have roughly equal chance of
winning, and

• Uniformity: there is not much deviation between the
best and worst players in the game.

Each player has a skill rating which is maintained similar to
the ELO rating system [13, 17, 19], and these skill ratings
can be used to determine how well a game satisfies these two
requirements.

Formally, the matchmaking problem is as follows. Given
a set R of n players, a game is a pair of disjoint sets X and
Y of k players each. The parameter k should be thought of
as a constant, for instance k = 5.

Each player r ∈ R has an associated skill level sr, which is
a nonnegative real number. An imbalance function f maps
games to nonnegative real numbers, where games mapping
closer to zero are more desirable. Given an imbalance func-
tion f , a game (X,Y ) minimizing f among all those which
can be formed with the n players is called a best game. As
described above, imbalance functions will have a fairness
component and a uniformity component.

1.2.1 Fairness
In order to determine whether a game is fair, we need a

measure of the skill of a team. A simple choice would be the
sum of the skills of the team members,

s(X) =
∑
x∈X

sx.

However, this choice might not be sufficient to capture the
team dynamics in many applications. Depending on how
much of an impact a highly-skilled player can have on a
team, a team with one skilled player and many unskilled
players might have a good chance or almost no chance of
winning against a team of moderately-skilled players. This
same idea is captured by the standard notion of the p-norm
of a vector1, where we can select higher values of p to mean
that large entries have a bigger impact on the total norm.
Hence, for real parameter p ≥ 1, we define the p-skill of a
team, denoted sp, to be the p-norm of the team’s vector of
player skills,

sp(X) :=

(∑
x∈X

spx

)1/p

,

and the p-fairness of a game, denoted dp, to be the difference
of p-skills,

dp(X,Y ) : = |sp(X)− sp(Y )|

=

∣∣∣∣∣∣
(∑

x∈X

spx

)1/p

−

(∑
y∈Y

spy

)1/p
∣∣∣∣∣∣ .

1Recall that for a vector v = (v1, v2, . . . , vn), its p-norm,
parameterized by a real value p ≥ 1, is defined as ||v||p :=(∑n

i=1 |vi|
p
)1/p

. It is sometimes also called the `p norm. For
p = 1 it is sometimes called the Manhattan distance, and
for p = 2 it is also called the Euclidean distance.

The p-fairness of a game is a nonnegative real value, with 0
being the most fair.

When we pick p = 1, we get the simple choice from above
that the skill of a team is the sum of the skills of the team
members. In the limit as p → ∞, we get that s∞ is simply
equal to the skill of the most skilled player on the team,

s∞(X) = max
x∈X

sx.

Choices of p in-between interpolate between these two op-
tions.

1.2.2 Uniformity
Even though a game is fair, it might still not be fun for

all the players involved. If a game involves players with a
wide variety of skill levels, the less skilled players might feel
that they are just being strung along by the more skilled
players rather than controlling the flow of the game and en-
joying themselves. Similarly, an unskilled player in a game of
mostly skilled players might feel demoralized, or anger their
teammates. As mentioned above, the most popular games
have identified this issue, and their matchmaking systems
aim to avoid games with a large deviation between the best
and worst players in the game.

The natural choice to measure the deviation of a set Z =
X ∪ Y of player skills is the standard deviation,

v(Z) :=

√
1

|Z|
∑
z∈Z

(sz − µZ)2,

where µZ :=
∑

z∈Z sz/|Z| is the mean skill of Z. But again,
this might not be tuned well to all applications. In some
settings, having some players with much more or less skill
can be fine, as long as most players’ skill levels are around
the mean. In others, a single player whose skill level devi-
ates substantially from the mean can be a big issue. (How
important it is to minimize deviation in the first place also
varies between applications. This is a separate issue which
we discuss soon.)

Just as with fairness, choosing a different norm or mean
to take of the vector of deviations from µZ captures this
distinction well, and it is a standard technique in statistics.
We introduce a real parameter q ≥ 1 to measure this, and
define the q-uniformity, denoted vq, to be the q-norm of the
deviations from the mean,

vq(Z) :=

(
1

|Z|
∑
z∈Z

|sz − µ|q
)1/q

.

The q-uniformity of a game is, again, a nonnegative real
value, with 0 being the most uniform.

When q = 2, we recover the standard deviation. But,
for other choices of q, this is the qth root of the qth central
moment2 from statistics of the set of skill levels. When
q = 1, vq is the average deviation from the mean, and so
many skill levels must be far from the mean to decrease the
uniformity substantially. As q →∞, we get that v∞ is just
the farthest value from the mean,

v∞(Z) = max
z∈Z
|sz − µ|,

2Actually our definition only agrees with central moments
when q is an even integer, since the typical definition uses
sz−µZ rather than |sz−µZ |. Taking absolute values makes
more sense in our application, where having skill less than
the mean should lead to less uniformity, not more.
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and so a single player whose skill level is far from the mean
makes the uniformity low on their own. Again, choices of q
in-between interpolate between these options.

1.2.3 Imbalance Function
We consider imbalance functions, parameterized by three

positive real constants α, p, q with p, q ≥ 1, of the form

f(X,Y ) := α · dp(X,Y ) + vq(X ∪ Y ),

where dp is the p-fairness, and vq is the q-uniformity, as de-
fined above. The imbalance of a game is a nonnegative real
number, with 0 being the most balanced. The parameter α
can be picked depending on how important fairness is rel-
ative to uniformity in the particular application. A large
α means that fairness is more important, while a small α
means that more weight is put on uniformity. Hence, for in-
stance, if uniformity has little importance in one application,
a larger choice of α can reflect this.

In the data structures we design, we also allow for the
choices p = ∞ or q = ∞ as discussed earlier. Throughout
our results, we use the convention that if p =∞ then 1/p =
0, and similarly for q.

1.2.4 Queueing Problem
Now that we have defined imbalance functions, we need a

model of how a matchmaking system will process tasks. The
matchmaking systems in popular online games have large
numbers of players constantly entering the matchmaking
queue, and so they also need to be making new games at
a consistently high rate. We model this problem as a data
structure problem, where players can be added to and re-
moved from the data structure as they come and go, and
the game host can query for the best new game to make as
frequently as they can support it.

A game queue with imbalance function f is a data struc-
ture which stores a collection of players and supports the
following operations:

• Insertion: insert a new player into the queue

• Deletion: remove a player from the queue

• Query: find a best 2k-player game (X,Y ) amongst the
players in the queue

Our results apply to reasonable variants on this model as
well.

1.2.5 Time-sensitive Queueing Problem
In most applications, we are also interested in making sure

no player waits for too long in the queue. A time-sensitive
game queue additionally stores, for each player r, the time
tr which that player was inserted into the queue. The goal
now is not necessarily to pick the best game, but also to
ensure no player is waiting for too long.

There are various mechanisms for this which all of our
results support. One example is to augment the imbalance
function f by defining a new time-sensitive priority function
g defined by

g(X,Y ) := f(X,Y ) + β · min
r∈X∪Y

tr,

where β is an appropriate positive real parameter which dic-
tates how important it is that players do not wait for too

long in the matchmaking queue. By finding a game min-
imizing g rather than minimizing f , we are allowing more
leniency in how imbalanced a game is when it includes a
player who has been waiting for a long time. It is worth
noting that with this definition of g, if a player r has been
waiting a long time in the queue, and we make a game in-
volving r as a result of this, we are still making the game of
least imbalance that includes r.

1.2.6 Role-Restricted Queueing Problem
An important aspect of many team games, including League

of Legends and Dota 2, is that a team will consist of players
taking on a variety of different roles. For instance, one may
be a tank character, while another is a healer, and another
is a sniper. It can be problematic if a team is formed where
everyone wants to play the same role. This can be solved
by including an option for players to select which roles they
are willing to play when they enter the queue, and then only
creating games where each player can play a desirable role.
We model this via the role-restricted queueing problem.

A role-restricted player p has a skill score sp and also a
subset rp ⊆ {1, . . . , k} of roles they are willing to play. A
game g = (X,Y,m) in a role-restricted queue consists of two
sets, X and Y , of k players, along with a map m : X ∪ Y →
{1, . . . , k} from players to roles such that each team has
one player in each role, and each player p is mapped to a
role from rp. All the other notions are the same, including
the definition of the time-sensitive role-restricted queueing
problem.

1.2.7 Offline Partitioning Problem
In applications like dorm room assignment or recreational

sports, it is more natural to consider the offline partitioning
problem where, given n players, we would like to partition
them into n/(2k) games. There are many sensible options
for what objective to optimize for in this partitioning. For
illustration in our results, we choose to minimize the imbal-
ance of the most imbalanced game we create. However, we
later discuss other alternative options.

Using data structures for the queueing problem can give
suboptimal results for the partitioning problem, since re-
moving the best game might leave the remaining players in
a very imbalanced game. We will nonetheless see that we
can get similar results for the partitioning problem as for
the queueing problem, using almost the same techniques.

1.2.8 Further Extensions
Although we define many variants on the queueing prob-

lem, a unifying property that we will see is that the same
main ideas work, both to design data structures and to prove
lower bounds, in each regime. The extensions we focus on
model the matchmaking systems for the applications we dis-
cuss, but other extensions to imbalance functions of the
queueing problem should also be amenable to our methods;
we discuss this further in the future work section.

1.3 Other Applications
Our model and results are very general and apply to many

natural settings outside of online games where individual
agents are divided into teams, such as:

Designing clinical trials: human participants volunteer
and are put in a queue, from which we wish to extract con-
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trol and experiment groups for trials which are ‘balanced’ in
terms of parameters relevant to the trial (age, health, etc)

Other marketing or scientific experiments: the queueing
and partitioning problem can similarly be used to design
unbiased experiments in many areas, including partitioning
subjects either online or offline in A/B testing

Dorm room assignment : many schools divide students
into dorms in ‘fair’ or evenly distributed ways which could
be modeled by our imbalance functions

Recreational sports: players need to be partitioned into
balanced teams for games other than online games, like in
recreational sports leagues

2. OUR RESULTS
First, we give an efficient data structure for the queueing

problem.

Theorem 1. For any constant k, there is a data struc-
ture for the queueing problem which takes O(logn) time per
insertion, deletion, or query.

In contrast, we give strong evidence that there is no ef-
ficient data structure for the role-restricted queueing prob-
lem. We give a lower bound conditioned on the popular
3SUM conjecture from theoretical computer science. Given
a multiset S of n integers, the KSUM problem asks to find
K elements of S which sum to zero. The 3SUM conjecture
states that any algorithm solving this problem with K = 3
requires time n2−o(1). This conjecture is widely believed
and has been used to prove lower bounds in many areas
like computational geometry, graph algorithms, and pattern
matching [16, 24, 20]. We will use it to prove lower bounds
for team matchmaking problems.

Theorem 2. Any data structure for the role-restricted
queueing problem must require n1−o(1) time per insertion or
n2−o(1) time per query when k ≥ 3, assuming the 3SUM
conjecture.

Assuming the more general KSUM conjecture, which as-
serts that the current best known algorithms for KSUM
are essentially optimal, we can improve the lower bounds to
nk−2−o(1) time per insertion or nk−1−o(1) time per query.
On the scale of the most popular online games, even linear
time per query is computationally intractable.

With Theorem 2 in mind, we look towards approxima-
tions. Since skill ratings are only an approximation of a
player’s skill in the first place, an approximation algorithm
is sufficient for many applications. We are able to construct
an efficient data structure which achieves a constant factor
approximation for the role-restricted queueing problem. For
notational convenience, we define ρ := 2k1/q(1 + α). Notice
that ρ > 1 is a constant defined in terms of the parameters
of the imbalance function.

Theorem 3. For any constant k, there is a data struc-
ture which achieves a ρ-approximation for the role-restricted
queueing problem and takes O(logn) time per operation.

All of the above results, including the upper bounds, hold
for time-sensitive queues as well. We also emphasize that
these results hold for any choice of the parameters defining
the imbalance function.

We are able to prove similar types of results for the offline
partitioning problem. We find that the problem is already
hard to solve exactly, even without any role-restriction.

Theorem 4. The offline partitioning problem requires time
n2−o(1) when k ≥ 3 assuming the 3SUM conjecture.

We then design a constant-factor approximation algorithm
which runs in near-linear time.

Theorem 5. For any constant k, there is a O(n logn)
time ρ-approximation algorithm for the offline partitioning
problem.

3. RELATED WORK
Matching problems have been among the most important

problems in combinatorial optimization since the seminal
work of Edmonds [11, 12]. Matchmaking for two-player
games in an online setting was recently studied in [14]. The
offline setting for two-player games might be most reason-
ably modeled as a maximum-weight bipartite matching prob-
lem, which can be computed exactly in subcubic time [27]
and approximated in linear time [10]. The problem of dy-
namically maintaining a maximum weight bipartite match-
ing also has lower bounds conditioned on the 3SUM conjec-
ture and other popular conjectures [1].

Much work has focused on devising systems for rating how
skilled players are, in order to predict whether a two-player
or team game is fair, such as [17, 19]. We largely abstract
this problem away in this paper. There has also been sub-
stantial research on whether the parameters of the match-
making systems in particular games are tuned correctly; a
sample includes [8, 18, 30].

Our data structures have a fixed-parameter tractability
(FPT) flavor to them. The big-O notation in the times per
operation hides large, exponential factors in the team size
parameter k. In most applications, k is such a small con-
stant that these factors do not preclude our data structures
from being practical. FPT algorithms have been designed
for numerous other matching, partitioning, and optimization
problems; see [6] for a survey.

4. EFFICIENT DATA STRUCTURE FOR
MATCHMAKING

In this section, we prove Theorem 1 by designing an effi-
cient game queue data structure. We then discuss the prac-
ticality of our data structure.

Restatement of Theorem 1. There exists a game queue
which performs insertions and deletions in time ((1+α)k)O(k)·
log(n) and queries in time O(k).

Our data structure relies on the relationship between the
fairness component dp and the uniformity component vq
which compose the imbalance function. While games with
high values of vq might have high or low values of dp, games
with low values of vq must also have low values of dp. In-
tuitively, if there is not much deviation in the skill levels of
a set of players, then it shouldn’t be hard to partition them
into two teams in a fair way. Lemma 1 formalizes this idea.
(The proofs of Lemmas 1 and 2 can be found in Appendix
A).

Lemma 1. Let S and T be collections of 2k players such
that

(1 + α)(maxS −minS) < k
− 1

q

(
maxT −minT

2

)
,
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where maxS := maxr∈S sr, and similarly for minS ,maxT ,
and minT . Then S can be partitioned into two teams to
form a game whose imbalance is less than the imbalance of
any game formed by a partition of T .

Hence, our data structure can limit its search space to
games which are fairly uniform and guarantee that it is look-
ing at some of the best games. Lemma 2 shows exactly how
to limit the search space without eliminating the best games
from consideration.

Lemma 2. Let P = {p1, ..., pn} be a collection of n play-
ers such that for all i ∈ [1, n − 1], spi ≤ spi+1 . Then, there
exists a best game (X,Y ) over the imbalance function with
parameters α, p, and q such that

max
pi∈X∪Y

(i)− min
pi∈X∪Y

(i) ≤ 4(1 + α)k
1+ 1

q .

Lemma 2 shows that, for each player p in our queue, if p is
in the best game, then this game can be found by searching a
small set of games containing p, and any insertion or deletion
of a player changes this set of games for only a small number
of other players.

Proof of Theorem 1. The main idea is to keep a list
l = [p1, ..., pn] of all players sorted by skill, and a min-heap
containing one game gpi = (Xpi , Ypi) per player pi, prior-
itized by f(Xpi , Ypi). The game gpi will be the most bal-
anced possible game containing pi such that if pj is in gpi ,

then i ≤ j ≤ i + 4(1 + α)k
1+ 1

q . Hence, by Lemma 2, gpi
is the best game in which pi is the least skilled player, and
since we do this for each player, our min-heap is guaranteed
to contain the overall best game. To retrieve a best game,
we will simply query the top of the heap.

To insert a player p into the game queue, simply insert
p into l and recompute the new optimal game gpi for the

4(1+α)k
1+ 1

q players pi whose game could have been affected
by this insertion. Each of these updates can be done in time

O

((
4(1 + α)k

1+ 1
q

2k

)
·

(
2k

k

)
· 2k

)
= kO(k)

by simply testing all possible games which can be formed

by each pi and the 4(1 + α)k
1+ 1

q players after pi in l. This

yields a total runtime of 4(1 + α)k
1+ 1

q (log(n) + kO(k)) =

((1 + α)k)O(k) log(n).
Player deletions are performed nearly identically and can

be carried out in the same time ((1 + α)k)O(k) log(n). 2

Our data structure as given also works in the time-sensitive
setting with the same runtime guarantees.

Notice that while the time bounds given in Theorem 1
grow quickly as a function of k, in practice k tends to be
a small constant like 5, and so even the exponential factor
in k is fairly insignificant. Furthermore, parts of the game
optimization step of insertions and deletions to our data
structure have a simple reduction to the PARTITION prob-
lem3, which is NP-hard but known to be efficiently solvable
in practice [21], so an implementation without great worst-
case guarantees but with good practical results is possible.

3The PARTITION problem asks whether a collection of n
real numbers can be partitioned into two collections of size
n/2 with the same sum.

5. HARDNESS OF ROLE-RESTRICTED
MATCHMAKING

In this section, we give the main ideas behind Theorem
2, a lower bound against data structures for role-restricted
queueing. A key ingredient of our lower bound is a stan-
dard assumption about the hardness of 3SUM. However,
this assumption is actually stronger than we need to prove
intractability; we will prove the following generalization in-
stead.

Restatement of Theorem 2. Any data structure for
the role-restricted queueing problem must require nc−1−o(1)

time per insertion or nc−o(1) time per query, assuming the
(2k − 2)SUM problem requires nc−o(1) time to solve.

The standard assumption is that 3SUM requires n2−o(1)

time, but weaker assumptions still prove intractability re-
sults. For instance, even the substantially more modest
assumption that 8SUM requires n1.5−o(1) time is sufficient
to prove that the problem is intractable in our applica-
tion with k = 5. The fastest known algorithm for (2k −
2)SUM uses a folklore meet-in-the-middle approach and runs
in O(nk−1 logn) time. Hence, for example, a data structure
for the role-restricted queueing problem for k = 5 where
each operation takes O(n2.99) time would already imply a
faster algorithm for 8SUM than is known.

Proof of Theorem 2. (2k − 2)SUM is known to be
equivalent to the following problem: given 2k − 2 multi-
sets `1, . . . , `2k−2 of integers, determine whether there is a
choice of one from each list which sums to zero [15]. We give
a reduction from this to the offline role-restricted queue-
ing problem: given n players, find the best game among
them. The reduction will be such that if we can solve the
offline role-restricted queueing problem in T time, then we
can solve (2k−2)SUM in O(T ) time. The result then follows
from noting that if we can solve the role-restricted queueing
problem in P time per insertion and Q time per query, then
we can solve the offline role-restricted queueing problem in
O(n · P +Q) time.

We first further transform the (2k − 2)SUM problem. By
appropriately translating each list, we can assume that `i
only consists of positive integers when i is even, and only
consists of negative integers when i is odd, and that the
target sum is still zero. Let m1, . . . ,mk−1 be the first k − 1
odd primes. For each 1 ≤ i ≤ k − 1, let bi be the integer
between 0 and m1 · m2 · · ·mk−1 which is 1 (mod mi) and
0 (mod mj) for j 6= i. Multiply every element of all of
the multisets by m1 ·m2 · · ·mk−1, and then add bi to every
element of `2i for each 1 ≤ i ≤ k−1. Finally, create two more
lists `2k−1 and `2k, where `2k−1 consists of only the number
−M , and `2k−1 consists of only the number M −

∑k−1
i=1 bi,

where M is a large value to be determined.
We now create merged lists for each 1 ≤ i ≤ k defined as

`′i := {(a)1/p | a ∈ `2i} ∪ {(−a)1/p | a ∈ `2i−1}.

Now we can interpret these lists as an offline role-restricted
queueing instance: Each player is only willing to play one
role, and list `′i consists of the skill levels of players who
are only willing to play role i. Note that there is a solution
(X,Y ) with dp(X,Y ) = 0 if and only if the original (2k −
2)SUM was an accept instance. Because of our choice of
the bis, if dp(X,Y ) = 0, then one team must consist only of
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players from `i for i even, and the other must consist only
of players from `i for i odd.

Finally, we need to pick M large enough so that vq(X,Y )
must be very large for any valid choice of X,Y , and dif-
ferent choices of which players from `′1, . . . , `

′
k−1 to pick for

the teams hardly change vq(X,Y ), so that the best team
choice must have dp(X,Y ) = 0 if possible. It is sufficient to
pick M to be polynomially large in the maximum element
of `1, . . . , `k−1. 2

In the hard instance we constructed, each player is only
willing to play in one role. We note that a modification of
this proof also gives hard instances when, for instance, each
player is willing to play in two roles.

The hard instances we design involve situations where the
set of players willing to play in one role looks very different
from the set of players willing to play in the other roles.
We emphasize that situations like this are not necessarily
unrealistic, and actually occur in many popular online games
like League of Legends, where some roles are more popular
than others among the players at certain skill levels [26].

6. EFFICIENT APPROXIMATE ROLE-
RESTRICTED MATCHMAKING

In the previous section we gave strong evidence that there
is no efficient data structure for the role-restricted queueing
problem. We now present an efficient data structure for the
approximate problem instead.

Restatement of Theorem 3. There is a data struc-
ture which achieves a ρ-approximation for the role-restricted
queueing problem and takes time kO(k) logn for insertions
and deletions and O(k) time for queries.

At a high level, our data structure is similar to that of The-
orem 1. We will still maintain a heap of candidate games,
with the guarantee that a game within a ρ factor of opti-
mal must appear in our heap. Whereas before we kept a
candidate game for each small window players, now we will
keep a small collection of candidate games for each player
minimizing the difference in skill between the most and least
skilled players while ensuring every role can be filled. In or-
der to do this, we give an efficient datastructure solving the
problem we call the dynamic shortest interval with distinct
representatives problem, and then show how to modify this
structure in order to solve the approximate role-restricted
queueing problem.

6.1 The Shortest Interval Problem
The shortest interval problem is as follows: given k lists

l1, ..., lk of n integers, find a pair (a, b) such that for every
list li, there exists xi ∈ li such that a ≤ xi ≤ b and b− a is
minimal.

As a slight generalization, the shortest interval containing
distinct representatives problem is as follows: given k lists
l1, ..., lk of n objects p with associated rank sp, find a pair
(a, b) such that there exists distinct objects q1, ..., qk where
each object’s rank is contained in [a, b], for each i, qi ∈ li,
and b−a is minimal. We call such an [a, b] a shortest interval
containing distinct representatives.

We consider the dynamic version of this second prob-
lem. That is, we consider data structures maintaining k
lists l1, ..., lk with the following operations:

Insertion. The structure supports inserting an object p
with rank s into a list li.

Deletion. The structure supports deleting an object p
from a list li containing p.

Query. The structure supports a query for a shortest in-
terval containing distinct representatives.

In order for these structures to be useful in tracking candi-
date games, we are specifically interested in structures aug-
mented to have the following property which we call the can-
didate property. Let ≺ be some ordering of objects by rank
with ties broken consistently. Then, the candidate property
says that, for each permutation of the lists l′1, ..., l

′
k, each ob-

ject q1 ∈ l′1 contains pointers to objects q2, ..., qk such that
q1 ≺ q2 ≺ ... ≺ qk, each qi ∈ l′i, and sqk − sq1 is mini-
mal, unless there exists a q′1, ..., q

′
k−1 where q′i ∈ l′i such that

q1 ≺ q′1 ≺ q′2 ≺ ... ≺ q′k−1 ≺ qk, in which case q1 will, in
place of a pointer to qk, have a pointer to void.

Intuitively, the candidate property says that the structure
maintains a collection of k-tuples (q1, ..., qk) where each qi
in the tuple is distinct and comes from a distinct list. Each
of these tuples represents some interval with distinct rep-
resentatives, and the specific set of tuples required by the
candidate property will dictate that one of these intervals
is the smallest interval with distinct representatives. While
it is worth noting that there are other properties one might
consider which offer this guarantee, the candidate property
has the benefit of being simple to maintain in our inductive
construction.

Lemma 3. There is data structure solving the dynamic
shortest interval containing distinct representatives problem
performing insertions and deletion in time O((k+1)! log(n))
and queries in time O(1) and has the candidate property.

Our strategy will be to maintain the collections of pointers
required by the candidate property and store these collec-
tions in a min-heap which prioritizes by sqk − sq1 where for
some permutation of lists l′1, ..., l

′
k, q1 points to q2, ..., qk and

q1 ≺ ... ≺ qk.
Given this, queries are simple. We need only query the

top of the min-heap to retrieve a shortest interval containing
distinct representatives, which can be done in O(1) time.
We need only describe how to maintain the collection of
intervals admitting the candidate property upon insertions
and deletions in time O((k + 1)! log(n)).

To maintain insertions and deletions in our structure S,
we will recursively keep k interval structures S1, ..., Sk each
on a different set of k− 1 of our k lists (assume Si does not
contain li). Then for each permutation of lists l′1, ..., l

′
k−1 in

Si and each object q1 ∈ l′1 which points to q2, ..., qk−1 for
the given permutation, none of which are void, we keep a
pointer to least qk ∈ li satisfying q1 ≺ ... ≺ qk or we point
to void if some q′1 such that q1 ≺ q′1 could instead point to
qk in li for the given permutation of lists.

It is straightforward case-work and induction to show that
these new pointers can be maintained in time kO(k) log(n)
upon insertions and deletions. First, observe that by in-
duction, for each permutation of the lists l′1, ..., l

′
k and each

q1 ∈ l′1, the q2, ..., qk pointer to by q1 are each the least pos-
sible choice which q1 could point to and therefore, for each
permutation and list l′i, each qi ∈ li can only be pointed to
once. From this and simple case work, we can conclude that
for each permutation of lists l′1, ..., l

′
k, at most one q1 ∈ l′1

will change its collection of pointers to other players and at
most one q1 ∈ l′1 will change any of its pointers to void.
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We can then conclude that during insertions and deletions,
the number of pointers updated is O(k!k), each requiring
time at most O(log(n)) to update the heap. This yields the
desired runtime of O((k + 1)! log(n)).

6.2 Applying Shortest Intervals
We will use a simple modification of the data structure

from Lemma 3 to construct our approximation data struc-
ture for Theorem 3.

Proof of Theorem 3. To approximate the role-restricted
game queue problem for team size k, we keep a dynamic
shortest interval containing distinct representatives struc-
ture on 2k lists l1, l

′
1, ..., lk, l

′
k where the objects in li are the

players willing to play role ri and their ranks are their skills.
l′i will be a copy of li. Observe now that the collections
of pointers admitted by the candidate property each repre-
sent a collection of players which could form a role-restricted
game, as there must be a distinct representative from li and
l′i for each i, and further more one of these collections is
a collection M minimizing c = maxp∈M (sp) −minp∈M (sp).
Lemma 6 (found in Appendix A) shows that for any game

(X,Y ), we have f(X,Y ) ≥ k−
1
q ( c

2
) and Lemma 5 (found in

Appendix A) shows that there is some role-restricted game
(X,Y,m) in M such that f(X,Y ) ≤ (1 + α)c. From this,
we see there is some game (X,Y,m) which can be formed

from M such that f(X,Y ) ≤ 2k1/q(1 + α)OPT = ρ ·OPT ,
where OPT is the imbalance of a best role-restricted game.
To take advantage of this, we simply store in a min-heap the
best game for each collection of pointers. We just showed
that at least one of the games has imbalance at most ρ·OPT ,
so the game at the top of the heap will have imbalance at
most ρ·OPT , showing that queries can be performed in time
O(k).

To perform insertions and deletions, we simply perform
insertions and deletions into the interval structure and re-
compute the optimal game for any collection of pointers that
changes. This yields a runtime ofO((2k+1)! log(n)+O((2k+

1)!4k/k) which is kO(k) log(n). 2

Like in the unrestricted case, the dependence on k should
not be considered overwhelming, since k is a small constant,
and the game optimization steps are known to be efficiently
solvable, in practice.

7. OFFLINE PARTITIONING PROBLEM
Most applications outside of online games are best mod-

eled as an offline partitioning problem rather than a high-
throughput data structure problem. It seems difficult to
apply results about the queueing problems to the offline par-
titioning problem in a black-box way, since finding the ab-
solute best games might not be the best way to partition all
of the players. Interestingly, our results in this setting nev-
ertheless follow from almost the same ideas as the results
about the queueing problems. Indeed, Theorems 4 and 5
follow very quickly from the ideas in the proofs of Theorems
2 and 3, respectively, so we just sketch the main ideas.

Restatement of Theorem 4. The offline partitioning
problem requires time nc−o(1) assuming the (2k − 2)SUM

problem requires nc−o(1) time to solve.

Proof. (Sketch) The property that we can take advan-
tage of in proving a lower bound for the partitioning prob-
lem, which did not exist for the queueing problem, is that

we actually need to include all players in a game. Suppose
we take a (2k − 2)SUM instance and then turn it into an
offline partitionining problem instance by converting each
number into a player with that skill. Then, we add in two
players with skill M , where M is a very large value we pick
later. These two players must be put in the same game, one
on each team, or else the games they are in will have too
high a value of dp. Then, since the presence of these players
makes vq so high, this game will be the game of maximum
imbalance. Hence, we need to assign the remaining players
to minimize dp. A (2k − 2)SUM solution would achieve the
minimum value dp = 0 if possible.

Theorem 4 has implications from a parameterized com-
plexity theory perspective which further support that the
offline partitioning problem is a difficult problem. Parame-
terized complexity theory studies the difficulty of problems
with respect to parameters which are part of the problem
definition or input; see for instance [3] for the relevant no-
tions.

Our proof of Theorem 4 gives a reduction from the (2k−
2)SUM problem to the offline partitioning problem. But, the
KSUM problem is known to be hard for the complexity class
W [1] from parameterized complexity theory [9]. Our reduc-
tion therefore implies that the offline partitioning problem
is also hard for W [1]. It is widely believed that if a prob-
lem is W [1]-hard, then it does not have a fixed-parameter
tractable algorithm [7]. To illustrate, this means there is
no constant a such that we could find an algorithm running

in time na · 2kO(1)

for the offline partitioning problem; the
exponent of n must be growing with k. By comparison, all
of the efficient data structure and algorithm running times
in this paper are of this form.

An interesting contrast between the offline partitioning
problem and the queueing problems is that, in the offline
partitioning problem, we already get a hardness result with-
out including role-restrictions, whereas the queueing prob-
lem without role-restrictions has an efficient data structure
solution. Pesky outlier players in the offline partitioning
problem can make the problem much harder, since we need
to partition every player into a game. Nonetheless, similar to
the online setting, we can design an efficient approximation
algorithm for the offline problem.

Restatement of Theorem 5. For any constant k, there is
a O(n logn) time ρ-approximation algorithm for the offline
partitioning problem.

Proof. (Sketch) We will find a partition which minimizes
the maximum value of vq(X ∪ Y ) over all formed games
(X,Y ). The same argument as in the proof of Theorem 1
shows that such a partition will also give a ρ-approximation
for the offline partitioning problem. We simply order all the
players by skill, then partition the players into intervals of
length 2k in this order, and divide each interval into two
teams X,Y in order to minimize dp(X,Y ). It follows from a
convexity argument that this minimizes the maximum value
of vq. The total runtime is only O(n logn).

8. FUTURE WORK

8.1 Dependences on k

The runtimes of all our data structures have exponential
dependences on the team size parameter k. These factors
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seem inherent to our approach, which involves solving the
NP-hard PARTITION problem on many sets of 2k player skill
levels. Perhaps we could achieve a better dependence on k
using a different approach instead. It would be a big break-
through to achieve a subexponential dependence on k while
maintaining a small dependence on n, since when k = n/2,
each query to a game queue is solving the PARTITION prob-
lem. As discussed earlier, the offline partitioning problem is
hard for the class W [1] from parameterized complexity the-
ory, which gives further evidence that a much better depen-
dence on k is unlikely for these team matchmaking problems.
Nonetheless, a smaller exponential factor might be possible.

A big area of current research concerns fixed-parameter
tractable (FPT) algorithms, in which one seeks to reduce the
dependence of different parameters in the runtimes of algo-
rithms. See, for instance, [6] for a survey. Perhaps the tech-
niques from FPT algorithms could be useful here. It is also
worth noting, as we discussed earlier, that the PARTITION
problem can be solved much more quickly in practice than
its exponential runtime suggests.

8.2 Objectives in Offline Partitioning
In the offline partitioning problem, we choose to minimize

the imbalance of the most imbalanced game we form. How-
ever, there are other natural objectives we could choose to
minimize instead. One choice would be the sum of the im-
balances of all the games we form. Another would be the
maximum unhappiness of any player, where unhappiness is
defined as the ratio of the imbalance of the game they are
assigned, to the imbalance of the best game one could form
which includes them. Analogues of Theorems 4 and 5 should
hold for these and other similar objectives as well.

8.3 Further Extensions of our Model
Our model was designed to be very general and capture a

wide variety of applications. Nonetheless, it would be inter-
esting to see what other additional components of imbalance
functions, or additional constraints on valid games, could
be included such that the queueing problem can still be ef-
ficiently solved. For instance, one might consider a model
where a player’s skill level changes depending on how many
of their teammates they have played with before, or even
a model where players are not allowed to be matched with
other players they have played with recently.

Our results still hold for many possible extensions with
only minor modifications to the proofs, like extending our
measure of a player’s skill to a multidimensional measure.
For other extensions, like adding in constraints about players
not being matched together on a team too many times in
a row, it may require more work to design efficient data
structures. We note that our lower bounds still hold for any
extension of imbalance functions or our model, as long as the
most basic formulation of team matchmaking, against which
we proved lower bounds, is a special case of the extension.

One component of matchmaking systems for two-player
games that we intentionally do not consider here is net-
work latency between players. In most team-games, unlike
in many two-player games, a central server hosts all matches,
and players communicate with this server rather than with
each other. This means that latency between players is not
an issue. High latency to the server might impact a player,
but if it does, this impact is typically consistent between
games and is already reflected in the player’s skill level.
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A. IMBALANCE FUNCTION PROPERTIES
We present several Lemmas about imbalance functions,

with the goal of proving Lemmas 1 and 2. We only provide
sketches of some more straightforward proofs; full proofs will
appear in the full version.

Lemma 4. Let S be a multiset of integers of size 2k, max =
max(S), and min = min(S). For all p, there exists a parti-
tion X ∪ Y = S such that dp(X,Y ) ≤ max−min.

Actually, we prove a generalization of Lemma 4 which we
will also be able to use in the role-restricted queue setting.

Lemma 5. Let S1, . . . , Sk be k multisets of two integers
each, and let max = max{S1∪· · ·∪Sk} and min = min{S1∪
· · · ∪ Sk}. Then there is a partition X ∪ Y = S1 ∪ · · · ∪ Sk

such that for each i, one element of Si goes to X and the
other goes to Y , and such that dp(X,Y ) ≤ max−min.

Proof. We design our partition greedily. Initially X and
Y are empty. For i from 1 up to k, if currently∑

x∈X

xp ≤
∑
y∈Y

yp, (1)

then we add the bigger of the two elements of Si to X and
the smaller to Y , and otherwise we add the bigger to Y and
smaller to X. Throughout this process, we will always have∣∣∣∣∣∣

(∑
x∈X

spx

)1/p

−

(∑
y∈Y

spy

)1/p
∣∣∣∣∣∣ ≤ max−min

by a straightforward inductive argument, as desired.

Given a collection of role-restricted players which form a
game (X,Y ), Lemma 5 gives us an upper bound on d(X,Y )
as a function of the highest and lowest skills among the
players. A convexity argument can be used to prove the
following lemma, which gives us similar upper and lower
bounds on v(X ∪ Y ).

Lemma 6. Let S be a set of players of size 2k, max =
max
p∈S

(sp), and min = min
p∈S

(sp). Then for all q,

k
− 1

q

(
max−min

2

)
≤ vq(S) ≤ max−min.

Combining Lemmas 5 and 6 yields almost immediately
Lemma 1 from Section 4. It shows that, when k, α, and
q are fixed constants, there exists a constant c such that
finding a best game for the queueing problem only requires
considering games formed from players contained in windows
of c consecutive players sorted by skill. This is formalized
by Lemma 2 in Section 4.

Proof of Lemma 2. For any game G consisting of players

who come from a window of size greater than 4(1 +α)k
1+ 1

q ,

we can create at least 2(1 +α)k
1
q different games consisting

of disjoint players in intervals of the window. Lemma 1
implies that one of these must be better than G. 2
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